1
|
Huang Y, An W, Ning T, Ma Z, Li Y, Liu K, Ji L, Liu H, Hui D, Ren H. Functionality of bacterial communities in constructed wetlands used for water purification: influence of root components and seasonality. FRONTIERS IN PLANT SCIENCE 2025; 16:1480099. [PMID: 40007956 PMCID: PMC11850325 DOI: 10.3389/fpls.2025.1480099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/09/2025] [Indexed: 02/27/2025]
Abstract
Introduction Constructed wetlands have become crucial ecosystems for the purification of industrial and agricultural water. The health of wetland plants and the efficacy of water purification are strongly influenced by root-associated bacteria. However, our understanding of the functions of bacterial communities in the plant different root components (i.e., rhizosphere, rhizoplane, and endosphere) and their impact on water purification is still limited. Methods To address this knowledge gap, we employed high-resolution 16S rRNA deep amplicon sequencing to explore the bacterial community structure and assembly within the root components of three plant species (i.e. Iris ensata, Canna indica, and Hymenocallis littoralis) found in constructed wetlands. Results Our findings revealed that the pollutant removal efficiency was higher in the wet season than in the dry season. The specific root compartment, plant species, environmental factors, and seasonality significantly influenced the bacterial composition, diversity and abundance. Across all three plant species, Proteobacteria emerged as the dominant bacterial groups in all root components. The abundance and diversity of bacterial communities exhibited a decline from the rhizosphere to the endosphere, accompanied by an increase in the number of distinctive biomarkers from the rhizosphere to the endosphere. The bacterial composition exhibited significant similarity in the rhizosphere in the dry season and the endosphere in the wet season. Bacterial genes in the rhizosphere-rhizoplane were associated with environmental information processing, transportation and metabolism, while those in the rhizoplane-endosphere primarily handle metabolic processes. The bacterial community positively correlated with total nitrogen content, chemical oxygen demand, and NO4 +-N in the dry season, while associated with total phosphorus, total organic carbon, and NO3 +-N content in the wet season. Discussion The structure and function of the bacterial community within the root rhizoplane-endosphere can serve as indicators of the water purification efficacy of constructed wetlands.
Collapse
Affiliation(s)
- Yao Huang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Ecology, Hainan University, Haikou, China
| | - Weili An
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Tianzhu Ning
- China State Construction Engineering Cooperation, Lanzhou, China
| | - Zhiguang Ma
- China State Construction Engineering Cooperation, Lanzhou, China
| | - Yuelin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lingbo Ji
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Ecology and Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hongxiao Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Hai Ren
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Xiong H, Hu N, Liang Y, Wang Q, Jiang C, Yang Z, Huang L. Greenhouse gas emissions from rotating biological contactors combined with hybrid constructed wetlands treating polluted river. BIORESOURCE TECHNOLOGY 2024; 414:131550. [PMID: 39362344 DOI: 10.1016/j.biortech.2024.131550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
The rotating biological contactors combined with hybrid constructed wetlands (R-HCWs) has promising treatment performance, however, concerns persisted regarding greenhouse gases (GHGs) emissions. In this study, GHGs in the R-HCWs was evaluated, and results revealed that R-HCWs facilitated nitrogen conversion and provided alternating oxygen environments, thereby promoting the reduction of N2O and CH4 emissions. Therefore, the comprehensive global warming potential (8.7±2.7 g CO2-eq·m-3·d-1) for handling unit volume of river water was low, thus, greater ecological benefits were achieved. The relative abundance of functional microorganisms such as Bacillus, Acinetobacter, Nitrospira and norank_f__norank_o__SBR1031, increased due to warm season, which promoted the nitrogen cycle and N2O emission reduction. Anammox and denitrifying bacteria showed significantly correlated with N2O and CH4 emissions (p < 0.01). This study provides valuable insights for the potential adoption of biological and ecological integrated treatment approach optimized for improving water and mitigating GHGs emissions.
