1
|
Xu Y, Yang F, Ye H, Tang Q, Chen Y, Gao Z, Wang S, Zhang F, Li X. Determination of three ephedrine psychoactive substances in sewage using solid-phase extraction-ultra-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9877. [PMID: 39185853 DOI: 10.1002/rcm.9877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE In recent years, ephedrine psychoactive substances have attracted much attention due to their prevalence in water bodies and potential threat to aquatic ecosystems. Psychoactive substances have been considered as a new type of environmental pollutant due to their unpredictable potential risks to the behavior and nervous system of non-target organisms. A rapid, sensitive, selective, and robust method for the quantification of three ephedrine psychoactive substances in sewage is needed. METHODS An ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of three ephedrine psychoactive substances in water. The optimal processing conditions were determined by optimizing the chromatography-mass spectrometry and solid-phase extraction (SPE) conditions (e.g., the SPE column, sample pH, washing, and elution), and the treatment conditions were determined; this was achieved via positive ion scanning in multiple reaction monitoring mode. Poly-Sery MCX was selected as the extraction column, with samples loaded at pH 3. And 4-mL solution of 2% formic acid (FA) aqueous solution was used as the eluent; the target compounds were eluted with 5 mL of 5% NH4OH in acetonitrile (ACN) solution. The best results were obtained when the residue was resolubulization in ACN after nitrogen evaporation. RESULTS The developed UPLC-MS/MS showed a good linear relationship in the range of 0-50.00 μg/L, with determination coefficients (R2) greater than 0.9990. The detection limit and quantitation limit were 0.05-0.10 and 0.20-0.50 μg/L, respectively. Recovery rates of the target compounds in blank sewage at three different concentrations ranged from 92.37% to 106.31%, with relative standard deviations (RSDs) of 0.77%-4.83% (n = 7). CONCLUSIONS This method has been successfully applied to the analysis of surface water and domestic sewage, and the samples were processed stably, indicating that the method is practical for the determination of ephedrine psychoactive drugs in water bodies.
Collapse
Affiliation(s)
- Yiqin Xu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- Technology Center of Fuzhou Customs, Fuzhou, Fujian, China
| | - Fang Yang
- Technology Center of Fuzhou Customs, Fuzhou, Fujian, China
| | - Hong Ye
- Fuzhou International Travel Healthcare Centre, Fuzhou, Fujian, China
| | - Qingqiang Tang
- Technology Center of Fuzhou Customs, Fuzhou, Fujian, China
- Comprehensive Technology Service Center of Sanming Customs, Fuzhou, Sanming, China
| | - Yanwen Chen
- Fuzhou International Travel Healthcare Centre, Fuzhou, Fujian, China
| | - Zhigang Gao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Shuhua Wang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Xiaojing Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Zhang Y, Guo C, Wu R, Hou S, Liu Y, Zhao J, Jiang M, Xu J, Wu F. Global occurrence, distribution, and ecological risk assessment of psychopharmaceuticals and illicit drugs in surface water environment: A meta-analysis. WATER RESEARCH 2024; 263:122165. [PMID: 39084090 DOI: 10.1016/j.watres.2024.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Psychopharmaceuticals and illicit drugs (PIDs) in aquatic environments can negatively impact ecosystem and human health. However, data on the sources, distribution, drivers, and risks of PIDs in global surface waters are limited. We compiled a dataset of 331 records spanning 23 PIDs in surface waters and sediments across 100 countries by conducting a systematic review and meta-analysis of 108 studies published between 2005 and 2022. Most PIDs were sewage-derived, as wastewater treatment rarely achieved complete removal. The highest total PID levels were in Ethiopia, Australia, and Armenia, with many highly contaminated samples from low- and middle-income countries with minimal prior monitoring. Socioeconomic factors (population, GDP) and environmental variables (water stress) influenced the distribution of PIDs. 3,4-Methylenedioxy amphetamine hydrochloride (MDA), Δ9-tetrahydrocannabinol (THC), and 11- Δ9‑hydroxy-tetrahydrocannabinol (THCOH) posed the greatest ecological risks, especially in Oceania and North America. PIDs in surface waters present risks to aquatic organisms. Our findings elucidate the current status and future directions of PID research in surface waters and provide a scientific foundation for evaluating ecological risks and informing pollution control policies.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianglu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Minyu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Wei X, Cao S, Tang Y, Wu D, Su H, Chen Z. The dual-configured hydrogen bonds induced by polymerized deep eutectic solvents-modified magnetic biochar enhanced the selectivity for 3,4-methylenedioxymethamphetamine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124193. [PMID: 38788993 DOI: 10.1016/j.envpol.2024.124193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The accurate discovering and monitoring of 3,4-methylenedioxymethamphetamine (MDMA) are especially important because of its substantial toxicity and potential harm to human and the ecological systems. Three types of polymerized deep eutectic solvents functionalized magnetic biochar (MBC@poly (AA/AAC/AAm-ChCl)) were successfully synthesized to adsorb MDMA. The isotherm and kinetic data confirmed that MBC@poly (AAm-ChCl) had the strongest adsorption capacity, and the order of adsorption capacity is as follow: MBC@poly(AAm-ChCl) > MBC@poly(AA-ChCl) > MBC@poly(MAA-ChCl), which also revealed that the adsorption was heterogeneous multi-layer chemisorption. The findings of the characterizations manifested that MBC@poly(AAm-ChCl) was the optimal adsorbent owning to its higher nitrogen content, resulting in the formation of a greater number of hydrogen bonds. Due to the strong hydrogen bonding effect of CO and -NH2 functional groups, MBC@poly(AAm-ChCl) exhibited the high selectivity towards MDMA under the coexistence of multiple chemical substances, and excellent adsorption performance over the pH range of 4-11. Urea as a hydrogen bond inhibitor further confirmed MBC@poly(AAm-ChCl) had high-density active hydrogen bonding sites. Furthermore, utilizing density functional theory (DFT) for simulating adsorption both before and after the process verified that the high selectivity of MBC@poly(AAm-ChCl) attributed to the formation of the dual-configured hydrogen bonds. This study provides support for the production of highly selective biochar for use in pretreatment during drug detection.
