1
|
Hamidi MN. Greywater reuse for irrigation: A critical review of suitability, treatment, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179272. [PMID: 40185006 DOI: 10.1016/j.scitotenv.2025.179272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Greywater accounts for approximately 75 % of domestic wastewater and generally contains fewer contaminants than domestic wastewater. Therefore, its treatment and reuse represent a promising approach to supplement irrigation demand. This study comprehensively evaluates the quality characteristics of greywater based on its source, applied treatment methods, and its potential health, environmental, soil, and agricultural impacts. Various physical, chemical, and biological treatment processes have been analysed, with the most commonly employed technologies including membrane bioreactors (MBRs), constructed wetlands, media filtration (sand, activated carbon), disinfection methods (UV, chlorine, ozone), and advanced oxidation processes. The effectiveness of these methods has been assessed concerning the intended reuse application, emphasizing the critical role of disinfection in ensuring safe irrigation use. The health and environmental implications of greywater reuse have been examined, focusing on the risks associated with pathogen contamination, detergent residues, and micropollutants, while also evaluating the efficiency of treatment processes in mitigating these risks. From an environmental perspective, the accumulation of essential nutrients such as nitrogen and phosphorus, the potential for salinity buildup, and alterations in soil microbial balance have been investigated. Regarding soil and agricultural impacts, this study analyzes how greywater reuse influences soil structure (e.g., permeability, infiltration), plant growth responses, and the accumulation of heavy metals. These findings contribute to the development of scientifically grounded recommendations for the safe and sustainable reuse of greywater within water management strategies, promoting its role as an alternative water source for irrigation.
Collapse
Affiliation(s)
- Muhammed Nimet Hamidi
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Türkiye.
| |
Collapse
|
2
|
Gao Y, Zhang Y, Ge X, Gong Y, Chen H, Su J, Xi B, Tan W. Differential responses of the electron transfer capacities of soil humic acid and fulvic acid to long-term wastewater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173114. [PMID: 38740205 DOI: 10.1016/j.scitotenv.2024.173114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Wastewater irrigation is used to supplement agricultural irrigation because of its benefits and freshwater resource scarcity. However, whether wastewater irrigation for many years affects the electron transfer capacity (ETC) of natural organic matter in soil remains unclear, and organic matter could influence the decomposition and mineralization of substances with redox characteristics in soil through electron transfer, ultimately affecting the soil environment. The composition of soil humic substances (HS) is highly complex, and the effects of soil humic acid (HA) and fulvic acid (FA) on ETC is poorly understood. In this study, we separately evaluated the responses of the electron-accepting capacity (EAC) and electron-donating capacity (EDC) of soil HA and FA in agricultural fields to various durations of wastewater irrigation. Results showed that the EAC of HA and FA increased significantly with increasing the duration of wastewater irrigation. When wastewater irrigation lasted for 56 years, the EAC of HA showed a higher increment (590 %) than that of FA (223 %). The EDC of soil HA and FA, conversely, decreased compared to the control, with the highest reduction of 35.6 % for HA and 65.9 % for FA. Specifically, the EDC of HA gradually decreased starting from 29 years of wastewater irrigation, whereas the decrease in the EDC of FA exhibited no clear pattern in relation to the duration of wastewater irrigation. Increased soil organic matter and total nitrogen content under long-term wastewater irrigation led to an increase in sucrase and phosphatase activities, along with an increase in EAC and a decrease in EDC of HS. This suggests that soil enzyme activities may ultimately lead to changes in ETC. The results of this research provide practical insights into the redox system in soil and its driving role in soil organic matter transformation and nutrient cycling under wastewater irrigation.
