1
|
Chen Y, Ma H, Qiao S, He Y, Fang C, Li Q, Zhou S, Ma Y. Rapid ppb-Level Methane Detection Based on Quartz-Enhanced Photoacoustic Spectroscopy. Anal Chem 2025; 97:6780-6787. [PMID: 40111945 DOI: 10.1021/acs.analchem.5c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In the paper, quartz-enhanced photoacoustic spectroscopy (QEPAS) and heterodyne quartz-enhanced photoacoustic spectroscopy (H-QEPAS)-based ppb-level methane (CH4) detection using a self-designed low-frequency round-head quartz tuning fork (QTF) and power-amplified diode laser is reported for the first time. Compared to the standard 32.768 kHz QTF, the novel round-head QTF, with a resonance frequency (f0) of 9.7 kHz, is utilized as the acoustic wave transducer, benefiting from a longer energy accumulation time and reduced optical noise. A Raman fiber amplifier (RFA) is adopted to amplify the optical power of the continuous wavelength distributed feedback (CW-DFB) diode laser to 300 mW. Acoustic microresonators (AmRs) at specific sizes are on both sides of the QTF for enhancement of acoustic waves. It is observed that, after the installation of AmRs, the signal level is enhanced by a factor of 107.029 compared to the bare QTF. Both CH4-QEPAS and CH4-H-QEPAS sensors show excellent linearity in response to optical power and CH4 concentration, with R-squared values exceeding 0.99 for each. The minimum detection limit (MDL) is determined to be 1.321 and 2.126 ppb for CH4-QEPAS and CH4-H-QEPAS, respectively, when the integration time of the sensor systems is extended to 1000 s. Compared to the 50 s measurement period of the CH4-QEPAS sensor, CH4-H-QEPAS can identify the f0 of QTF and finish the measurement in 3 s, demonstrating its rapid measurement capability. Furthermore, H-QEPAS technology allows for the acquisition of the f0 without interrupting the measurement, enabling real-time calibration of the f0. Finally, the sensor is utilized for continuous monitoring of CH4 concentrations in air and human-exhaled gases, demonstrating its practical measurement capabilities.
Collapse
Affiliation(s)
- Yanjun Chen
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China
| | - Hanxu Ma
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China
| | - Shunda Qiao
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China
| | - Ying He
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China
| | - Chao Fang
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China
| | - Qi Li
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China
| | - Sheng Zhou
- Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Yufei Ma
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
2
|
Roy S, Maiti KS. Baseline correction for the infrared spectra of exhaled breath. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124473. [PMID: 38795528 DOI: 10.1016/j.saa.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Infrared spectroscopy appears to be a promising analytical method for the metabolic analysis of breath. However, due to the presence of trace amounts in exhaled breath, the absorption strength of the metabolites remains extremely low. In such low detection limits, the nonlinear detection sensitivity of the infrared detector and electronic noise strongly modify the baseline of the acquired infrared spectra of breath. Fitting the reference molecular spectra with the baseline-modified spectral features of breath metabolites does not provide accurate identification. Therefore, baseline correction of the acquired infrared spectra of breath is the primary requirement for the success of breath-based infrared diagnosis. A selective spectral region-based, simple baseline correction method is proposed for the infrared spectroscopy of breath.