Collapse
Affiliation(s)
- Xin Wei
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation Law School, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Yao Tang
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Duanhao Wu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Rong Q, Li Y, Luo J, Yan L, Jones KC, Zhang H. Development of a novel DGT passive sampler for measuring polycyclic aromatic hydrocarbons in aquatic systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134199. [PMID: 38593660 DOI: 10.1016/j.jhazmat.2024.134199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are priority pollutants and need to be measured reliably in waters and other media, to understand their sources, fate, behaviour and to meet regulatory monitoring requirements. Conventional water sampling requires large water volumes, time-consuming pre-concentration and clean-up and is prone to analyte loss or contamination. Here, for the first time, we developed and validated a novel diffusive gradients in thin-films (DGT) passive sampler for PAHs. Based on the well-known DGT principles, the sampler pre-concentrates PAHs with typical deployment times of days/weeks, with minimal sample handling. For the first time, DGT holding devices made of metal and suitable for sampling hydrophobic organic compounds were designed and tested. They minimize sorption and sampling lag times. Following tests on different binding layer resins, a MIP-DGT was preferred - the first time applying MIP for PAHs. It samples PAHs independent of pH (3.9 -8.1), ionic strength (0.01 -0.5 M) and dissolved organic matter < 20 mg L-1, making it suitable for applications across a wide range of environments. Field trials in river water and wastewater demonstrated that DGT is a convenient and reliable tool for monitoring labile PAHs, readily achieving quantitative detection of environmental levels (sub-ng and ng/L range) when coupled with conventional GC-MS or HPLC. ENVIRONMENTAL IMPLICATIONS: PAHs are carcinogenic and genotoxic compounds. They are environmentally ubiquitous and must be monitored in waters and other media. This study successfully developed a new DGT passive sampler for reliable in situ time-integrated measurements of PAHs in waters at the ng/L level. This is the first time to use passive samplers for accurate measurements of hydrophobic organic contaminants in aquatic systems without calibration, a big step forward in monitoring PAHs. The application of this new sampler will enhance our understanding of the sources, fate, behavior and ecotoxicology of PAHs, enabling improved environmental risk assessment and management of these compounds.
Collapse
Affiliation(s)
- Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116023, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 PR China
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 PR China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| |
Collapse
|
5
|
Krupčíková S, Stiborek M, Šimek Z, Vrana B. Factors affecting diffusion of polar organic compounds in agarose hydrogel applied to control mass transfer in passive samplers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122470-122481. [PMID: 37968489 DOI: 10.1007/s11356-023-30929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Diffusive hydrogel-based passive sampler (HPS) based on diffusive gradients in thin films (DGT) is designed for monitoring polar organic contaminants in the aquatic environment. DGT technique controls the compound's overall uptake rate by adding a hydrogel layer of known thickness, which minimizes the importance of the resistive water boundary layer in the compound uptake process. In this work, we investigated several factors which may influence the diffusion of a range of aquatic contaminants in 1.5% agarose hydrogel. Diffusion in hydrogel was tested using the sheet stacking method. We demonstrated that a thin nylon netting incorporated into the diffusive hydrogel for mechanical strengthening does not significantly affect the diffusion of 11 perfluoroalkyl compounds. Further, we investigated the effect of pH in the range from 3 to 11 on the diffusion of a range of 39 aromatic amines (AAs) -36 aromatic, 2 aliphatic, and azobenzene in hydrogel. AAs were chosen as representatives of compounds with pH-dependent dissociation in water. Analysis of variance showed no significant difference in mean diffusion coefficient log D value at five pH values. The demonstration that the diffusion coefficient D and thus the sampling rate Rs are independent on pH simplifies the interpretation of data from field studies because we can neglect the influence of pH on the Rs. log D values (m2 s-1) of tested AAs ranged from to - 9.77 for 3,3'-dimethylbenzidine to - 9.19 for azobenzene. A negative correlation of log D with molar mass (log M) and molecular volume (log Vm) was observed (R = - 0.57 and - 0.56, respectively). The diffusion coefficient presents a critical parameter for the sampling rate estimation of HPS. Theoretical sampling rates Rs of AAs were calculated for a HPS using the average D values. Theoretical Rs values calculated for AAs at 22°C ranged from 29 mL day-1 for 3,3'-dimethylbenzidine to 106 mL day-1 for 2-aminopyridine. Our calculated values of Rs are in the same range as those already published for a range of low-molecular polar organic contaminants, which supports the possibility of deriving sampler performance parameters in the field from laboratory-derived diffusivity of analytes in hydrogel.
Collapse
Affiliation(s)
- Simona Krupčíková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Marek Stiborek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Zdeněk Šimek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| |
Collapse
|
6
|
Ling J, Zhang W, Xiang P, Liao Y, Li J, Zhang Z, Ding Y. Trace detection of methcathinone in sewage using targeted extraction based on magnetic molecularly imprinted polymers coupled with liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4777-4784. [PMID: 37698227 DOI: 10.1039/d3ay01224g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Methcathinone, a new psychoactive substance (NPS), poses a serious threat to public health. Therefore, there is an urgent need to develop a reliable, selective, sensitive and simple analytical technique for monitoring trace amounts of this target NPS in complex matrices. For this purpose, magnetic molecularly imprinted polymers (MMIPs) based on MIPs combined with nano-sized magnetic Fe3O4 were developed for the specific enrichment of methcathinone in wastewater. The binding properties and selectivity of MMIPs toward methcathinone were evaluated and compared with non-imprinted polymer (MNIPs). For sensitive and selective extraction and determination of the target methcathinone, magnetic solid-phase extraction (MSPE) based on MMIPs was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Under optimized conditions, the proposed method was successfully used for the detection of methcathinone in wastewater, which provided a low limit of detection of 0.3 ng L-1 and a limit of quantification of 1.0 ng L-1 with relative standard deviations of less than 6.89% for intra- and inter-day analyses. Good linearity in the range of 1-2000 ng L-1 with a coefficient of determination (R2) greater than 0.98 was observed. Moreover, a certified reference material of water sample was successfully analyzed with satisfactory results and the recoveries of spike experiments ranged from 96.35-116.7%.