Collapse
Affiliation(s)
- Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Ning Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Chunli Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Zhimin Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400716, PR China.
| |
Collapse
|
3
|
Liu L, Yang K, Li L, Liu W, Yuan H, Han Y, Zhang E, Zheng Y, Jia Y. The aeration and dredging stimulate the reduction of pollution and carbon emissions in a sediment microcosm study. Sci Rep 2024; 14:26172. [PMID: 39478047 PMCID: PMC11525881 DOI: 10.1038/s41598-024-75790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Sediment dredging and aeration are used as important technical measures to remediate internal loading of sediment in polluted rivers. However, previous studies have overlooked the impact of dredging and aeration on Greenhouse gases (GHGs) emission. We established three aeration rate(six different aeration intervals), one dredging treatment to investigate the effect of aeration and dredging on pollutant removals and CO2, CH4 and N2O emissions. The results indicated the pollutants and GHGs at 2.4, 3.4, 4.4 L min-1 aeration rates reached collaborative emission reduction after more than 3 h or within 1.5 h. Meanwhile, the GHGs fluxes after aeration decreased with the increasing aeration rate, with the mean CO2, CH4 and N2O fluxes of 69.74, 0.16, 7.53 mg m-2 h-1 and 33.64, 0.09, 4.17 mg m-2 h-1 before and after aeration, respectively. With respect to dredging, the pollutants and N2O reached synergic effects between reduction of pollution and carbon emissions after 1 h dredging. Specifically, the CO2 and CH4 emissions after dredging was lower than those of before dredging, but the N2O emissions was higher than those of before dredging. In addition, our analysis revealed that the dissolved oxygen (DO), oxidation-reduction potential (ORP), available potassium (AK) and ammoniacal nitrogen (NH4+-N) in the sediment influenced GHGs fluxes at the water-air interface in the aeration. Our study indicated moderate aeration and dredging can achieve the synergistic effect in reducing pollution and carbon emissions.
Collapse
Affiliation(s)
- Lixiang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Ke Yang
- Experimental Testing Team of Jiangxi Geological Bureau, Nanchang, 330006, China
| | - Liangzhong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou, 510640, China.
| | - Weiwei Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou, 510640, China
| | - Yongwei Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Enxiang Zhang
- Chongqing Research Academy of Environmental Science, Chongqing, 401336, China
| | - Yuping Zheng
- Guangzhou Transport Planning Research Institute, Guangzhou, 510030, China
| | - Yajuan Jia
- Baotou Ecological Environment Technology Center, Baotou, 014010, China
| |
Collapse
|
4
|
Szota C, Danger A, Poelsma PJ, Hatt BE, James RB, Rickard A, Burns MJ, Cherqui F, Grey V, Coleman RA, Fletcher TD. Developing simple indicators of nitrogen and phosphorus removal in constructed stormwater wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172192. [PMID: 38604363 DOI: 10.1016/j.scitotenv.2024.172192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Quantifying pollutant removal by stormwater wetlands requires intensive sampling which is cost-prohibitive for authorities responsible for a large number of wetlands. Wetland managers require simple indicators that provide a practical means of estimating performance and prioritising maintenance works across their asset base. We therefore aimed to develop vegetation cover and metrics derived from monitoring water level, as simple indicators of likely nutrient pollutant removal from stormwater wetlands. Over a two-year period, we measured vegetation cover and water levels at 17 wetlands and used both to predict nitrogen (N) and phosphorus (P) removal. Vegetation cover explained 48 % of variation in total nitrogen (TN) removal; with a linear relationship suggesting an approximate 9 % loss in TN removal per 10 % decrease in vegetation cover. Vegetation cover is therefore a useful indicator of TN removal. Further development of remotely-sensed data on vegetation configuration, species and condition will likely improve the accuracy of TN removal estimates. Total phosphorus (TP) removal was not predicted by vegetation cover, but was weakly related to the median water level which explained 25 % of variation TP removal. Despite weak prediction of TP removal, metrics derived from water level sensors identified faults such as excessive inflow and inefficient outflow, which in combination explained 50 % of the variation in the median water level. Monitoring water levels therefore has the potential to detect faults prior to loss of vegetation cover and therefore TN removal, as well as inform the corrective action required.