Collapse
Affiliation(s)
- Susmita Roy
- Technical University of Munich, School of Medicine and Health, Department of Clinical Medicine, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | - Kiran Sankar Maiti
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany; Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
3
|
Feddahi N, Hartmann L, Felderhoff-Müser U, Roy S, Lampe R, Maiti KS. Neonatal Exhaled Breath Sampling for Infrared Spectroscopy: Biomarker Analysis. ACS OMEGA 2024; 9:30625-30635. [PMID: 39035909 PMCID: PMC11256302 DOI: 10.1021/acsomega.4c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Monitoring health conditions in neonates for early therapeutic intervention in case deviations from physiological conditions is crucial for their long-term development. Due to their immaturity preterm born neonates are dependent on particularly careful physical and neurological diagnostic methods. Ideally, these should be noninvasive, noncontact, and radiation free. Infrared spectroscopy was used to analyze exhaled breath from 71 neonates with a special emphasis on preterm infants, as a noninvasive, noncontact, and radiation-free diagnostic tool. Passive sample collection was performed by skilled clinicians. Depending on the mode of respiratory support of infants, four different sampling procedures were adapted to collect exhaled breath. With the aid of appropriate reference samples, infrared spectroscopy has successfully demonstrated its effectiveness in the analysis of breath samples of neonates. The discernible increase in concentrations of carbon dioxide, carbon monoxide, and methane in collected samples compared to reference samples served as compelling evidence of the presence of exhaled breath. With regard to technical hurdles and sample analysis, samples collected from neonates without respiratory support proved to be more advantageous compared to those obtained from intubated infants and those with CPAP (continuous positive airway pressure). The main obstacle lies in the significant dilution of exhaled breath in the case of neonates receiving respiratory support. Metabolic analysis of breath samples holds promise for the development of noninvasive biomarker-based diagnostics for both preterm and sick neonates provided an adequate amount of breath is collected.
Collapse
Affiliation(s)
- Nadia Feddahi
- Center
for Translational and Neurobehavioural Sciences CTNBS, Department
of Pediatrics I, Neonatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Lea Hartmann
- Center
for Translational and Neurobehavioural Sciences CTNBS, Department
of Pediatrics I, Neonatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Ursula Felderhoff-Müser
- Center
for Translational and Neurobehavioural Sciences CTNBS, Department
of Pediatrics I, Neonatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Susmita Roy
- Research
Unit of the Buhl-Strohmaier Foundation for Cerebral Palsy and Pediatric
Neuroorthopaedics, Department of Orthopaedics and Sports Orthopaedics,
TUM School of Medicine and Health, University Hospital Rechts der
Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Renée Lampe
- Research
Unit of the Buhl-Strohmaier Foundation for Cerebral Palsy and Pediatric
Neuroorthopaedics, Department of Orthopaedics and Sports Orthopaedics,
TUM School of Medicine and Health, University Hospital Rechts der
Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
- Markus
Würth Professorship, Technical University
of Munich, Ismaninger
Straße 22, 81675 Munich, Germany
| | - Kiran Sankar Maiti
- TUM
School of Natural Sciences, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
- Max-Planck-Institut
für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| |
Collapse
|
4
|
Li Y, Wei X, Zhou Y, Wang J, You R. Research progress of electronic nose technology in exhaled breath disease analysis. MICROSYSTEMS & NANOENGINEERING 2023; 9:129. [PMID: 37829158 PMCID: PMC10564766 DOI: 10.1038/s41378-023-00594-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/14/2023]
Abstract
Exhaled breath analysis has attracted considerable attention as a noninvasive and portable health diagnosis method due to numerous advantages, such as convenience, safety, simplicity, and avoidance of discomfort. Based on many studies, exhaled breath analysis is a promising medical detection technology capable of diagnosing different diseases by analyzing the concentration, type and other characteristics of specific gases. In the existing gas analysis technology, the electronic nose (eNose) analysis method has great advantages of high sensitivity, rapid response, real-time monitoring, ease of use and portability. Herein, this review is intended to provide an overview of the application of human exhaled breath components in disease diagnosis, existing breath testing technologies and the development and research status of electronic nose technology. In the electronic nose technology section, the three aspects of sensors, algorithms and existing systems are summarized in detail. Moreover, the related challenges and limitations involved in the abovementioned technologies are also discussed. Finally, the conclusion and perspective of eNose technology are presented.