Collapse
Affiliation(s)
- Jiang Ling
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | - Wenqi Zhang
- Hebei Province Public Security Department Criminal Police Corps, Shijiazhuang, Hebei, China
| | - Ping Xiang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yingyuan Liao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | - Jiahao Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| | | | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, 410013, Changsha, Hunan, China.
| |
Collapse
|
7
|
Cao S, Huang J, Tian J, Liu Z, Su H, Chen Z. Deep insight into selective adsorption behavior and mechanism of novel deep eutectic solvent functionalized bio-sorbent towards methcathinone: Experiments and DFT calculation. ENVIRONMENTAL RESEARCH 2023; 227:115792. [PMID: 36997045 DOI: 10.1016/j.envres.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
This work designed and synthesized novelly selective, highly efficient and friendly environmental biochar nanomaterial (ZMBC@ChCl-EG) by screening suitable deep eutectic solvent (DES) as the functional monomer via Density Functional Theory (DFT). The prepared ZMBC@ChCl-EG achieved the highly efficient adsorption of methcathinone (MC) and exhibited excellent selectivity as well as good reusability. Selectivity analysis concluded that the distribution coefficient value (KD) of ZMBC@ChCl-EG towards MC was 3.247 L/g, which was about 3 times higher than that of ZMBC, corresponding to stronger selective adsorption capacity. The studies of isothermal and kinetics indicated that ZMBC@ChCl-EG had an excellent adsorption capacity towards MC and the adsorption was mainly chemically controlled. In addition, DFT was used to calculate the binding energies between MC and each component. The binding energies were -10.57 kcal/mol for ChCl-EG/MC, -3.15∼-9.51 kcal/mol for BCs/MC, -2.33 kcal/mol for ZIF-8/MC, respectively, suggesting that DES played a major role in enhancing methcathinone adsorption. Lastly, the adsorption mechanisms were revealed by variables experiment combined with characterizations and DFT calculation. The main mechanisms were hydrogen bonding and π-π interaction.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Jing Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Tian
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
8
|
Bonnaud B, Mazzella N, Boutet P, Daval A, Miège C. Calibration comparison between two passive samplers -o-DGT and POCIS- for 109 hydrophilic emerging and priority organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161720. [PMID: 36690093 DOI: 10.1016/j.scitotenv.2023.161720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The Polar Organic Chemical Integrative Samplers (POCIS) is the most widely used passive sampler for hydrophilic compounds, but unsuitable for certain ionic organic contaminants. The Diffusive Gradient in Thin-Film technique (o-DGT) has shown positive results for both ionic and hydrophilic compounds. However, a calibration step is now needed to evaluate kinetic constant of accumulation for a wide range of molecules. In this study, o-DGT and POCIS were compared for the sampling of three families of micropollutants of potential risk to aquatic environments: 53 pesticides, 36 pharmaceuticals and 20 hormones. A calibration experiment was conducted to compare the kinetic models and constants from a scientific and practical perspective. The results are discussed in a single table that summarizes the performance of both passive samplers for the 109 compounds of interest. The advantage of o-DGT is that it allows linear accumulation for 72 compounds versus only 33 with POCIS. The mean times to equilibrium obtained with o-DGT are higher than those obtained with POCIS. These results confirm that the presence of a diffusion gel delays the achievement of equilibrium during compound accumulation. Therefore, o-DGT can be considered for situations where POCIS cannot be used due to non-linear accumulation over a typical 14-day deployment period. However, overall sampling rates and mass transfer coefficients also appear reduced with o-DGT, which is explained by the smaller exchange surface area, as well as the consideration of an additional diffusive layer in this device. This paper also showed that the most appropriate membrane to sample polar compounds with o-DGT was a polyethersulfone polymer with a pore size of 5 μm.
Collapse
Affiliation(s)
| | | | - Pierre Boutet
- Inrae, UR RiverLy, 5 rue de la Doua, F-69625 Villeurbanne, France
| | - Amandine Daval
- Inrae, UR RiverLy, 5 rue de la Doua, F-69625 Villeurbanne, France
| | - Cécile Miège
- Inrae, UR RiverLy, 5 rue de la Doua, F-69625 Villeurbanne, France
| |
Collapse
|
9
|
Wang Q, Bian Y, Zhang Y, Sun DM, Wang WL, Zhou Y, Liu ZF, Feng XS, He ZW. Development of Sampling, Pretreatment and Detection Methods for Ephedrine and Related Substances in Complex Samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
10
|
Cao H, Bu Q, Li Q, Gao X, Xie H, Gong W, Wang X, Yang L, Tang J. Development and applications of diffusive gradients in thin films for monitoring pharmaceuticals in surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119979. [PMID: 35988678 PMCID: PMC9386599 DOI: 10.1016/j.envpol.2022.119979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/05/2023]
Abstract
Pharmaceutical contaminants in surface water have raised significant concerns because of their potential ecological risks. In particular, coronavirus disease 2019 (COVID-19)-related pharmaceuticals can be released to surface water and reduce environmental water quality. Therefore, reliable and robust sampling tools are required for monitoring pharmaceuticals. In this study, passive sampling devices of diffusive gradients in thin films (DGTs) were developed for sampling 35 pharmaceuticals in surface waters. The results demonstrated that hydrophilic-lipophilic balance (HLB) was more suitable for DGT-based devices compared with XAD18 and XDA1 resins. For most pharmaceuticals, the performance of the HLB-DGT devices were independent of pH (5.0-9.0), ionic strength (0.001-0.5 M), and flow velocity (0-400 rpm). The HLB-DGT devices exhibited linear pharmaceutical accumulation for 7 days, and time-weighted average concentrations provided by the HLB-DGT were comparable to those measured by conventional grab sampling. Compared to previous studies, we extended DGT monitoring to include three antiviral drugs used for COVID-19 treatment, which may inspire further exploration on identifying the effects of COVID-19 on ecological and human health.