Collapse
Affiliation(s)
- Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- Institute of Geographical Sciences, Hebei Academy of Sciences, Hebei Technology Innovation Center for Geographic Information Application, Shijiazhuang 050011, China
| | - Xiaoyuan Ge
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lan Zhou Jiao Tong University, Lanzhou 730070, China
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiru Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; North China University of Water Resources and Electric Power, Zheng Zhou 450046, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Verma K, Manisha M, Shivali NU, Santrupt RM, Anirudha TP, Ramesh N, Chanakya HN, Parama VRR, Mohan Kumar MS, Rao L. Investigating the effects of irrigation with indirectly recharged groundwater using recycled water on soil and crops in semi-arid areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122516. [PMID: 37690469 DOI: 10.1016/j.envpol.2023.122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
The utilization of direct wastewater for irrigation poses many environmental problems such as soil quality deterioration due to the accumulation of salts, heavy metals, micro-pollutants, and health risks due to undesirable microorganisms. This hampers its agricultural reuse in arid and semi-arid regions. To address these concerns, the present study introduces a recent approach that involves using indirectly recharged groundwater (GW) with secondary treated municipal wastewater (STW) for irrigation through a Soil Aquifer Treatment-based system (SAT). This method aims to mitigate freshwater scarcity in semi-arid regions. The study assessed GW levels, physicochemical properties, and microbial diversity of GW, and soil in both impacted (receiving recycled water) and non-impacted (not receiving recycled water) areas, before recycling (2015-2018) and after recycling (2019-2022) period of the project. The results indicated a significant increase of 68-70% in GW levels of the studied boreholes in the impacted areas. Additionally, the quality of indirectly recharged GW in the impacted areas improved notably in terms of electrical conductivity (EC), hardness, total dissolved solids (TDS), sodium adsorption ratio (SAR), along with certain cations and anions (hard water to soft water). No significant difference was observed in soil properties and microbial diversity of the impacted areas, except for EC and SAR, which were reduced by 50% and 39%, respectively, after the project commenced. The study also monitored specific microbial species, including total coliforms, Escherichia coli (as indicator organisms), Shigella, and Klebsiella in some of the harvested crops (beetroot, tomato, and spinach). However, none of the analysed crops exhibited the presence of the studied microorganisms. Overall, the study concludes that indirectly recharged GW using STW is a better sustainable and safe irrigation alternative compared to direct wastewater use or extracted hard GW from deep aquifers.
Collapse
Affiliation(s)
- Kavita Verma
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India.
| | - Manjari Manisha
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - N U Shivali
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - R M Santrupt
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - T P Anirudha
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - N Ramesh
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - H N Chanakya
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - V R R Parama
- Department of Soil Science & Agricultural Chemistry, College of Agriculture, UAS, GKVK, Bengaluru, India
| | - M S Mohan Kumar
- Formerly @ Department of Civil Engineering, Indian Institute of Science, Bengaluru, India; Currently @ Gitam University, Bengaluru, India
| | - Lakshminarayana Rao
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
4
|
Van de Walle A, Kim M, Alam MK, Wang X, Wu D, Dash SR, Rabaey K, Kim J. Greywater reuse as a key enabler for improving urban wastewater management. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100277. [PMID: 37206314 PMCID: PMC10188637 DOI: 10.1016/j.ese.2023.100277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Sustainable water management is essential to guaranteeing access to safe water and addressing the challenges posed by climate change, urbanization, and population growth. In a typical household, greywater, which includes everything but toilet waste, constitutes 50-80% of daily wastewater generation and is characterized by low organic strength and high volume. This can be an issue for large urban wastewater treatment plants designed for high-strength operations. Segregation of greywater at the source for decentralized wastewater treatment is therefore necessary for its proper management using separate treatment strategies. Greywater reuse may thus lead to increased resilience and adaptability of local water systems, reduction in transport costs, and achievement of fit-for-purpose reuse. After covering greywater characteristics, we present an overview of existing and upcoming technologies for greywater treatment. Biological treatment technologies, such as nature-based technologies, biofilm technologies, and membrane bioreactors (MBR), conjugate with physicochemical treatment methods, such as membrane filtration, sorption and ion exchange technologies, and ultraviolet (UV) disinfection, may be able to produce treated water within the allowable parameters for reuse. We also provide a novel way to tackle challenges like the demographic variance of greywater quality, lack of a legal framework for greywater management, monitoring and control systems, and the consumer perspective on greywater reuse. Finally, benefits, such as the potential water and energy savings and sustainable future of greywater reuse in an urban context, are discussed.