Collapse
Affiliation(s)
- Christopher Szota
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley, Victoria, Australia.
| | | | - Peter J Poelsma
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley, Victoria, Australia
| | - Belinda E Hatt
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley, Victoria, Australia; Melbourne Water Corporation, Docklands, Victoria, Australia
| | - Robert B James
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley, Victoria, Australia
| | - Alison Rickard
- Melbourne Water Corporation, Docklands, Victoria, Australia
| | - Matthew J Burns
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley, Victoria, Australia
| | - Frédéric Cherqui
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley, Victoria, Australia; Univ Lyon, INSA-LYON, Université Claude Bernard Lyon 1, DEEP, F-69621, F-69622, Villeurbanne, France
| | - Vaughn Grey
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley, Victoria, Australia; Melbourne Water Corporation, Docklands, Victoria, Australia
| | - Rhys A Coleman
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley, Victoria, Australia; Melbourne Water Corporation, Docklands, Victoria, Australia
| | - Tim D Fletcher
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley, Victoria, Australia
| |
Collapse
|
5
|
Soti A, Mohan Kulshreshtha N, Singh S, Samaria A, Brighu U, Dontireddy G, Banda S, Bhushan Gupta A. High rates of nitrogen removal in aerated VFCWs treating sewage through C-N-S cycle. BIORESOURCE TECHNOLOGY 2024; 399:130620. [PMID: 38518881 DOI: 10.1016/j.biortech.2024.130620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The efficiency of deep aerated vertical flow constructed wetlands (DA-VFCWs) being operated in Hyderabad, India, was evaluated herein using physicochemical analysis and 16S rRNA amplicon sequencing. The results showed 2-4-fold higher removal rate coefficients for Biochemical oxygen demand (1.32---3.53 m/d) and nitrogen (0.88--1.36 m/d) in DA-VFCWs than those of passive VFCWs. Elevated sulfate concentration in the DA-VFCWs effluent (84-113 mg/L) indicated possibility of sulfur-driven autotrophic denitrification (SDAD) as a major pathway operating in these wetlands besides the classical nitrogen removal pathways. The presence of nitrifiers (3.09-10.02 %), heterotrophic and aerobic denitrifiers (0.79-0.83 %), anammox bacteria (1.31-2.22 %) and SDAD bacteria (0.08-0.73 %) in the biofilm samples collected from the DA-VFCWs exemplify an interplay of Carbon-Nitrogen-Sulfur cycles in these systems. If proven, the presence of an operational SDAD pathway in DA-VFCWs can help reduce surface area requirement in VFCWs substantially besides alleviating biological clogging of the wetland substrate.
Collapse
Affiliation(s)
- Abhishek Soti
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India; Bluedrop Enviro Private Limited, 101, Vasantha Golden Residency Plot No- 521 and 536, Phillu Street, Raja Rajeswari Nagar, Kondapur, Telangana 500084, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Saurabh Singh
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India; Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA; Department of Civil Engineering, Swami Keshvanand Institute of Technology, Management and Gramothan, Jaipur 302017, India
| | - Akshat Samaria
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Urmila Brighu
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Gangadhara Dontireddy
- Bluedrop Enviro Private Limited, 101, Vasantha Golden Residency Plot No- 521 and 536, Phillu Street, Raja Rajeswari Nagar, Kondapur, Telangana 500084, India
| | - Sravan Banda
- Bluedrop Enviro Private Limited, 101, Vasantha Golden Residency Plot No- 521 and 536, Phillu Street, Raja Rajeswari Nagar, Kondapur, Telangana 500084, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India.