Collapse
Affiliation(s)
- Hongmei Cao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China.
| | - Qingshan Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China
| | - Xiaohong Gao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoxiao Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, PR China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
11
|
Zhu X, Jiang L, Wang Y, Ji X, Zhang D, Xu G, Wu D, Li A, Xie X. Validation and application of diffusive gradient in thin-film (DGT) equipped novel cyclodextrin polymer gels for monitoring endocrine disrupting chemicals (EDCs) and environmental risk assessment in the Taihu lake basin. ENVIRONMENTAL RESEARCH 2022; 212:113391. [PMID: 35597293 DOI: 10.1016/j.envres.2022.113391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Taihu Lake is the most important drinking water source of the major cities in the Yangtze River Delta. The pollution of endocrine disruptors (EDCs)in Taihu Lake has been increasing recently, the accurate determination is an important guide for predicting its health risks and developing appropriate controls. Monitoring organic pollutants in water using the diffusive gradient in thin film technique (DGT) has attracted much attention due to more accuracy and convenience than the grab sampling methods. In this study, a novel cyclodextrin polymer (CDP) synthesized by the simple and green method in water was taken as an adsorbent for the binding gel. Four endocrine-disrupting chemicals (EDCs), bisphenol A (BPA), 17α-ethinylestradiol (EE2), 17β-estradiol (E2), and estriol (E3), were taken as models to determine the diffusion coefficients (4.68 × 10-6, 3.38 × 10-6, 3.34 × 10-6 and 4.31 × 10-6 cm2/s) and to test the performance of DGT, such as adsorption capacity and deployment time (1-5 day). The assembled CDP-DGT was adopted to determine four EDCs in a simulated water environment (3-9 of pH, 0.001-0.5 M of ionic strength (IS), and dissolved organic matter (DOM) of 0-20 mg/L). The ability of CDP-DGT sampling was verified in the Jiuxiang River and was carried out for a large-scale field application of in situ sampling EDCs in Taihu Lake basin. The results show that the total EDCs concentration range and the estradiol equivalent concentrations (EEQ) in Taihu Lake and its main rivers are 2.78 ng/L to 11.08 ng/L and 2.62 ng/L to 10.91 ng/L, respectively. The risk quotients (RQs) of all sampling sites in the region were greater than 1, indicating that EDCs pose a serious threat to aquatic organisms in the area. Therefore, the monitoring of EDCs in the Taihu Lake basin should be further strengthened.
Collapse
Affiliation(s)
- Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yinfeng Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province, 330300, China
| | - Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| | - Delin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City of Jiangxi Province, 330300, China.
| |
Collapse
|
12
|
Ji X, Challis JK, Cantin J, Cardenas Perez AS, Gong Y, Giesy JP, Brinkmann M. Desorption kinetics of antipsychotic drugs from sandy sediments by diffusive gradients in thin-films technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155104. [PMID: 35398429 DOI: 10.1016/j.scitotenv.2022.155104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Dynamic processes of organic contaminants in sediments can have important toxicological implications in aquatic systems. The current study used diffusive gradients in thin-films (DGT) devices in sandy sediments spiked with nine antipsychotics and in field sandy sediments. Samplers were deployed for 1 to 30 days to determine the flux of these compounds to DGT devices and the exchange rates between the porewater and sediment solid phase. The results showed a continuous removal of antipsychotics to a binding gel and induced a mobile flux from the DGT device to the adjacent sediment solution. A dynamic model, DGT-induced fluxes in soils and sediments, was used to derive rate constants of resupply of antipsychotics from solid phase to aqueous phase (response time, Tc) and distribution coefficients for labile antipsychotics. The largest labile pool was found for lamotrigine and carbamazepine in spiked sediments. Carbamazepine, clozapine, citalopram, and lamotrigine were resupplied rapidly by sediments with Tc (25-30 min). Tc values of bupropion and amitriptyline were the longest (≈5 h), which exhibited slow desorption rates in sediments. In field sediments, high resupply was found for carbamazepine and lamotrigine, which did not show higher labile pool. The Tc values were obviously higher in the filed sediments (52-171 h). Although the adsorption process is dominant for most studied antipsychotics in both spiked sediments and field sediments, the kinetic resupply of antipsychotic compounds may not be accurately estimated by laboratory-controlled incubation experiments. More studies are needed to explore the mechanisms of desorption kinetics by using in situ DGT technique in the field.
Collapse
Affiliation(s)
- Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Jenna Cantin
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Ana S Cardenas Perez
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| | - Yufeng Gong
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
13
|
Bonnaud B, Miège C, Daval A, Fauvelle V, Mazzella N. Determination of diffusion coefficients in agarose and polyacrylamide gels for 112 organic chemicals for passive sampling by organic Diffusive Gradients in Thin films (o-DGT). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25799-25809. [PMID: 34846659 DOI: 10.1007/s11356-021-17563-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The diffusive gradient in thin film technique was recently adapted to organic compounds. The diffusional coefficient (D) is a key parameter needed to calculate the time-weighted average concentration. In this study, two methods are used for D measurement in two gels (agarose and polyacrylamide): the diffusion cell method (Dcell) and the slice stacking method (Dstack). Thus, D were discussed and compared for 112 organic compounds, including pesticides, hormones, and pharmaceuticals. Dstack tends to be higher than Dcell. It could be explained by the presence of a non-negligible diffusive boundary layer thickness in diffusion cell. Consequently, the use of sampling rates (RS) should be more adequate to determine water concentration, for a given bulk flow velocity. Dstack also corresponds to the diffusion in gel only, allowing the determination of the maximal RS, and would be considered as a reference value that can be adjusted to in situ conditions, by applying the appropriate DBL thickness. The range and variability of D values found in the literature and obtained in this work were discussed. Relationships between D and compound physicochemical properties (molecular mass, log Dow, polar surface area, van der Waals volume) were investigated. We did not find clear and robust correlation between D and any single physicochemical property, for the set of compounds tested.
Collapse
Affiliation(s)
| | - Cécile Miège
- INRAE, UR RiverLy, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Amandine Daval
- INRAE, UR RiverLy, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Vincent Fauvelle
- Mediterranean Institute of Oceanography (MIO), Aix-Marseille Univ., Toulon Univ., CNRS, IRD, 13288, Marseille, France
| | | |
Collapse
|
14
|
Zhu X, Jiang L, Tu Y, Tian Y, Xu G, Wu D, Li A, Xie X. In situ monitoring of phthalate esters (PAEs) pollution and environmental risk assessment in Poyang Lake Basin by DGT Technology using cyclodextrin polymer as binding phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151892. [PMID: 34826470 DOI: 10.1016/j.scitotenv.2021.151892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Poyang Lake is the first freshwater lake in China, which is an important drinking water source. In recent years, industrial pollution has led to the increased phthalate acid esters (PAEs) in Poyang Lake. PAEs are a class of typical endocrine disruptors that can accumulate in organisms and interfere with their secretion systems. Thus, the accurate determination of PAEs in Poyang Lake is important for health risk prediction and the development of corresponding control means. Monitoring organic pollutants in water using the diffusive gradient in thin films technique (DGT) has attracted much attention due to more accuracy and convenience than the traditional methods. This study used an inexpensive amphiphilic cyclodextrin polymer (PBCD) as the sorbent for the binding gel. This new binding gel has an ultra-high specific surface area and excellent adsorption performance. Diffusion coefficients of the five PAEs were determined, and the performance of DGT such as adsorption capacity and deployment time (1-4 days) was tested using five PAEs as models. The assembled PBCD-DGT was used to examine the performance in a complex simulated water environment. The sampling capability of PBCD-DGT was verified in Yangshan Lake, and a large-scale field application was conducted in Poyang Lake basin. The results of 11 sampling points showed that the concentration ranges of dimethyl phthalate, diethyl phthalate, diallyl phthalate, dipropyl phthalate, and dibutyl phthalate were 434-2594 ng/L, 40-314 ng/L, 80-527 ng/L, 45-308 ng/L, and ND-182 ng/L, respectively. The health risk index (HI) and ecological risk quotient (RQ) values of PAEs in the Poyang Lake watershed were far below 1, indictating a lower health and ecological risk. Considering that PAEs are bioaccumulative and persistent, it is very necessary to continue to pay attention to its pollution status and health and ecological risk changes in Poyang Lake Basin in the future.