Collapse
Affiliation(s)
- Arjen Van de Walle
- Center for Microbial Ecology and Technology, Ghent University, 9052, Ghent, Belgium
| | - Minseok Kim
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, 22212, Incheon, Republic of Korea
| | - Md Kawser Alam
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, 22212, Incheon, Republic of Korea
| | - Xiaofei Wang
- Center for Microbial Ecology and Technology, Ghent University, 9052, Ghent, Belgium
| | - Di Wu
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Incheon, Republic of Korea
| | - Smruti Ranjan Dash
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, 22212, Incheon, Republic of Korea
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology, Ghent University, 9052, Ghent, Belgium
- Corresponding author.
| | - Jeonghwan Kim
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, 22212, Incheon, Republic of Korea
- Corresponding author.
| |
Collapse
|
5
|
Yang S, Chen K, Xiang H, Wang Y, Huang C. The Optimized Preparation Conditions of Cellulose Triacetate Hollow Fiber Reverse Osmosis Membrane with Response Surface Methodology. Polymers (Basel) 2023; 15:3569. [PMID: 37688195 PMCID: PMC10490516 DOI: 10.3390/polym15173569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Reverse osmosis (RO) membrane materials play a key role in determining energy consumption. Currently, CTA is regarded as having one of the highest degrees of chlorine resistance among materials in the RO process. The hollow fiber membrane has the advantages of a large membrane surface area and a preparation process without any redundant processes. Herein, response surface methodology with Box-Behnken Design (BBD) was applied for optimizing the preparation conditions of the cellulose triacetate (CTA) hollow fiber RO membrane. There were four preparation parameters, including solid content, spinning temperature, post-treatment temperature, and post-treatment time, which could affect the permeability of the membrane significantly. In this study, the interaction between preparation parameters and permeability (permeate flux and salt rejection) was evaluated by regression equations. Regression equations can be applied to obtain the optimized preparation parameters of hollow fiber RO membranes and reasonably predict and optimize the permeability of the RO membranes. Finally, the optimized preparation conditions were solid content (44%), spinning temperature (167 °C), post-treatment temperature (79 °C), and post-treatment time (23 min), leading to a permeability of 12.029 (L·m-2·h-1) and salt rejection of 90.132%. This study of reinforced that CTA hollow fiber membrane may promote the transformation of the RO membrane industry.
Collapse
Affiliation(s)
- Shu Yang
- School of Textiles and Fashion, Shanghai University of Engineering and Science, Shanghai 201620, China (H.X.); (Y.W.); (C.H.)
| | | | | | | | | |
Collapse
|
6
|
Liu C, Wang J, Huang P, Hu C, Gao F, Liu Y, Li Z, Cui B. Response of Soil Microenvironment and Crop Growth to Cyclic Irrigation Using Reclaimed Water and Brackish Water. PLANTS (BASEL, SWITZERLAND) 2023; 12:2285. [PMID: 37375911 DOI: 10.3390/plants12122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
The scarcity of freshwater resources has increased the use of nonconventional water resources such as brackish water, reclaimed water, etc., especially in water-scarce areas. Whether an irrigation cycle using reclaimed water and brackish water (RBCI) poses a risk of secondary soil salinization to crop yields needs to be studied. Aiming to find an appropriate use for different nonconventional water resources, pot experiments were conducted to study the effects of RBCI on soil microenvironments, growth, physiological characteristics and antioxidation properties of crops. The results showed the following: (1) compared to FBCI, the soil moisture content was slightly higher, without a significant difference, while the soil EC, sodium and chloride ions contents increased significantly under the RBCI treatment. With an increase in the reclaimed water irrigation frequency (Tri), the contents of EC, Na+ and Cl- in the soil decreased gradually, and the difference was significant; the soil moisture content also decreased gradually. (2) There were different effects of the RBCI regime on the soil's enzyme activities. With an increase in the Tri, the soil urease activity indicated a significant upward trend as a whole. (3) RBCI can alleviate the risk of soil salinization to some extent. The soil pH values were all below 8.5, and were without a risk of secondary soil alkalization. The ESP did not exceed 15 percent, and there was no possible risk of soil alkalization except that the ESP in soil irrigated by brackish water irrigation went beyond the limit of 15 percent. (4) Compared with FBCI, no obvious changes appeared to the aboveground and underground biomasses under the RBCI treatment. The RBCI treatment was conducive to increasing the aboveground biomass compared with pure brackish water irrigation. Therefore, short-term RBCI helps to reduce the risk of soil salinization without significantly affecting crop yield, and the irrigation cycle using reclaimed-reclaimed-brackish water at 3 g·L-1 was recommended, according to the experimental results.