| |
Collapse
|
6
|
Kumar R, Patel K, Singh SK. Biological wastewater treatment: a comprehensive sustainability analysis using life cycle assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:416. [PMID: 38570390 DOI: 10.1007/s10661-024-12578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The research conducts a life cycle assessment (LCA) on wastewater treatment (WWT) methods-membrane bioreactor (MBR), soil biotechnology (SBT), and bio-electrochemical constructed wetlands (BCW)-in comparison with the conventional activated sludge process (ASP). Employing SimaPro v9.5 with a cradle-to-gate system boundary, the analysis utilizes the IMPACT 2002 + method, employing per cubic meter of treated wastewater as the functional unit. The analysis shows that SBT exhibits the lowest environmental impacts among the considered WWT methods. The global warming potential was 0.0996 kg CO2 eq. for SBT, 1.33 kg CO2 eq. for MBR, 0.131 kg CO2 eq. for BCW, and 0.544 kg CO2 eq. for ASP. BCW demonstrates a 75.91% decrease, while MBR exhibits a 144.48% increase compared to ASP. Notably, electricity consumption emerges as the primary contributor to environmental impact in MBR and ASP. The resource impact category varies with a 138.15% increase in MBR and an 83.41% decrease in SBT compared to ASP. Additionally, the research indicates that the high human health impact observed in MBR results mainly from increased carcinogens (0.00176 kg C2H3Cl eq.), non-carcinogens (0.01 kg C2H3Cl eq.), and ionizing radiation (3.34 Bq C-14 eq.). The findings underscore the importance of considering treatment efficiency and broader environmental implications in selecting WWT methods. As the world emphasizes sustainability, such LCA studies provide valuable insights for making informed decisions in wastewater management.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| | - Kulvendra Patel
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India.
| | - S K Singh
- Department of Environmental Engineering, Delhi Technological University, Delhi, 110042, India
| |
Collapse
|
7
|
Chen X, Wu J, Zhong F, Yu S, Chen K, Zeng X, Duan D, Cheng S. Mechanism of Iris sibirica and aeration combination on promoting the water purification performance of constructed wetland under low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19715-19724. [PMID: 38366317 DOI: 10.1007/s11356-024-32381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Temperature is an important factor affecting the water purification performance of constructed wetland (CW). In the previous study, the combined measures of Iris sibirica and aeration at the bottom of the first quarter filtration chamber could improve the pollutant removal capacity of CW at low temperature. However, the mechanism between the combined measures of Iris sibirica and aeration on enhancing the performance of domestic sewage treatment is unclear. Our study aims to provide scientific validation for the combined measure through monitoring the concentrations of dissolved oxygen (DO), chemical oxygen demand (CODCr), ammonia nitrogen (NH4+-N), and total nitrogen (TN) along the water flow pathway of the CW and measuring the superoxide dismutase (SOD) activities of the plants and the abundance of nitrogen cycle-related microbial functional genes in the substrates of CW to explore the mechanism of combined measures promoting the removal efficiency of the CW under low-temperature stress. Results showed that aerating at the bottom of the first quarter filtration chamber increased DO concentration in the front part of the CW, which benefited the aerobic removal of pollutants and the activities of microorganisms, and the removal CODCr and NH4+-N occurred mainly in the front part of the CW. SOD activities showed that I. sibirica had better resistance to low temperature than Canna indica did. The combined measures of I. sibirica and aeration activated the activities of microorganisms, increased the abundance of the denitrification process genes along the water flow pathway and formed a clear nitrification-denitrification zone in the CW, thus promoted the nitrogen removal efficiency at low temperature. Therefore, this study confirmed the feasibility of the combined measures from a mechanistic perspective.