Collapse
Affiliation(s)
- Xingqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Yuansong Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City, Jiangxi Province 330300, China.
| |
Collapse
|
15
|
Zhu Y, Xu G, Wang X, Ji X, Jia X, Sun L, Gu X, Xie X. Passive sampling of chlorophenols in water and soils using diffusive gradients in thin films based on β-cyclodextrin polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150739. [PMID: 34619202 DOI: 10.1016/j.scitotenv.2021.150739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Chlorophenols (CPs) have been listed as priority control pollutants because of their high toxicity and wide range. An In-situ monitoring technique using diffusive gradients in thin films based on porous β-cyclodextrin polymers as binding materials (CDP-DGT), was established to monitor four typical CPs, namely, 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP), 2,4,5-Trichlorophenol (2,4,5-TCP), 2,4,6-Trichlorophenol (2,4,6-TCP) in water and soils. The performance of CDP-DGT are stable under the conditions of pH 3.5-9.3, ionic strength 0.001-0.500 mol L-1 and dissolved organic matter concentration 0-20 mol L-1. The adsorption capacities of CDP-DGT for 4-CP, 2,4-DCP, 2,4,5-TCP, 2,4,6-TCP were 57.80 μg cm-2, 98.82 μg cm-2, 95.69 μg cm-2 and 98.91 μg cm-2, respectively. The time-average weighted concentrations of four CPs determined by CDP-DGT at Sanjiangkou wharf (Yangtze river, China) were consistent with the results of grab sampling, indicating the feasibility of CDP-DGT application in actual water. In addition, the distribution of CPs in the red soil of Kunming and paddy soil of Yixing were also studied by CDP-DGT, and the desorption kinetics in the two soils were analyzed with the DIFS model. The higher the soil organic matter content is, the more CPs are distributed in the soil solid phase. CPs in both soils can be partially resupplied to soil solution from the soil solid phase and the higher the partition coefficient for labile CPs is, the stronger the supplement capacity is.
Collapse
Affiliation(s)
- Yuanting Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Xun Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
16
|
Ji X, Challis JK, Brinkmann M. A critical review of diffusive gradients in thin films technique for measuring organic pollutants: Potential limitations, application to solid phases, and combination with bioassays. CHEMOSPHERE 2022; 287:132352. [PMID: 34826958 DOI: 10.1016/j.chemosphere.2021.132352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Diffusive gradient in thin films (DGT) for organics has received considerable attention for studying the chemical dynamics of various organic pollutants in the environment. This review investigates current limitations of DGT for organics and identifies several research gaps for future studies. The application of a protective outer filter membrane has been recommended for most DGT applications, however, important questions regarding longer lag times due to significant interaction or adsorption of specific groups of compounds on the outer membrane remain. A modified DGT configuration has been developed that uses the diffusive gel as the outer membrane without the use of an extra filter membrane, however use of this configuration, while largely successful, remains limited. Biofouling has been a concern when using DGT for metals; however, effect on the performance of DGT for organics needs to be systemically studied. Storage stability of compounds on intact DGT samplers has been assessed in select studies and that data is synthesized here. DGT has been used to describe the kinetic desorption of antibiotics from soils and biosolids based on the soil/biosolid physical-chemical characteristics, yet applications remain limited and requires further research before wide-scale adoption is recommended. Finally, DGT for organics has been rarely, albeit successfully, combined with bioassays as well as in vivo bioaccumulation studies in zebrafish. Studies using DGT combined with bioassays to predict the adverse effects of environmental mixtures on aquatic or terrestrial biota are discussed here and should be considered for future research.
Collapse
Affiliation(s)
- Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | | | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
17
|
Liu S, Chen S, Li X, Yue Y, Li J, Williams PN, Wang Z, Li C, Yang Y, Ying GG, Chen CE. Development and application of diffusive gradients in thin-films for in situ sampling of the bitterest chemical - denatonium benzoate in waters. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126393. [PMID: 34329009 DOI: 10.1016/j.jhazmat.2021.126393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Denatonium benzoate (DB), a commonly used bitter agent in numerous products, has recently been recognized as a waterborne contaminant due to concern about its potential persistence, mobility and toxicity (PMT). However, its occurrence, levels and fate in global aquatic environments are largely unknown. In this study, a new sampling method, based on diffusive gradients in thin films (DGT) with mixed-mode cation exchange (MCX) as the binding agent, was developed for measuring DB in waters. MCX shows a rapid adsorption and high capacity for DB. DB is linearly accumulated by MCX-DGT. pH (6-8), ionic strength (0.01-0.5 M), or DOM (0-10 M) do not show any significant effect on the MCX-DGT performance, confirming its reliability. The DGT measurements in a wastewater treatment plant (WWTP) are comparable to those by paralleled grab sampling. The field results suggest DB is persistent in WWTPs and could be a potential domestic wastewater indicator. Therefore, MCX-DGT is a promising technique for understanding the environmental occurrence, levels and fate of DB. This is a first report of using DGT for DB monitoring and of DB occurrence in Chinese environments. Further exploration of DGT as a reliable passive monitoring tool for a wide range of PMT substances in different applications is warranted.