Collapse
Affiliation(s)
- Chuncheng Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Juan Wang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China
| | - Pengfei Huang
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Chao Hu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Feng Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Yuan Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Zhongyang Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Bingjian Cui
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| |
Collapse
|
7
|
Enrichment and distribution characteristics of heavy metal(loid)s in native plants of abandoned farmlands in sewage irrigation area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50471-50483. [PMID: 36795208 DOI: 10.1007/s11356-023-25810-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023]
Abstract
Soil samples and native plants were collected from abandoned farmlands with a long history of sewage irrigation along Dongdagou stream, Baiyin City. We investigated the concentrations of heavy metal(loid)s (HMMs) in soil-plant system to evaluate the accumulation and transportation ability of HMMs in native plants. Results indicated that soils in study area were severely polluted by Cd, Pb, and As. With the exception of Cd, the correlation between total HMM concentrations in soil and plant tissues was poor. Among all investigated plants, no one was close to the criteria for the HMM concentrations of hyperaccumulators. The concentrations of HMMs in most plants were reached the phytotoxic level and the abandoned farmlands could not be used as forages, which showed that native plants may possess resistance capabilities or high tolerance for As, Cu, Cd, Pb, and Zn. The FTIR (Fourier transform infrared spectrometer) results suggested that the detoxification of HMMs in plants may depend on the functional groups (-OH, C-H, C-O, and N-H) of some compounds. Bioaccumulation factor (BAF), bioconcentration factor (BCF), and biological transfer factor (BTF) were used to identify the accumulation and translocation characteristics of HMMs by native plants. S. glauca had the highest mean values of BTF for Cd (8.07) and Zn (4.75). C. virgata showed the highest mean BAFs for Cd (2.76) and Zn (9.43). P. harmala, A. tataricus, and A. anethifolia also presented high accumulation and translocation abilities for Cd and Zn. High HMMs (As, Cu, Cd, Pb, and Zn) accumulation in the aerial parts of plants may lead to increased accumulation of HMMs in the food chain; additional research is desperately required. This study demonstrated the HM enrichment characteristics of weeds and provided a basis for the management of abandoned farmlands.
Collapse
|
8
|
Novel ecofriendly cation exchange membranes for low-cost electrodialysis of brackish water: Desalination and antiscaling performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Liu C, Cui B, Wang J, Hu C, Huang P, Shen X, Gao F, Li Z. Does Short-Term Combined Irrigation Using Brackish-Reclaimed Water Cause the Risk of Soil Secondary Salinization? PLANTS 2022; 11:plants11192552. [PMID: 36235417 PMCID: PMC9572007 DOI: 10.3390/plants11192552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022]
Abstract
Brackish water has to be used to irrigate crops for harvest due to the scarcity of freshwater resources. However, brackish water irrigation may cause secondary soil salinization. Whether the combined utilization of different non-conventional water resources could relieve the risk of secondary soil salinization has not been reported. In order to explore the safe and rational utilization of brackish water in areas where freshwater resources are scarce, a pot experiment was conducted to study the risk of secondary soil mixed irrigation and rotational irrigation using brackish water and reclaimed water or freshwater. The results indicated that: (1) Short-term irrigation using reclaimed water did not cause secondary soil salinization, although increasing soil pH value, ESP, and SAR. The indices did not exceed the threshold of soil salinization. (2) Compared with mixed irrigation using brackish–freshwater, the contents of soil exchangeable Ca2+, K+, and Mg2+ increased, and the content of soil exchangeable Na+ decreased under rotational irrigation using brackish-reclaimed water. In addition, the contents of soil exchangeable Na+ and Mg2+ under mixed irrigation or rotational irrigation were significantly lower, and the exchangeable K+ content of the soil was higher compared with brackish water irrigation. The exchangeable Ca2+ content under rotational irrigation was higher than that of brackish water irrigation, while the reverse was seen under mixed irrigation. (3) For different combined utilization modes of brackish water and reclaimed water, the ESP and SAR were the lowest under rotational irrigation, followed by mixed irrigation and brackish water irrigation. The ESP under brackish water treatment exceeded 15%, indicating a certain risk of salinization, while ESPs under other treatments were below 15%. Under mixed irrigation or rational irrigation using reclaimed-brackish water, the higher the proportion or rotational times of reclaimed water, the lower the risk of secondary soil salinization. Therefore, short-term combined irrigation using brackish water and reclaimed water will not cause the risk of secondary soil salinization, but further experiments need to verify or cooperate with other agronomic measures in long-term utilization.