Collapse
Affiliation(s)
- Xinyi Chen
- Guangzhou Urban Planning & Design Survey Research Institute Co., Ltd, Guangzhou, 510060, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Juan Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Institute of Eco-Environmental Engineering, Tongji University, Shanghai, 200092, China
| | - Fei Zhong
- School of Life Science, Nantong University, 9 Seyuan Road, Nantong, 226019, China
| | - Shaole Yu
- China Construction Eighth Engineering Division Co., Ltd, Shanghai, 200135, China
| | - Kejian Chen
- Guangzhou Urban Planning & Design Survey Research Institute Co., Ltd, Guangzhou, 510060, China
| | - Xiangqian Zeng
- Guangzhou Urban Planning & Design Survey Research Institute Co., Ltd, Guangzhou, 510060, China
| | - Dongling Duan
- Guangzhou Urban Planning & Design Survey Research Institute Co., Ltd, Guangzhou, 510060, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Institute of Eco-Environmental Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
8
|
Chen R, Liu X, Wang J, Chen J, Wang X, Lv Y, Xu J, Wang S, Li D, He X, Hou J. Exploring organic matter conversion pathway and its effect on nitrogen removal in tidal flow constructed wetlands. CHEMOSPHERE 2024; 349:140927. [PMID: 38081523 DOI: 10.1016/j.chemosphere.2023.140927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Achieving effective nitrogen removal remains a significant challenge faced by constructed wetlands. Although organic matter is a crucial factor influencing nitrogen removal, little attention has been paid to the impact of organic matter conversion pathways on nitrogen removal in constructed wetlands. Here, we showed that endogenous microorganisms performing carbon internalization could be easily enriched in tidal flow constructed wetlands (TFCWs) under its special rhythmic cycle of anaerobic/aerobic operational mode. Endogenous microorganisms could translate influent carbon sources into intracellular carbons during the anaerobic stage and supply the carbon source for endogenous denitrification after the aerobic stage (rest period). Based on these findings, an innovative combined TFCW and Nitrifying-CW system was developed, and robust total nitrogen (TN) removal (82% on average) was achieved even under carbon source limiting conditions. This performance was a substantial improvement compared to the conventional single bed TFCW with multiple "tides" (corresponding to the multiple contact/rest periods) with TN removal of only 54% on average. Simultaneous nitrification-endogenous denitrification (SNED) was found to be the major nitrogen removal pathway in the proposed system. Compared with classical nitrification-denitrification, simultaneous nitrification-endogenous denitrification brings high nitrogen conversion rates and significantly reduces the demand for oxygen and organic carbon. Furthermore, microbial community analysis indicated that endogenous microorganisms such as Candidatus_Competibacter and Defluviicoccus were successfully enriched, accounting for 50.73% and 3.46% in CW1, and 25.25% and 1.76% in CW2, respectively. Together, these mechanisms allow the proposed system to achieve efficient TN removal.
Collapse
Affiliation(s)
- Ruiya Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueyu Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jieyu Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoning Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yabing Lv
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juchen Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaodi Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xugang He
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| | - Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| |
Collapse
|
9
|
Silva LDC, Bernardelli JKB, Souza ADO, Lafay CBB, Nagalli A, Passig FH, Kreutz C, Carvalho KQD. Biodegradation and sorption of nutrients and endocrine disruptors in a novel concrete-based substrate in vertical-flow constructed wetlands. CHEMOSPHERE 2024; 346:140531. [PMID: 37918529 DOI: 10.1016/j.chemosphere.2023.140531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Removing phosphorus and endocrine-disruptors (EDC) is still challenging for low-cost sewage treatment systems. This study investigated the efficiency of three vertical-flow constructed wetlands (VFCW) vegetated with Eichhornia crassipes onto red clay (CW-RC), autoclaved aerated concrete (CW-AC), and composite from the chemical activation of autoclaved aerated concrete with white cement (CW-AAC) in the removal of organic matter, nutrients, and estrone, 17β-estradiol, and 17α-ethinylestradiol. The novelty aspect of this study is related to selecting these clay and cementitious-based materials in removing endocrine disruptors and nutrients in VFCW. The subsurface VFCW were operated in sequencing-batch mode (cycles of 48-48-72 h), treating synthetic wastewater for 308 days. The operation consisted of Stages I and II, different by adding EDC in Stage II. The presence of EDC increased the competition for dissolved oxygen (DO) and reduced the active sites available for adsorption, diminishing the removal efficiencies of TKN and TAN and total phosphorus in the systems. CW-RC showed a significant increase in COD removal from 65% to 91%, while CW-AC and CW-AAC maintained stable COD removal (84%-82% and 78%-81%, respectively). Overall, the substrates proved effective in removing EDC, with CW-AC and CW-AAC achieving >60% of removal. Bacteria Candidatus Brocadia and Candidatus Jettenia, responsible for carrying out the Anammox process, were identified in assessing the microbial community structure. According to the mass balance analysis, adsorption is the main mechanism for removing TP in CW-AC and CW-AAC, while other losses were predominant in CW-RC. Conversely, for TN removal, the adsorption is more representative in CW-RC, and the different metabolic routes of microorganisms, biofilm assimilation, and partial ammonia volatilization in CW-AC and CW-AAC. The results suggest that the composite AAC is the most suitable material for enhancing the simultaneous removal of organic matter, nutrients, and EDC in VFCW under the evaluated operational conditions.