Collapse
Affiliation(s)
- Sisi Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Shibao Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaohao Li
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yubo Yue
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jinling Li
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Paul N Williams
- Institute for Global Food Security, Queen's University Belfast, Biological Sciences, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Cailin Li
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuanyuan Yang
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Wang R, Biles E, Li Y, Juergens MD, Bowes MJ, Jones KC, Zhang H. In Situ Catchment Scale Sampling of Emerging Contaminants Using Diffusive Gradients in Thin Films (DGT) and Traditional Grab Sampling: A Case Study of the River Thames, UK. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11155-11164. [PMID: 32797751 DOI: 10.1021/acs.est.0c01584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The in situ passive sampling technique, diffusive gradients in thin films (DGT), confronts many of the challenges associated with current sampling methods used for emerging contaminants (ECs) in aquatic systems. This study compared DGT and grab sampling for their suitability to screen and monitor ECs at the catchment scale in the River Thames system (U.K.) and explored their sources and environmental fate. The ubiquitous presence of endocrine disrupting chemicals, parabens, and their metabolites is of concern. This study is the first to report organophosphate esters (OPEs) in the study area. TEP (summer 13-160 and winter 18-46, ng/L) and TCPP (summer 242-4282 and winter 215-854, ng/L) were the main OPEs. For chemicals which were relatively stable in the rivers, DGT and grab sampling were in good agreement. For chemicals which showed high variation in water bodies, DGT provided a better integral of loadings and exposure than grab sampling. DGT was not as sensitive as grab sampling under the procedures employed here, but there are several options to improve it to give comparable/better performance. DGT samples require shorter preparation time for analysis in the laboratory than grab samples. Overall, DGT can be a powerful tool to characterize ECs throughout a large dynamic water system.
Collapse
Affiliation(s)
- Runmei Wang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Emma Biles
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Yanying Li
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | | | - Michael J Bowes
- Centre for Ecology and Hydrology, Wallingford, Oxon OX10 8BB, U.K
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| |
Collapse
|
19
|
You N, Chen Y, Zhang QX, Zhang Y, Meng Z, Fan HT. In-situ monitoring of phenol in surface waters by diffusive gradients in thin films technique based on the nanocomposites of zero-valent iron@biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139553. [PMID: 32473426 DOI: 10.1016/j.scitotenv.2020.139553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
The nano-sized zero valent iron assisted biochar from hazelnut shell (nZVI@biochar) was prepared and assessed for the feasibility as the binding agent in diffusive gradients in thin-films (DGT) technique. The 1.5% agarose solution containing the optimal nZVI@biochar dose of 15 g L-1 was used to prepare the nZVI@biochar binding gel which owned a high capacity (1010 ± 50 μg disc-1) and a rapid uptake within 30 min. The elution efficiency of phenol from the loaded binding gel was up to 99.3% using the mixture of 1% hydroxylamine hydrochloride and 0.05 mol L-1 HCl. The phenol uptake of nZVI@biochar-DGT increased linearly with the increase of deployment time (R2 = 0.9938) and was in accord with the theoretical values from DGT equation, while there was no notable interference of the sample matrixes on the phenol uptake of nZVI@biochar-DGT in the spiked freshwaters. The good performance of nZVI@biochar-DGT was found under a range of pH (4.1-10.2), ionic strength (as pNaNO3) (0.155-4), and dissolved organic matter up to 20 mg L-1. In field, the monitoring of nZVI@biochar-DGT was more representative than the results from the grab-sampling with better precision and lower sampling frequency, which can provide reliable information, reduce the cost of human resources, and improve efficiency. These illustrate that the nZVI@biochar is more suitable as the binding agent of DGT for uptake of phenol and nZVI@biochar-DGT is an effective tool to monitor in-situ phenol in waters.
Collapse
Affiliation(s)
- Nan You
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Yang Chen
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Qing-Xin Zhang
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Ying Zhang
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Zhuo Meng
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
| | - Hong-Tao Fan
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China.
| |
Collapse
|
20
|
Bijlsma L, Bade R, Been F, Celma A, Castiglioni S. Perspectives and challenges associated with the determination of new psychoactive substances in urine and wastewater - A tutorial. Anal Chim Acta 2020; 1145:132-147. [PMID: 33453874 DOI: 10.1016/j.aca.2020.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
New psychoactive substances (NPS), often designed as (legal) substitutes to conventional illicit drugs, are constantly emerging in the drug market and being commercialized in different ways and forms. Their use continues to cause public health problems and is therefore of major concern in many countries. Monitoring NPS use, however, is arduous and different sources of information are required to get more insight of the prevalence and diffusion of NPS use. The determination of NPS in pooled urine and wastewater has shown great potential, adding a different and complementary light on this issue. However, it also presents analytical challenges and limitations that must be taken into account such as the complexity of the matrices, the high sensitivity and selectivity required in the analytical methods as a consequence of the low analyte concentrations as well as the rapid transience of NPS on the drug market creating a scenario with constantly moving analytical targets. Analytical investigation of NPS in pooled urine and wastewater is based on liquid chromatography hyphenated to mass spectrometry and can follow different strategies: target, suspect and non-target analysis. This work aims to discuss the advantages and disadvantages of the different data acquisition workflows and data exploration approaches in mass spectrometry, but also pays attention to new developments such as ion mobility and the use of in-silico prediction tools to improve the identification capabilities in high-complex samples. This tutorial gives an insight into this emerging topic of current concern, and describes the experience gathered within different collaborations and projects supported by key research articles and illustrative practical examples.
Collapse
Affiliation(s)
- L Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain.
| | - R Bade
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, South Australia, 5000, Australia.
