1
|
Tonolo N, Cecconi A, Vuth SM, Regine M, Abruzzese D, Carnevale D, Bigi A, Teggi S, Berardi S, Bogliolo MP, Verginelli I. Development of a Novel Low-Cost Automated Flux Chamber for Real-Time Monitoring of VOCs Emissions at Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8221-8230. [PMID: 40250837 PMCID: PMC12045271 DOI: 10.1021/acs.est.5c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/20/2025]
Abstract
This study introduces an innovative, low-cost static flux chamber for real-time monitoring of volatile organic compound (VOC) emissions at contaminated sites. Compared to traditional static flux chambers, the developed system is fully automated, eliminating the need for continuous operator intervention in the field. The cylindrical stainless-steel chamber (6.28 L) is equipped with internal sensors for temperature, pressure, and humidity, and a low-cost PID sensor for VOC detection (0.001-40 ppm). VOC flux is determined over 10 min measurement cycles, with two micro diaphragm pumps purging the chamber to reset concentrations. An Arduino Uno microcontroller manages the system, enabling local data storage (SD card) and a LoRa module to send real-time data to the cloud using IoT systems. Powered by a 12 V battery, rechargeable via a photovoltaic panel, the system ensures continuous operation. The prototype costs less than 1.5 k€, significantly cheaper than commercial devices. Accuracy and repeatability were assessed through lab-scale emission tests under dynamic conditions using various aliphatic and aromatic VOCs. Results closely matched those from a commercial gas analyzer and a Comsol Multiphysics numerical model, confirming the system reliability. These findings support its potential as a cost-effective alternative for continuous VOC monitoring at contaminated sites.
Collapse
Affiliation(s)
- Nicolò Tonolo
- Department
of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Alessandra Cecconi
- Department
of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Srey Mom Vuth
- Department
of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Mario Regine
- Department
of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Donato Abruzzese
- Department
of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Daniele Carnevale
- Department
of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Alessandro Bigi
- “Enzo
Ferrari” Department of Engineering, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sergio Teggi
- “Enzo
Ferrari” Department of Engineering, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Simona Berardi
- Department
of Technological Innovations and Safety of Plants, Products and Anthropic
Settlements, National Institute for Insurance
against Accidents at Work (INAIL), Via Roberto Ferruzzi 38/40, 00143 Rome, Italy
| | - Maria Paola Bogliolo
- Department
of Technological Innovations and Safety of Plants, Products and Anthropic
Settlements, National Institute for Insurance
against Accidents at Work (INAIL), Via Roberto Ferruzzi 38/40, 00143 Rome, Italy
| | - Iason Verginelli
- Department
of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
2
|
Verginelli I, Lahvis MA, Jourabchi P, DeVaull GE. Soil gas gradient method for estimating natural source zone depletion rates of LNAPL and specific chemicals of concern. WATER RESEARCH 2024; 267:122559. [PMID: 39368191 DOI: 10.1016/j.watres.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
This paper presents a simplified approach for the soil gas gradient method for estimating natural source zone depletion (NSZD) rates of specific contaminants of concern (COCs) at sites contaminated by light non-aqueous phase liquids (LNAPL). Traditional approaches to quantify COC-specific NSZD rates often rely on numerical or analytical reaction-transport models that require detailed site-specific data. In contrast, the proposed method employs simple analytical solutions, making it more accessible to practitioners. Specifically, it requires only the maximum soil gas concentration, the effective diffusion coefficient, and the diffusive reaction length calculated from vertical soil gas concentration profiles. The simplified approach was validated against a reactive transport numerical model reported in the literature, showing consistent results within the same order of magnitude for BTEX NSZD rates at a gasoline spill site in South Carolina. Further validation using a larger dataset involved comparing NSZD rate estimates for benzene and total petroleum hydrocarbons (TPH) against those obtained using BioVapor, utilizing empirical soil gas data from the USEPA Petroleum Vapor Intrusion Database. Results demonstrated a strong correlation between NSZD rates and maximum soil gas concentrations, allowing the development of a rapid screening approach based only on the measured soil gas concentrations and literature values for diffusion coefficients and diffusive reaction lengths. This approach aligned well with previous modeling studies and was consistent with literature values for TPH NSZD rates. Overall, both the simplified and screening approaches offer practical, easy-to-use tools for evaluating temporal variability in natural attenuation rates, supporting baseline assessments and ongoing performance evaluations of remediation at LNAPL sites.