Collapse
Affiliation(s)
- Lucas de Carvalho Silva
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cíntia Boeira Batista Lafay
- Federal University of Technology - Paraná (UTFPR), Chemistry Academic Department. Via do Conhecimento, s/n - Km 01, Fraron, 85503-390. Pato Branco, Paraná, Brazil.
| | - André Nagalli
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cristiane Kreutz
- Federal University of Technology - Paraná (UTFPR), Environmental Academic Department, Rosalina Maria dos Santos St., 1233, 87301-899, Campo Mourão, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| |
Collapse
|
10
|
Yang L, Jin X, Hu Y, Zhang M, Wang H, Jia Q, Yang Y. Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:271-289. [PMID: 39219130 PMCID: wst_2023_414 DOI: 10.2166/wst.2023.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Constructed wetlands purify water quality by synergistically removing nitrogen and phosphorus pollutants from water, among other pollutants such as organic matter through a physical, chemical, and biological composite remediation mechanism formed between plants, fillers, and microorganisms. Compared with large-scale centralized wastewater treatment systems with high cost and energy consumption, the construction and operation costs of artificial wetlands are relatively low, do not require large-scale equipment and high energy consumption treatment processes, and have the characteristics of green, environmental protection, and sustainability. Gradually, constructed wetlands are widely used to treat nitrogen and phosphorus substances in wastewater. Therefore, this article discusses in detail the role and interaction of the main technical structures (plants, microorganisms, and fillers) involved in nitrogen and phosphorus removal in constructed wetlands. At the same time, it analyses the impact of main environmental parameters (such as pH and temperature) and operating conditions (such as hydraulic load and hydraulic retention time, forced ventilation, influent carbon/nitrogen ratio, and feeding patterns) on nitrogen and phosphorus removal in wetland systems, and addresses the problems currently existing in relevant research, the future research directions are prospected in order to provide theoretical references for scholars' research.