Collapse
Affiliation(s)
- Ying Li
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Xiangyang Wei
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Yumeng Zhou
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Jing Wang
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China
| | - Rui You
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, 100192 China
| |
Collapse
|
5
|
Keppler F, Boros M, Polag D. Radical-Driven Methane Formation in Humans Evidenced by Exogenous Isotope-Labeled DMSO and Methionine. Antioxidants (Basel) 2023; 12:1381. [PMID: 37507920 PMCID: PMC10376501 DOI: 10.3390/antiox12071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Methane (CH4), which is produced endogenously in animals and plants, was recently suggested to play a role in cellular physiology, potentially influencing the signaling pathways and regulatory mechanisms involved in nitrosative and oxidative stress responses. In addition, it was proposed that the supplementation of CH4 to organisms may be beneficial for the treatment of several diseases, including ischemia, reperfusion injury, and inflammation. However, it is still unclear whether and how CH4 is produced in mammalian cells without the help of microorganisms, and how CH4 might be involved in physiological processes in humans. In this study, we produced the first evidence of the principle that CH4 is formed non-microbially in the human body by applying isotopically labeled methylated sulfur compounds, such as dimethyl sulfoxide (DMSO) and methionine, as carbon precursors to confirm cellular CH4 formation. A volunteer applied isotopically labeled (2H and 13C) DMSO on the skin, orally, and to blood samples. The monitoring of stable isotope values of CH4 convincingly showed the conversion of the methyl groups, as isotopically labeled CH4 was formed during all experiments. Based on these results, we considered several hypotheses about endogenously formed CH4 in humans, including physiological aspects and stress responses involving reactive oxygen species (ROS). While further and broader validation studies are needed, the results may unambiguously serve as a proof of concept for the endogenous formation of CH4 in humans via a radical-driven process. Furthermore, these results might encourage follow-up studies to decipher the potential physiological role of CH4 and its bioactivity in humans in more detail. Of particular importance is the potential to monitor CH4 as an oxidative stress biomarker if the observed large variability of CH4 in breath air is an indicator of physiological stress responses and immune reactions. Finally, the potential role of DMSO as a radical scavenger to counteract oxidative stress caused by ROS might be considered in the health sciences. DMSO has already been investigated for many years, but its potential positive role in medical use remains highly uncertain.
Collapse
Affiliation(s)
- Frank Keppler
- Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Heidelberg University, D-69120 Heidelberg, Germany
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary
| | - Daniela Polag
- Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
6
|
Maiti KS. Non-Invasive Disease Specific Biomarker Detection Using Infrared Spectroscopy: A Review. Molecules 2023; 28:2320. [PMID: 36903576 PMCID: PMC10005715 DOI: 10.3390/molecules28052320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Many life-threatening diseases remain obscure in their early disease stages. Symptoms appear only at the advanced stage when the survival rate is poor. A non-invasive diagnostic tool may be able to identify disease even at the asymptotic stage and save lives. Volatile metabolites-based diagnostics hold a lot of promise to fulfil this demand. Many experimental techniques are being developed to establish a reliable non-invasive diagnostic tool; however, none of them are yet able to fulfil clinicians' demands. Infrared spectroscopy-based gaseous biofluid analysis demonstrated promising results to fulfil clinicians' expectations. The recent development of the standard operating procedure (SOP), sample measurement, and data analysis techniques for infrared spectroscopy are summarized in this review article. It has also outlined the applicability of infrared spectroscopy to identify the specific biomarkers for diseases such as diabetes, acute gastritis caused by bacterial infection, cerebral palsy, and prostate cancer.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Max–Planck–Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; ; Tel.: +49-289-14054
- Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
- Laser-Forschungslabor, Klinikum der Universität München, Fraunhoferstrasse 20, 82152 Planegg, Germany
| |
Collapse
|
7
|