Collapse
Affiliation(s)
- Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.
| | - Matthew A Lahvis
- Equilon Enterprises LLC doing business as Shell Oil Products US, Houston, TX, USA
| | | | - George E DeVaull
- Equilon Enterprises LLC doing business as Shell Oil Products US, Houston, TX, USA
| |
Collapse
|
3
|
Ramezanzadeh M, Slowinski S, Rezanezhad F, Murr K, Lam C, Smeaton C, Alibert C, Vandergriendt M, Van Cappellen P. Effects of freeze-thaw cycles on methanogenic hydrocarbon degradation: Experiment and modeling. CHEMOSPHERE 2023; 325:138405. [PMID: 36931401 DOI: 10.1016/j.chemosphere.2023.138405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Cold regions are warming much faster than the global average, resulting in more frequent and intense freeze-thaw cycles (FTCs) in soils. In hydrocarbon-contaminated soils, FTCs modify the biogeochemical and physical processes controlling petroleum hydrocarbon (PHC) biodegradation and the associated generation of methane (CH4) and carbon dioxide (CO2). Thus, understanding the effects of FTCs on the biodegradation of PHCs is critical for environmental risk assessment and the design of remediation strategies for contaminated soils in cold regions. In this study, we developed a diffusion-reaction model that accounts for the effects of FTCs on toluene biodegradation, including methanogenic biodegradation. The model is verified against data generated in a 215 day-long batch experiment with soil collected from a PHC contaminated site in Ontario, Canada. The fully saturated soil incubations with six different treatments were exposed to successive 4-week FTCs, with temperatures oscillating between -10 °C and +15 °C, under anoxic conditions to stimulate methanogenic biodegradation. We measured the headspace concentrations and 13C isotope compositions of CH4 and CO2 and analyzed the porewater for pH, acetate, dissolved organic and inorganic carbon, and toluene. The numerical model represents solute diffusion, volatilization, sorption, as well as a reaction network of 13 biogeochemical processes. The model successfully simulates the soil porewater and headspace concentration time series data by representing the temperature dependencies of microbial reaction and gas diffusion rates during FTCs. According to the model results, the observed increases in the headspace concentrations of CH4 and CO2 by 87% and 136%, respectively, following toluene addition are explained by toluene fermentation and subsequent methanogenesis reactions. The experiment and the numerical simulation show that methanogenic degradation is the primary toluene attenuation mechanism under the electron acceptor-limited conditions experienced by the soil samples, representing 74% of the attenuation, with sorption contributing to 11%, and evaporation contributing to 15%. Also, the model-predicted contribution of acetate-based methanogenesis to total produced CH4 agrees with that derived from the 13C isotope data. The freezing-induced soil matrix organic carbon release is considered as an important process causing DOC increase following each freezing period according to the calculations of carbon balance and SUVA index. The simulation results of a no FTC scenario indicate that, in the absence of FTCs, CO2 and CH4 generation would decrease by 29% and 26%, respectively, and that toluene would be biodegraded 23% faster than in the FTC scenario. Because our modeling approach represents the dominant processes controlling PHC biodegradation and the associated CH4 and CO2 fluxes, it can be used to analyze the sensitivity of these processes to FTC frequency and duration driven by temperature fluctuations.
Collapse
Affiliation(s)
- Mehdi Ramezanzadeh
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Canada.
| | - Stephanie Slowinski
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Canada
| | - Fereidoun Rezanezhad
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Canada
| | - Kathleen Murr
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Canada
| | - Christina Lam
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Canada
| | - Christina Smeaton
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Canada
| | - Clement Alibert
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Canada
| | - Marianne Vandergriendt
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Canada
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, University of Waterloo, Canada
| |
Collapse
|
4
|
Yu K, Yang X, Wan M, Jiang H, Shao P, Yang L, Shi H, Luo X. Effect of soil pH on thermally enhanced desorption of m-xylene by zero-valent iron particles under an electromagnetic field. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130019. [PMID: 36166910 DOI: 10.1016/j.jhazmat.2022.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/18/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
This study, for the first time, evaluates a novel method for the desorption of contaminants from soil that uses the heat generated by zero-valent iron (ZVI) under low-frequency electromagnetic fields (EMF), and elucidates the specific effects of soil pH upon the process. It was found that the temperature of soil mixed with ZVI could reach up to ∼60 °C within 20 min under the applied EMF, and after 60 min the residual fraction of m-xylene in soil decreased by 86.4% compared to no-ZVI soil. The most efficient desorption of m-xylene occurred at a soil of pH 5. Desorption was related to the net heating capacity of the ZVI particles, which was defined by pH-dependent formation of surface corrosion products. The preservation of metal iron and formation of Fe(II) species was favored for heat generation. Soil pH also affected m-xylene retention and the local thermal conduction from ZVI to m-xylene by regulating the surface properties of fulvic acid and ZVI. This study provides valuable information regarding the impact of pH on the thermal desorption of soil contaminants by ZVI coupled with EMF and illustrates the potential of the method in the remediation of contaminated sites.