Collapse
Affiliation(s)
- Lei Yang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China E-mail:
| | - Xiaohui Jin
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Yawei Hu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Mingqi Zhang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Huihui Wang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Qian Jia
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Yafei Yang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China
| |
Collapse
|
11
|
Zhao L, Fu G, Zeng A, Cheng B, Song Z, Hu Z. Effects of different aeration strategies and ammonia-nitrogen loads on nitrification performance and microbial community succession of mangrove constructed wetlands for saline wastewater treatment. CHEMOSPHERE 2023; 339:139685. [PMID: 37532202 DOI: 10.1016/j.chemosphere.2023.139685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
In highly salinized environments, nitrification is the process that limits the rate of nitrogen transformation and removal. Therefore, this study concentrated on the impacts of different aeration strategies and NH4+-N loads on the nitrification performance of mangrove constructed wetlands (CWs), as well as investigating the succession mechanism of ammonia-oxidizing microorganisms (AOMs). The results showed that both the CW with continuous aeration (CA-CW) and intermittent aeration (IA-CW) achieved a nitrification efficiency of more than 98% under an NH4+-N loading of 1.25-4.7 g/(m2·d). However, the total nitrogen removal rates of IA-CW under low and high ammonia-nitrogen loads (LAL, 20.09 ± 4.4% and HAL, 8.77 ± 1.35%, respectively) were higher than those of CA-CW (16.11 ± 4.7% and 3.32 ± 2.3%, respectively), especially under HAL (p < 0.05). Pearson correlation analysis showed that under different operating conditions, the differential secretion of Kandelia candel rhizosphere organic matter had a certain regulatory effect on nitrification and denitrification groups such as Candidatus Nitrocosmicus, Nitrancea, Truepera, Pontibacter, Halomonas, and Sulfurovum in the wetland root layer. The quantitative polymerase chain reaction revealed that the NH4+-N load rate was the primary factor driving the succession of the AOMs, with different aeration strategies exacerbating this process. Overall, this study revealed that the dominant AOMs in mangrove CWs could be significantly altered by regulating the aeration modes and pollution loads to adjust the rhizosphere organic matter in situ, thereby resulting in more efficient nitrification.
Collapse
Affiliation(s)
- Lin Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, 518055, China; Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biology and Food engineering, Fuyang Normal University, Fuyang, 236037, China.
| | - Guiping Fu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Anzu Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Bingzhen Cheng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zihao Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Xu A, Liu C, Zhao S, Song Z, Sun H. Dynamic distribution of Massilia spp. in sewage, substrate, plant rhizosphere/phyllosphere and air of constructed wetland ecosystem. Front Microbiol 2023; 14:1211649. [PMID: 37577432 PMCID: PMC10413979 DOI: 10.3389/fmicb.2023.1211649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Massilia bacteria are widely distributed and have various ecological functions. Preliminary studies have shown that Massilia is the dominant species in constructed wetland ecosystems, but its species composition and distribution in constructed wetlands are still unclear. Methods In this paper, the in-house-designed primers were used to construct a 16S rDNA clone library of Massilia. The RFLP sequence analysis method was used to analyze the diversity of Massilia clone library and the composition of Massilia in sewage, substrate, plant rhizosphere, plant phyllosphere and air in a constructed wetland sewage treatment system. Redundancy analysis (RDA) and canonical correspondence analysis (CCA) were used to analyze the correlation between environmental factors and the population characteristics of Massilia in the corresponding environment. The dominant species of Massilia were analyzed for differences. Results The results showed that the 16S rDNA clone library in primer 5 worked well. According to the clone library diversity index analysis, the richness of Massilia varied significantly in different environments in different seasons, where the overall summer and autumn richness was higher than that in the spring and winter. The relative abundance of 5 Massilia in the constructed wetland ecosystem was greater than 1% in all samples, which were M. alkalitolerans, M. albidiflava, M. aurea, M. brevitalea, and M. timonae. The seasonal variation of dominant genera was significantly correlated with environmental factors in constructed wetlands. Discussion The above results indicated that the species of Massilia were abundant and widely distributed in the constructed wetland ecosystem, and there were significant seasonal differences. In addition, the Massilia clone library of constructed wetland was constructed for the first time in this study and the valuable data of Massilia community structure were provided, which was conducive to the further study of microbial community in constructed wetland.