Collapse
Affiliation(s)
- Chuncheng Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City of Henan Province of Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Bingjian Cui
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City of Henan Province of Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Juan Wang
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225109, China
| | - Chao Hu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City of Henan Province of Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Pengfei Huang
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City of Henan Province of Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Xiaojun Shen
- College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300392, China
| | - Feng Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City of Henan Province of Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
- Correspondence: (F.G.); (Z.L.); Tel.: +86-138-3735-9930 (F.G.); +86-150-9035-4116 (Z.L.)
| | - Zhongyang Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- Agriculture Water and Soil Environmental Field Science Research Station of Xinxiang City of Henan Province of Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
- Correspondence: (F.G.); (Z.L.); Tel.: +86-138-3735-9930 (F.G.); +86-150-9035-4116 (Z.L.)
| |
Collapse
|
10
|
Tampo L, Alfa-Sika Mande SL, Adekanmbi AO, Boguido G, Akpataku KV, Ayah M, Tchakala I, Gnazou MDT, Bawa LM, Djaneye-Boundjou G, Alhassan EH. Treated wastewater suitability for reuse in comparison to groundwater and surface water in a peri-urban area: Implications for water quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152780. [PMID: 34982995 DOI: 10.1016/j.scitotenv.2021.152780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/27/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The climate change and population growth led to a severe water shortage that limits fresh water availability in some areas of Togo. Thus, the farmers of Adjougba District have no other choice than using treated wastewater as an alternative for irrigated agriculture. The purpose of this study is to compare the suitability of three types of water for uses with identification of the reliable parameters in the assessment of water suitability for irrigation and domestic purposes. The raw water quality parameters, water quality indices (WQIs) and water suitability indicators for irrigation purpose (WSI-IPs) were applied for the comparison while statistical analysis and, with some experts' consensus were used to identify reliable parameters. The results suggested that the treated wastewater is more suitable than groundwater for irrigation purpose. Treated wastewater constitutes a viable fertilizer supply and is placed like surface water from permissible to excellent classes according to WSI-IPs values. The sodium absorption ratio (SAR), electrical conductivity (EC), residual sodium carbonate (RSC), Cl- and faecal coliforms (FC) are the most reliable parameters in the detection of water suitability for irrigation purpose. EC, DO, pH, turbidity or TSS, COD or CODMn, hardness, FC, NO3-, national sanitation foundation's water quality index (NSFWQI), and overall index of pollution (OPI) are the most reliable in the detection of water suitability for domestic use. The reliable parameters identified in this study are potential candidates for the development of a single water quality index for both irrigation and domestic uses in Adjougba District. However further study will be necessary for the identification of reliable parameters and the development of a water quality index at the country scale.