Collapse
Affiliation(s)
- Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xiuqiong Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Mao Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Haowen Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
5
|
Song Q, Xue Z, Wu H, Zhai Y, Lu T, Du X, Zheng J, Chen H, Zuo R. The collaborative monitored natural attenuation (CMNA) of soil and groundwater pollution in large petrochemical enterprises: A case study. ENVIRONMENTAL RESEARCH 2023; 216:114816. [PMID: 36400217 DOI: 10.1016/j.envres.2022.114816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
A large in-service petrochemical enterprises in Northeast China was taken as the research object, and the Collaborative Monitored Natural Attenuation (CMNA) for soil and groundwater pollution was carried out to remedy combined pollution and reduce environmental risks. The pollutants distributions were obtained based on detailed regional investigation (Mar. 2019), and feature pollutants in soil and groundwater were then screened. The spatiotemporal variations of feature pollutants and relative microbial responses were explored during the CMNA process. Furthermore, the CMNA efficiency of the contaminated site at initial stage was evaluated by calculation of natural attenuation rate constant. The results showed that the feature pollutants in soil were 2,2',5,5'-tetrachlorobiphenyl (2,2',5,5'-TCB) and petroleum hydrocarbons (C10∼C40), and the feature pollutant in groundwater was 1,2-dichloroethane (1,2-DCA). The concentrations of all feature pollutants decreased continuously during four years of monitoring. Feature pollutants played a dominant role in the variability of microbial species both in soil and groundwater, increasing the relative abundance of petroleum tolerant/biodegradation bacteria, such as Actinobacteria, Proteobacteria and Acidobacteriota. The average natural attenuation rate constant of 2,2',5,5'-TCB and C10∼C40 in soil was 0.0012 d-1 and 0.0010 d-1, respectively, meeting the screening value after four years' attenuation. The average natural attenuation rate constant of 1,2-DCA was 0.0004 d-1, which need strengthening measures to improve the attenuation efficiency.
Collapse
Affiliation(s)
- Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Zhenkun Xue
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China; College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Huijun Wu
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Yong Zhai
- China Kunlun Contracting & Engineering Co., Ltd., Jilin Branch, Jilin, 132013, China
| | - Taotao Lu
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Xianyuan Du
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Jin Zheng
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Hongkun Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China.
| | - Rui Zuo
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Verginelli I, Baciocchi R. Refinement of the gradient method for the estimation of natural source zone depletion at petroleum contaminated sites. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 241:103807. [PMID: 33838564 DOI: 10.1016/j.jconhyd.2021.103807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Rates of natural source zone depletion (NSZD) are increasingly being used to aid remedial decision making and light non-aqueous phase liquid (LNAPL) longevity estimates at petroleum release sites. Current NSZD estimate methods, based on analyses of carbon dioxide (CO2) and oxygen (O2) soil-gas concentration gradients ("gradient method") assume linear concentration profiles with depth. This assumption can underestimate the concentration gradients especially above LNAPL sources that are typically characterized by curvilinear or semi-curvilinear O2 and CO2 concentration profiles. In this work, we proposed a new method that relies on calculating the O2 and CO2 concentration gradient using a first-order reaction model. The method requires an estimate of the diffusive reaction length that can be easily derived from soil-gas concentration data. A simple step-by-step guide for applying the new method is provided. Nomographs were also developed to facilitate method application. Application of the nomographs using field data from published literature showed that NSZD rates could be underestimated by nearly an order of magnitude if reactivity in the vadose zone is not accounted for. The new method helps refine NSZD rates estimation and improve risk-based decision making at certain petroleum contaminated sites.