Li M, Bekö G, Zannoni N, Pugliese G, Carrito M, Cera N, Moura C, Wargocki P, Vasconcelos P, Nobre P, Wang N, Ernle L, Williams J. Human metabolic emissions of carbon dioxide and methane and their implications for carbon emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155241. [PMID: 35421492 DOI: 10.1016/j.scitotenv.2022.155241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Carbon dioxide (CO2) and methane (CH4) are important greenhouse gases in the atmosphere and have large impacts on Earth's radiative forcing and climate. Their natural and anthropogenic emissions have often been in focus, while the role of human metabolic emissions has received less attention. In this study, exhaled, dermal and whole-body CO2 and CH4 emission rates from a total of 20 volunteers were quantified under various controlled environmental conditions in a climate chamber. The whole-body CO2 emissions increased with temperature. Individual differences were the most important factor for the whole-body CH4 emissions. Dermal emissions of CO2 and CH4 only contributed ~3.5% and ~5.5% to the whole-body emissions, respectively. Breath measurements conducted on 24 volunteers in a companion study identified one third of the volunteers as CH4 producers (exhaled CH4 exceeded 1 ppm above ambient level). The exhaled CH4 emission rate of these CH4 producers (4.03 ± 0.71 mg/h/person, mean ± one standard deviation) was ten times higher than that of the rest of the volunteers (non-CH4 producers; 0.41 ± 0.45 mg/h/person). With increasing global population and the expected large reduction in global anthropogenic carbon emissions in the next decades, metabolic emissions of CH4 (although not CO2) from humans may play an increasing role in regional and global carbon budgets.
Collapse
Affiliation(s)
- Mengze Li
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany; Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, USA.
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark; Department of Architecture, College of Architecture, Art and Design, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Nora Zannoni
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Giovanni Pugliese
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany; Department of Anaesthesia and Intensive Care, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Mariana Carrito
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Nicoletta Cera
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Catarina Moura
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Priscila Vasconcelos
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Pedro Nobre
- Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Nijing Wang
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Lisa Ernle
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Jonathan Williams
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Keppler F, Ernst L, Polag D, Zhang J, Boros M. ROS-driven cellular methane formation: Potential implications for health sciences. Clin Transl Med 2022; 12:e905. [PMID: 35839303 PMCID: PMC9286325 DOI: 10.1002/ctm2.905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/08/2022] Open
Abstract
Recently it has been proposed that methane might be produced by all living organisms via a mechanism driven by reactive oxygen species that arise through the metabolic activity of cells. Here, we summarise details of this novel reaction pathway and discuss its potential significance for clinical and health sciences. In particular, we highlight the role of oxidative stress in cellular methane formation. As several recent studies also demonstrated the anti-inflammatory potential for exogenous methane-based approaches in mammalians, this article addresses the intriguing question if ROS-driven methane formation has a general physiological role and associated diagnostic potential.
Collapse
Affiliation(s)
- Frank Keppler
- Biogeochemistry GroupInstitute of Earth SciencesHeidelberg UniversityHeidelbergGermany
- Heidelberg Center for the Environment (HCE)Heidelberg UniversityHeidelbergGermany
| | - Leonard Ernst
- Biogeochemistry GroupInstitute of Earth SciencesHeidelberg UniversityHeidelbergGermany
- Max‐Planck‐Institute for Terrestrial MicrobiologyMarburgGermany
| | - Daniela Polag
- Biogeochemistry GroupInstitute of Earth SciencesHeidelberg UniversityHeidelbergGermany
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery and Department of SICUThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Mihaly Boros
- Institute of Surgical Research and Interdisciplinary Excellence CentreUniversity of SzegedSzegedHungary
| |
Collapse
|
9
|
Ye ZH, Ning K, Ander BP, Sun XJ. Therapeutic effect of methane and its mechanism in disease treatment. J Zhejiang Univ Sci B 2021; 21:593-602. [PMID: 32748575 DOI: 10.1631/jzus.b1900629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Methane is the simplest hydrocarbon, consisting of one carbon atom and four hydrogen atoms. It is abundant in marsh gas, livestock rumination, and combustible ice. Little is known about the use of methane in human disease treatment. Current research indicates that methane is useful for treating several diseases including ischemia and reperfusion injury, and inflammatory diseases. The mechanisms underlying the protective effects of methane appear primarily to involve anti-oxidation, anti-inflammation, and anti-apoptosis. In this review, we describe the beneficial effects of methane on different diseases, summarize possible mechanisms by which methane may act in these conditions, and discuss the purpose of methane production in hypoxic conditions. Then we propose several promising directions for the future research.