Collapse
Affiliation(s)
- Lallébila Tampo
- Laboratory of Applied Hydrology and Environment, Faculty of Sciences, University of Lomé, BP 1515, Togo.
| | - Seyf-Laye Alfa-Sika Mande
- Laboratory of Applied Hydrology and Environment, Faculty of Sciences, University of Lomé, BP 1515, Togo; Faculty of Science and Technology, University of Kara, BP 404, Togo; Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Nigeria
| | - Goumpoukini Boguido
- Laboratory of Applied Hydrology and Environment, Faculty of Sciences, University of Lomé, BP 1515, Togo
| | - Kossitse Venyo Akpataku
- Laboratory of Applied Hydrology and Environment, Faculty of Sciences, University of Lomé, BP 1515, Togo; Faculty of Science and Technology, University of Kara, BP 404, Togo
| | - Massabalo Ayah
- Laboratory of Applied Hydrology and Environment, Faculty of Sciences, University of Lomé, BP 1515, Togo
| | - Ibrahim Tchakala
- Laboratory of Applied Hydrology and Environment, Faculty of Sciences, University of Lomé, BP 1515, Togo
| | - Masamaèya D T Gnazou
- Laboratory of Applied Hydrology and Environment, Faculty of Sciences, University of Lomé, BP 1515, Togo
| | - Limam Moctar Bawa
- Laboratory of Applied Hydrology and Environment, Faculty of Sciences, University of Lomé, BP 1515, Togo
| | - Gbandi Djaneye-Boundjou
- Laboratory of Applied Hydrology and Environment, Faculty of Sciences, University of Lomé, BP 1515, Togo
| | - Elliot Haruna Alhassan
- Department of Fisheries and Aquatic Resources Management, Faculty of Biosciences, University for Development Studies, P.O. Box TL 1882, Tamale, Ghana
| |
Collapse
|
11
|
The Impact of Treated Wastewater Irrigation on the Metabolism of Barley Grown in Arid and Semi-Arid Regions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042345. [PMID: 35206534 PMCID: PMC8871893 DOI: 10.3390/ijerph19042345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
The use of treated wastewater (TWW) for irrigation has gained global attention since it reduces pressure on groundwater (GW) and surface water. This study aimed to evaluate the effect of TWW on agronomic, photosynthetic, stomatal, and nutritional characteristics of barley plants. The experiment with barley was established on two bands: one band was irrigated with GW and the other with TWW. The evaluation was performed 25, 40, 60, 90, and 115 days after sowing (DAS). Results showed that irrigation with TWW increased (p < 0.01) grain yield by 54.3% and forage yield by 39.4% compared to GW irrigation. In addition, it increased plant height (PH) (p = 0.013), chlorophyll concentration index (CCI) (p = 0.006), and leaf area index (LAI) (p = 0.002). TWW also produced a positive effect (p < 0.05) in all the photosynthetic efficiency parameters evaluated. Barley plants irrigated with TWW had lower stomatal density (SD) and area (SA) (p < 0.001) than plants irrigated with GW. Plants irrigated with TWW had a higher P concentration (p < 0.05) in stems and roots and K concentration in leaves than plants irrigated with GW. We concluded that the use of TWW induced important biochemical, physiological, and agronomic changes in barley plants. Hence, the use of TWW may be a sustainable alternative for barley production in arid and semi-arid regions. This study was part of a government project, which aimed to develop a new metropolitan irrigation district with TWW. This study may contribute to the sustainability of water resources and agricultural practices in northern Mexico.
Collapse
|
12
|
Arshad M, Awais M, Bashir R, Ahmad SR, Anwar-ul-Haq M, Senousy HH, Iftikhar M, Anjum MU, Ramzan S, Alharbi SA, Bárek V, Brestic M, Noman A. Assessment of wheat productivity responses and soil health dynamics under brackish ground water. Saudi J Biol Sci 2022; 29:793-803. [PMID: 35197746 PMCID: PMC8848132 DOI: 10.1016/j.sjbs.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
The continuous use of brackish groundwater for irrigation is detrimental for soil and crop attributes. A three-year research study was designed for the wheat crop to assess the effects of brackish groundwater on crop yield and soil health under a surface irrigation system. Three sites were selected in different cropping zones of Pakistan. The treatments comprised of irrigation with moderately brackish water having 0.8, 1.3 & 2.7 dSm−1 of salinity and canal water. The results indicated that EC, SAR, bicarbonates, Ca2+ and Mg2+ levels increased in the soil for consecutive years and this increase was more at site S3 followed by S2 and S1. As soil depth is concerned, the increase was more pronounced in upper layers of soil (0–15 cm) as compared to 15–30 cm depth. Growth and yield were also affected by the consecutive use of this water, the number of plants, plant height, the number of spikes per plant, and yield was reduced at all the three sites. However, the impact was less pronounced at the site S1 whereas S3 was the most affected one. Grain weight and dry matter weight were observed to be maximum at S1. Water productivity was also calculated for all the three sites. Maximum water productivity was observed at S1 followed by S2 & S3. It was concluded that the continuous use of brackish water would have an adverse effect on crop yield and subsequently, soil health is also affected by it significantly.