| | - F Been
- KWR Water Research Institute, Chemical Water Quality and Health, 3430 BB, Nieuwegein, the Netherlands
| | - A Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain
| | - S Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, 20156, Milan, Italy
| |
Collapse
|
21
|
Reichstädter M, Divis P, Abdulbur-Alfakhoury E, Gao Y. Simultaneous determination of mercury, cadmium and lead in fish sauce using Diffusive Gradients in Thin-films technique. Talanta 2020; 217:121059. [PMID: 32498878 DOI: 10.1016/j.talanta.2020.121059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/25/2022]
Abstract
Fish sauce is a popular seasoning liquid originating from southeastern Asian cuisine, consisting of fermented fish, salt and additional ingredients. Fish can contain high amounts of metals, some of which are hazardous for human health. Therefore, authorities responsible for food safety and quality should monitor the levels of these contaminants in fish and fish deviated products. In this work, the passive sampling technique of Diffusive Gradients in Thin-films (DGT) containing Chelex-100 and Purolite S924 resin gels, is used for the determination of dissolved mercury (Hg), cadmium (Cd) and lead (Pb) in fish sauce. The DGT performance test showed linear accumulation of Hg, Cd and Pb on the binding gels versus deployment time. A wide range of pH and salt concentration did not affect the performance of the DGT. The effective diffusion coefficients of Hg, Cd and Pb in diffusive gels were determined by applying a series of deployments in fish sauce solution. Besides the direct sampling with the DGT technique, fish sauce samples were also digested using a microwave oven. Analyses of DGT and microwave oven digested samples were performed with Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICP-MS). Both methods were then used for the analysis of fish sauces from local retail stores. Due to the preconcentration ability of DGT, lower detection limits of Hg, Cd and Pb could be achieved compared to the microwave digestion method. The DGT technique offers a more sensitive method for trace element analysis in complex food matrices.
Collapse
Affiliation(s)
- Marek Reichstädter
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Brno University of Technology, Faculty of Chemistry, Purkynova 118, Brno, 62100, Czech Republic
| | - Pavel Divis
- Brno University of Technology, Faculty of Chemistry, Purkynova 118, Brno, 62100, Czech Republic
| | - Ehab Abdulbur-Alfakhoury
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
22
|
Wang R, Jones KC, Zhang H. Monitoring Organic Pollutants in Waters Using the Diffusive Gradients in the Thin Films Technique: Investigations on the Effects of Biofouling and Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7961-7969. [PMID: 32450690 DOI: 10.1021/acs.est.0c00224] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The diffusive gradients in thin films (DGT) passive sampling technique has been increasingly used to provide time-weighted average concentrations of the biorelevant fraction of organic contaminants in waters, with high spatial and temporal resolutions at low cost. This study was tested for the effects of biofouling and compound degradation/loss during sample handling/storage on the DGT measurement of a range of emerging organic pollutants. Biofouling was tested using biofilms collected from the influent and effluent of a typical urban wastewater treatment plant. Most (85%) target compounds showed no detectable effect on the DGT measurement when 8- and 15-day biofouled membrane filters were used. Four storage methods were designed to test for within-sampler degradation/loss for up to 2 months. Intact samplers can be simply stored in polyethylene bags at ambient temperature (18-26 °C) with most compounds stable (mass loss <20%) for at least 1 week. Keeping intact samplers at 4 °C or binding gels in solvent gave good recoveries, with most chemicals being stable for up to 2 months, although the best results were obtained when binding gels were kept in solvent at 4 °C. Recommendations are made for sample handling and storage of DGT samplers used for determination of trace organics in monitoring and surveillance campaigns.
Collapse
Affiliation(s)
- Runmei Wang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| |
Collapse
|
23
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
24
|
Multiphase extraction of ephedrine from Pinellia ternata using bionic liquid-modified polymer. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2019. [DOI: 10.2478/pjct-2019-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Multiphase extraction (MPE) was applied as a developed, convenient and efficient method in separation of ephedrine from Pinellia ternata. Firstly, in order to increase the adsorption efficiency, bionic liquid-modified polymer was created. Comparing the effects of all sorbents under variables conditions, the highest amount of 5.8 mg/g can be adsorbed on dual imidazole ionic liquid modified polymer (Im-Im-Poly) in methanol/water (70:30, v/v) solution at 25°C within 30.0 min. Then the Im-Im-Poly was applied in MPE, after 7 times repetition of extraction, around 1.0 mg/g of ephedrine from Pinellia ternata was detected. After washing by water, ethanol and methanol, and elution by methanol/acetic acid (99.0:1.0, v/v), ephedrine was successfully separated.
Collapse
|
25
|
Guibal R, Buzier R, Lissalde S, Guibaud G. Adaptation of diffusive gradients in thin films technique to sample organic pollutants in the environment: An overview of o-DGT passive samplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133537. [PMID: 31357036 DOI: 10.1016/j.scitotenv.2019.07.343] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
The adaptation of the diffusive gradients in thin films technique (DGT) to sample organic pollutants in the environment, called o-DGT has been performed since 2011 for various types of organic compounds (e.g. pesticides, pharmaceuticals, hormones, endocrine disrupting chemicals, household and personal care products). To sample these different compounds, configuration of the samplers (mainly receiving phase and diffusive gel) has to be adapted. Up-to-date, sampling of 142 organic compounds by this passive sampler have been tested. This review provides the state-of-art of o-DGT passive sampler development, describing theory and modelling, calibration, configuration of the devices, and field applications. The most used configurations were agarose-XAD-18 and agarose-HLB configuration. o-DGT can be used to sample soils and most of natural waters (range of pH 4-9 and ionic strength 0.001-0.1 M). This review discusses current limitation of o-DGT in light of the feedback of DGT use to sample inorganic contaminants. It mainly concern the low sampling rates currently obtained by o-DGT compared to other passive samplers. This weakness could be compensated in the future with new sampler's design allowing an increase in exposure area.
Collapse
Affiliation(s)
- Robin Guibal
- University of Limoges, Peirene EA7500 - URA IRSTEA - Equipe Développement d'indicateurs ou prévision de la qualité des eaux, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Rémy Buzier
- University of Limoges, Peirene EA7500 - URA IRSTEA - Equipe Développement d'indicateurs ou prévision de la qualité des eaux, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Sophie Lissalde
- University of Limoges, Peirene EA7500 - URA IRSTEA - Equipe Développement d'indicateurs ou prévision de la qualité des eaux, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Gilles Guibaud
- University of Limoges, Peirene EA7500 - URA IRSTEA - Equipe Développement d'indicateurs ou prévision de la qualité des eaux, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| |
Collapse
|
26
|
Meng Z, You N, Fan HT. In-situ sampling of chlorophenols in industrial wastewater using diffusive gradients in thin films technique based on mesoporous carbon. CHEMOSPHERE 2019; 232:18-25. [PMID: 31152899 DOI: 10.1016/j.chemosphere.2019.05.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/12/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
In-situ sampling of 2-chlorophenol (CP), 2,4-dichlorophenol (DCP), and 2,4,6-trichlorophenol (TCP) in industrial wastewater was carried out by the diffusive gradients in thin films (DGT) device based on mesoporous carbon (MC). The diffusion coefficients of CP ((1.33 ± 0.05) × 10-6 cm2 s-1), DCP((1.35 ± 0.04) × 10-6 cm2 s-1) and TCP((1.09 ± 0.07) × 10-6 cm2 s-1)) in nylon membrane at 25 °C were independent of pH 3-9 and ionic strength as pNaCl from 0.155 to 3, and were less than their values in water, demonstrating that the nylon membrane with good tolerance and constant diffusion coefficients was suitable as the DGT diffusion layer for controlling the diffusion of CPs. MC-DGT accurately measured the concentrations of CP, DCP and TCP in synthetic solution (CDGT/CSOLN = 0.956-1.04) over the deployment of 120 h. The experimental data also agreed well with the theoretical data calculated on the DGT equation. The performance of MC-DGT for sampling CPs was independent of pH (3-8) and ionic strength as pNaCl (1.3-3) due to the change of the interaction between MC and CPs under relatively high pH and ionic strength. Deployments in laboratory and field trials demonstrated that the MC-DGT was a reliable simple, robust and accurate tool for the in-situ sampling of CP, DCP and TCP in the industrial wastewater.