Collapse
Affiliation(s)
- Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.
| | - Renato Baciocchi
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
7
|
Van De Ven CJC, Scully KH, Frame MA, Sihota NJ, Mayer KU. Impacts of water table fluctuations on actual and perceived natural source zone depletion rates. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 238:103771. [PMID: 33497915 DOI: 10.1016/j.jconhyd.2021.103771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
A viable means of quantifying the rate of natural source zone depletion (NSZD) at hydrocarbon contaminated sites is by the measurement of carbon dioxide (CO2) and methane (CH4) effluxes at the surface. This methodology assumes that gas effluxes are reflective of actual contaminant degradation rates in the subsurface, which is only accurate for quasi-steady state conditions. However, in reality, subsurface systems are highly dynamic, often resulting in fluctuations of the water table. To quantify the effects of water table fluctuations on NSZD rates, a simulated biodiesel spill in a 400 cm long, 100 cm wide and 150 cm tall sandtank was subjected to lowering and raising the water table, while soil-gas chemistry and surface CO2 and CH4 effluxes were measured. Results show that water table fluctuations have both short-term (perceived) and long-term (actual) effects on NSZD rates, interpreted using surface efflux measurements. When the water table was lowered, surface effluxes immediately increased up to 3 and 344 times higher than baseline for CO2 and CH4 effluxes, respectively, due to the liberation of anaerobically produced gas accumulated below the water table. After this immediate release, the system then reached quasi-steady state conditions 1.4 to 1.6 times higher for CO2 than baseline conditions, attributed to increased aerobic degradation in the broadened and exposed smear zone. When the water table was raised, quasi-steady state CO2 and CH4 effluxes declined to values of 0.9 and 0.4 times baseline effluxes, respectively, implying that contaminant degradation rates were reduced due to submergence of the smear zone. The findings of this study show that the dynamic effects of water table fluctuations and redistribution of the contaminants affect surface effluxes as well as short-term (perceived) and long-term (actual) contaminant degradation rates. Therefore, water table fluctuations need to be considered when quantifying NSZD at contaminated sites using sparse temporal rate measurements to estimate NSZD rates for extended periods of time (e.g., annual rates).
Collapse
Affiliation(s)
- Cole J C Van De Ven
- University of British Columbia, Earth, Ocean and Atmospheric Sciences, Vancouver, British Columbia, Canada.
| | - Keelin H Scully
- University of British Columbia, Earth, Ocean and Atmospheric Sciences, Vancouver, British Columbia, Canada; BGC Engineering Inc., 500-980 Howe St, Vancouver, British Columbia, Canada
| | - Mikaela A Frame
- University of British Columbia, Earth, Ocean and Atmospheric Sciences, Vancouver, British Columbia, Canada
| | - Natasha J Sihota
- Chevron Technical Center, 6001 Bollinger Canyon Road, San Ramon, CA 94583-2324, United States
| | - K Ulrich Mayer
- University of British Columbia, Earth, Ocean and Atmospheric Sciences, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Zhang R, Jiang L, Jiang D, Wang S, Zhang D, Zhong M, Xia T, Fu Q. Peculiar attenuation of soil toluene at contaminated coking sites. CHEMOSPHERE 2020; 255:126957. [PMID: 32402885 DOI: 10.1016/j.chemosphere.2020.126957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
In the soil of contaminated coking sites, polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and xylene (BTEX) are typical indicator compounds. Generally, PAHs are enriched in the topsoil layer. BTEX, with higher water solubilities and lower organic carbon-water partitioning coefficients (Koc), are distributed deeper than PAHs. However, current models have employed predictions using single compounds to mimic the migration of BTEX at contaminated coking sites. Such models have not considered the influence of the upper soil layer, where PAHs are enriched. An attempt to fill this gap was made by setting up a control soil column experiment in this study. One column was filled with undisturbed soil (column #1) and the other with PAH-contaminated soil (column #2) to simulate the theoretical and actual surface soil layers, respectively. The results showed that in column #2, the toluene gas concentration of the headspace and time required to reach steady state were notably greater than those in column #1. High-throughput sequencing revealed that there were large microbial community structure differences between the two soil columns throughout the experiment, while some genera that degrade toluene with high efficiency emerged noteworthily in column #2. This implied that the upper soil layer enriched with PAHs was conducive to the degradation of toluene vapor. Applying this finding to human health exposure assessment of toluene suggests that the potential exposure level should be reduced from the current predicted level given the unanticipated attenuation at contaminated coking sites.