Collapse
Affiliation(s)
- Zhou-Heng Ye
- Department of Aviation and Diving Medicine, the Sixth Medical Center, General Hospital of People's Liberation Army, Beijing 100048, China
| | - Ke Ning
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Xue-Jun Sun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Human beings as islands of stability: Monitoring body states using breath profiles. Sci Rep 2019; 9:16167. [PMID: 31700057 PMCID: PMC6838060 DOI: 10.1038/s41598-019-51417-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
By checking the reproducibility of conventional mid-infrared Fourier spectroscopy of human breath in a small test study (15 individuals), we found that a set of volatile organic compounds (VOC) of the individual breath samples remains reproducible at least for 18 months. This set forms a unique individual’s “island of stability” (IOS) in a multidimensional VOC concentration space. The IOS stability can simultaneously be affected by various life effects as well as the onset of a disease. Reflecting the body state, they both should have different characteristics. Namely, they could be distinguished by different temporal profiles: In the case of life effects (beverage intake, physical or mental exercises, smoking etc.), there is a non-monotonic shift of the IOS position with the return to the steady state, whereas a progressing disease corresponds to a monotonic IOS shift. As a first step of proving these dependencies, we studied various life effects with the focus on the strength and characteristic time of the IOS shift. In general, our results support homeostasis on a long time scale of months, allostasis on scales of hours to weeks or until smoke quitting for smokers, as well as resilience in the case of recovery from a disease.
Collapse
|
11
|
Boros M, Keppler F. Methane Production and Bioactivity-A Link to Oxido-Reductive Stress. Front Physiol 2019; 10:1244. [PMID: 31611816 PMCID: PMC6776796 DOI: 10.3389/fphys.2019.01244] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Biological methane formation is associated with anoxic environments and the activity of anaerobic prokaryotes (Archaea). However, recent studies have confirmed methane release from eukaryotes, including plants, fungi, and animals, even in the absence of microbes and in the presence of oxygen. Furthermore, it was found that aerobic methane emission in plants is stimulated by a variety of environmental stress factors, leading to reactive oxygen species (ROS) generation. Further research presented evidence that molecules with sulfur and nitrogen bonded methyl groups such as methionine or choline are carbon precursors of aerobic methane formation. Once generated, methane is widely considered to be physiologically inert in eukaryotes, but several studies have found association between mammalian methanogenesis and gastrointestinal (GI) motility changes. In addition, a number of recent reports demonstrated anti-inflammatory potential for exogenous methane-based approaches in model anoxia-reoxygenation experiments. It has also been convincingly demonstrated that methane can influence the downstream effectors of transiently increased ROS levels, including mitochondria-related pro-apoptotic pathways during ischemia-reperfusion (IR) conditions. Besides, exogenous methane can modify the outcome of gasotransmitter-mediated events in plants, and it appears that similar mechanism might be active in mammals as well. This review summarizes the relevant literature on methane-producing processes in eukaryotes, and the available results that underscore its bioactivity. The current evidences suggest that methane liberation and biological effectiveness are both linked to cellular redox regulation. The data collectively imply that exogenous methane influences the regulatory mechanisms and signaling pathways involved in oxidative and nitrosative stress responses, which suggests a modulator role for methane in hypoxia-linked pathologies.
Collapse
Affiliation(s)
- Mihály Boros
- Institute of Surgical Research, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Frank Keppler
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Maiti KS, Lewton M, Fill E, Apolonski A. Sensitive spectroscopic breath analysis by water condensation. J Breath Res 2018; 12:046003. [DOI: 10.1088/1752-7163/aad207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|