Collapse
Affiliation(s)
- Zhuo Meng
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, China
| | - Nan You
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, China
| | - Hong-Tao Fan
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning Shihua University, China.
| |
Collapse
|
27
|
Wang R, Zou Y, Luo J, Jones KC, Zhang H. Investigating Potential Limitations of Current Diffusive Gradients in Thin Films (DGT) Samplers for Measuring Organic Chemicals. Anal Chem 2019; 91:12835-12843. [DOI: 10.1021/acs.analchem.9b02571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Runmei Wang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Yitao Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People’s Republic of China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People’s Republic of China
| | - Kevin C. Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
28
|
Zhang D, Zhu Y, Xie X, Han C, Zhang H, Zhou L, Li M, Xu G, Jiang L, Li A. Application of diffusive gradients in thin-films for in-situ monitoring of nitrochlorobenzene compounds in aquatic environments. WATER RESEARCH 2019; 157:292-300. [PMID: 30959332 DOI: 10.1016/j.watres.2019.03.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Nitrochlorobenzene compounds (NCBs) are of key interest in environmental monitoring due to their high toxicity. To better understand the presence and fate of NCBs in aquatic environments, an in-situ sampling technique of diffusive gradients in thin films (DGT) based on hydrophilic-lipophilic-balanced (HLB) resin, combined with gas chromatography, was developed to measure four typical NCBs, e.g. meta-chloronitrobenzene (MNCB), para-chloronitrobenzene (PNCB), ortho-chloronitrobenzene (ONCB), and 2,4-dinitrochlorobenzene (CDNB). The diffusion coefficients of MNCB, PNCB, ONCB, and CDNB in agarose-based gel were firstly determined in diffusion cell experiments and ranged from 7.19 × 10-6 to 7.49 × 10-6 cm/s. The capacities of HLB-DGT for MNCB, PNCB, ONCB, and CDNB were higher than 114.65, 117.52, 117.72, and 37.58 μg/cm2, respectively. The HLB-DGT performance on NCBs determination was demonstrated to be independent of natural fluctuations in pH (3-9), ionic strength (0.001-0.5 M), and dissolved organic matter concentrations (0-20 mg/L) and of deployment time (0-120 h). In the field application, the DGT-based method to measure NCBs not only proved to be accurate and effective, but also performed better than the grab sampling method under the variable conditions. This study demonstrates that the newly developed in-situ method based on DGT can provide an attractive alternative for the routine monitoring of NCBs in aquatic environments.
Collapse
Affiliation(s)
- Delin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Yuanting Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China.
| | - Chao Han
- Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Lijun Zhou
- Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Meng Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Lu Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| |
Collapse
|
29
|
You N, Yao H, Wang Y, Fan HT, Wang CS, Sun T. Development and evaluation of diffusive gradients in thin films based on nano-sized zinc oxide particles for the in situ sampling of tetracyclines in pig breeding wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1653-1660. [PMID: 30312908 DOI: 10.1016/j.scitotenv.2018.09.323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The pollution of antibiotics, including tetracyclines (TCs), in aquatic environments has become an issue of concern in recent years. Herein, an in situ sampling of TCs in pig breeding wastewater that utilizes the technique of diffusive gradients in thin films (DGT), based on commercial nanosized ZnO (nanoZnO) particles as the potential effective binding agent and a polyethersulfone (PES) membrane as the diffusion layer, was developed. The diffusion coefficients of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) in a PES membrane at 25 °C were (1.37 ± 0.06) × 10-6 cm2 s-1, (1.29 ± 0.05) × 10-6 cm2 s-1 and (1.94 ± 0.07) × 10-6 cm2 s-1, respectively. The results showed that the adsorption capacities of a gel disc containing 2.5 g L-1 of nanoZnO particles were as high as 3.93 ± 0.20 mg disc-1 for TC, 3.21 ± 0.20 mg disc-1 for OTC and 4.62 ± 0.22 mg disc-1 for CTC. Both a solution pH in the range of 5-9 and an ionic strength (as pNaCl) in the range of 1-3 had an insignificant influence on the TCs uptake by nanoZnO-DGT samplers. There was no significant influence of fulvic acid or tannic acid on the TC uptake by nanoZnO-DGT samplers at the tested mass ratios. For all spiked freshwater samples, there was no notable interference of matrices on the performance of the nanoZnO-DGT samplers, suggesting that the nanoZnO-DGT samplers yielded satisfactory results for the uptake of TCs at concentrations existing in the spiked freshwater samples. Field deployment of the nanoZnO-DGT samplers in pig breeding wastewater also exhibited excellent precision and accuracy, indicating that the nanoZnO-DGT samplers could be used as a promising method for the in situ sampling of TC antibiotics in aquatic environments.
Collapse
Affiliation(s)
- Nan You
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning University of Petroleum & Chemical Technology, Fushun 113001, Liaoning, China
| | - Hui Yao
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, 100142, Liaoning, China
| | - Yun Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Hong-Tao Fan
- College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning University of Petroleum & Chemical Technology, Fushun 113001, Liaoning, China.
| | - Chang-Song Wang
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, 100142, Liaoning, China.
| | - Ting Sun
- College of Sciences, Northeastern University, Shenyang 110004, China.
| |
Collapse
|