Collapse
Affiliation(s)
- Muhammad Arshad
- Department of Irrigation & Drainage, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Awais
- Department of Irrigation & Drainage, University of Agriculture, Faisalabad, Pakistan
- College of Earth & Environmental Sciences, University of the Punjab, Lahore, Pakistan
- Corresponding authors at: Department of Irrigation & Drainage, University of Agriculture, Faisalabad, Pakistan (M. Awais).
| | - Rohina Bashir
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth & Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Anwar-ul-Haq
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hoda H. Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Maryam Iftikhar
- Department of Irrigation & Drainage, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umair Anjum
- Department of Irrigation & Drainage, University of Agriculture, Faisalabad, Pakistan
| | - Shahid Ramzan
- Department of Irrigation & Drainage, University of Agriculture, Faisalabad, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Viliam Bárek
- Institute of Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
- Corresponding authors at: Department of Irrigation & Drainage, University of Agriculture, Faisalabad, Pakistan (M. Awais).
| |
Collapse
|
13
|
Picó Y, Alvarez-Ruiz R, Alfarhan AH, El-Sheikh MA, Alobaid SM, Barceló D. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:562-572. [PMID: 30368185 DOI: 10.1016/j.scitotenv.2018.10.224] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
In arid and semi-arid areas the use of treated wastewater for crop irrigation and other agricultural practices, such as the use of pesticides, increase the number of emerging contaminants (ECs) in crops. Hazards of these practices to human being are largely unknown since there are few studies yet covering a short range of compounds and most of them under non-realistic conditions. This study aims at assessing this problem that will become global soon in an area of Saudi Arabia heavily affected by the reuse of treated wastewater and pesticide in order to ascertain its scale. The novelty of the study relays in the large number of ECs covered and the variety of crops (cabbage, barley, green beans, eggplants, chili, tomato and zucchini) analysed. Extraction procedure developed provided an appropriate extraction yield (up to 50% of the compounds were recovered within a 70-120% range), with good repeatability (relative standard deviations below 20% in most cases) and sensitivity (LOQ < 25 ng g-1) for the model compounds. Determination by liquid chromatography quadrupole time-of-flight (LC-QqTOF-MS) is able to identify >2000 contaminants. Sixty-four ECs were identified in wastewater but of the sixty-four compounds, six pharmaceuticals (atenolol, caffeine, carbamazepine and its metabolites 10,11-epoxycarbamazepine, gemfibrozil, and naproxen) and seven pesticides (acetamiprid, atrazine deethyl, azoxystrobin, bupirimate, diazinon, malathion, pirimicarb and some of their metabolites) were detected in plants. Furhermore, one metabolite of the ibuprofen (not detected in water or soil), the ibuprofen hexoside was also found in plants. Up to our knowledge, this study demonstrate for the first time the accumulation of ECs in crops irrigated with treated wastewater under real non-controlled environmental conditions.
Collapse
Affiliation(s)
- Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Moncada-Naquera Road Km 4.5, 46113 Moncada, Spain.
| | - Rodrigo Alvarez-Ruiz
- Environmental and Food Safety Research Group (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Moncada-Naquera Road Km 4.5, 46113 Moncada, Spain
| | - Ahmed H Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Samy M Alobaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Damià Barceló
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|