Collapse
Affiliation(s)
- Ruihuan Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Lin Jiang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Dengdeng Jiang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental of the People's Republic of China, No. 8 Jiangwangmiao Street, 210042, Nanjing, PR China.
| | - Shijie Wang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Dan Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Maosheng Zhong
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Tianxiang Xia
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Quankai Fu
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| |
Collapse
|
9
|
Ma J, McHugh T, Beckley L, Lahvis M, DeVaull G, Jiang L. Vapor Intrusion Investigations and Decision-Making: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7050-7069. [PMID: 32384239 DOI: 10.1021/acs.est.0c00225] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
At sites impacted by volatile organic compounds (VOCs), vapor intrusion (VI) is the pathway with the greatest potential to result in actual human exposure. Since sites with VI were first widely publicized in late 1990s, the scientific understanding of VI has evolved considerably. The VI conceptual model has been extended beyond relatively simple scenarios to include nuances, such as biological and hydrogeological factors that may limit the potential for VI and alternative pathways, such as preferential pathways and direct building contact/infiltration that may enhance VI in some cases. Regulatory guidance documents typically recommend initial concentration- or distance-based screening to evaluate whether VI may be a concern, followed by a multiple-lines-of-evidence (MLE) investigation approach for sites that do not screen out. These recommendations for detailed evaluation of VI currently focus on monitoring of VOC concentrations in groundwater, soil gas, and indoor air and can be supplemented by other lines of evidence. In this Critical Review, we summarize key elements important to VI site characterization, provide the status and current understanding, and highlight data interpretation challenges, as well as innovative tools developed to help overcome the challenges. Although there have been significant advances in the understanding of VI in the past 20 years, limitations and knowledge gaps in screening, investigation methods, and modeling approaches still exist. Potential areas for further research include improved initial screening methods that account for the site-specific role of barriers, improved understanding of preferential pathways, and systematic study of buildings and infrastructure other than single-family residences.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Thomas McHugh
- GSI Environmental, Houston, Texas 77098, United States
| | - Lila Beckley
- GSI Environmental, Houston, Texas 77098, United States
| | - Matthew Lahvis
- Shell Global Solutions (US), Inc., Shell Technology Center, Houston, Texas 77082, United States
| | - George DeVaull
- Shell Global Solutions (US), Inc., Shell Technology Center, Houston, Texas 77082, United States
| | - Lin Jiang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| |
Collapse
|
10
|
Cai P, Ning Z, Zhang N, Zhang M, Guo C, Niu M, Shi J. Insights into Biodegradation Related Metabolism in an Abnormally Low Dissolved Inorganic Carbon (DIC) Petroleum-Contaminated Aquifer by Metagenomics Analysis. Microorganisms 2019; 7:microorganisms7100412. [PMID: 31581560 PMCID: PMC6843334 DOI: 10.3390/microorganisms7100412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022] Open
Abstract
In petroleum-contaminated aquifers, biodegradation is always associated with various types of microbial metabolism. It can be classified as autotrophic (such as methanogenic and other carbon fixation) and heterotrophic (such as nitrate/sulfate reduction and hydrocarbon consumption) metabolism. For each metabolic type, there are several key genes encoding the reaction enzymes, which can be identified by metagenomics analysis. Based on this principle, in an abnormally low dissolved inorganic carbon (DIC) petroleum-contaminated aquifer in North China, nine groundwater samples were collected along the groundwater flow, and metagenomics analysis was used to discover biodegradation related metabolism by key genes. The major new finding is that autotrophic metabolism was revealed, and, more usefully, we attempt to explain the reasons for abnormally low DIC. The results show that the methanogenesis gene, Mcr, was undetected but more carbon fixation genes than nitrate reduction and sulfate genes were found. This suggests that there may be a considerable number of autotrophic microorganisms that cause the phenomenon of low concentration of dissolved inorganic carbon in contaminated areas. The metagenomics data also revealed that most heterotrophic, sulfate, and nitrate reduction genes in the aquifer were assimilatory sulfate and dissimilatory nitrate reduction genes. Although there was limited dissolved oxygen, aerobic degrading genes AlkB and Cdo were more abundant than anaerobic degrading genes AssA and BssA. The metagenomics information can enrich our microorganic knowledge about petroleum-contaminated aquifers and provide basic data for further bioremediation.
Collapse
Affiliation(s)
- Pingping Cai
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
- School of Resources and Environmental Engineering, HeFei University of Technology, Hefei 230009, China.
| | - Zhuo Ning
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
- Key Laboratory of Groundwater Remediation of Hebei Province, Zhengding 050083, China.
| | - Ningning Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| | - Caijuan Guo
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| | - Manlan Niu
- School of Resources and Environmental Engineering, HeFei University of Technology, Hefei 230009, China.
| | - Jiansheng Shi
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| |
Collapse
|