Collapse
Affiliation(s)
- Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, Shandong, China
| | - Congcong Liu
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, Shandong, China
| | - Shuke Zhao
- Qingdao sub-Center, Shandong Water Transfer Project Operation and Maintenance Center, Qingdao, Shandong, China
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, Shandong, China
| | - Hui Sun
- Qingdao sub-Center, Shandong Water Transfer Project Operation and Maintenance Center, Qingdao, Shandong, China
| |
Collapse
|
13
|
Singh S, Soti A, Kulshreshtha NM, Kumar N, Brighu U, Gupta AB, Bezbaruah AN. Optimization of depth of filler media in horizontal flow constructed wetlands for maximizing removal rate coefficients of targeted pollutant(s). BIORESOURCE TECHNOLOGY 2023; 376:128898. [PMID: 36931442 DOI: 10.1016/j.biortech.2023.128898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Varying the depth of HFCW media causes differences in the redox status within the system, and hence the community structure and diversity of bacteria, affecting removal rates of different pollutants. The key functional microorganisms of CWs that remove contaminants belong to the phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. Secondary data of 111 HFCWs (1232 datasets) were analyzed to deduce the relationship between volumetric removal rate coefficients (KBOD, KTN, KTKN, and KTP) and depth. Equations of depth were derived in terms of rate coefficients using machine learning approach (MLR and SVR) (R2 = 0.85, 0.87 respectively). These equations were then used to find the optimum depth for pollutant(s) removal using Grey wolf optimization (GWO). The computed optimum depths were 1.48, 1.71, 1.91, 2.09, and 2.14 m for the removal of BOD, TKN, TN, TP, and combined nutrients, respectively, which were validated through primary data. This study would be helpful for optimal design of HFCWs.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Abhishek Soti
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Nikhil Kumar
- Department of Electrical Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Urmila Brighu
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India.
| | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
14
|
Li Q, Gao J, Zhang J, Huang Z, Wang S, Song B, Wang Q, Zhou W. Treatment of high-phosphorus load wastewater by column packed with non-burning compound filler/gravel/ceramsite: evaluation of performance and microorganism community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67730-67741. [PMID: 37118390 DOI: 10.1007/s11356-023-26487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/13/2023] [Indexed: 05/25/2023]
Abstract
Cost-effective and environmental-friendly substrates are essential for the constructed wetlands (CWs). In this study, the column test was used to explore the differences in pollutant purification performance, microbial community structure and abundance between non-burning compound filler and conventional CWs substrates (i.e. gravel and ceramsite) at low temperature (0-15℃). It was found that the maximum phosphorus removal efficiency of compound filler (99%) was better than gravel (18%) and ceramsite (21%). Besides, the proportion of aerobic heterotrophic bacteria capable of ammonium oxidation, nitrification and denitrification (i.e. Pseudomonas, Acinetobacter, and Acetoanaerobium) was enhanced by compound filler, which has an excellent potential for nitrogen removal in the subsequent purification process. These results demonstrated that the self-made non-burning compound filler was a potential substrate for CWs, which was of great significance for the resource utilization of solid wastes such as polyaluminum chloride residue.
Collapse
Affiliation(s)
- Qiang Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingqing Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Water Management and Water Security for Yellow River, Basin, Ministry of Water Resources (Under Construction), Zhengzhou, 450001, China.
| | - Jingshen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Huang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
- Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Shilong Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Bozhen Song
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiaojian Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wanglin Zhou
- CSCEC Xinjiang Construction&Engineering (Group) Co.,Ltd, Xian, 710000, China
| |
Collapse
|
15
|
Huang L, Bao J, Zhao F, Liang Y, Chen Y. New insight for purifying polluted river water using the combination of large-scale rotating biological contactors and integrated constructed wetlands in the cold season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116433. [PMID: 36352732 DOI: 10.1016/j.jenvman.2022.116433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Ecological treatment technologies, applied to deal with polluted river water in the low temperature season, remain limited. In this study, a new insight was put forward for purifying polluted river water using a combination system (CS) of large-scale rotating biological contactors (RBCs) and integrated constructed wetlands in autumn and winter. The treatment performance, average removal contribution (RC), nitrification and denitrification rates, microbial community structure, and ecosystem service value were considered to estimate the combination system. Results revealed that the average removal efficiencies of ammonium (NH4+-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) reached 93.9%, 20.8%, 36.5%, and 37.1%, respectively. The combination system showed excellent removal efficiency of NH4+-N regardless of the effect of low temperature. The maximum values of nitrification and denitrification rates were 59.57 g N/(m3·d) and 0.78 g N/(m2·d), respectively. Considerable differences in bacterial community diversity, richness and relative abundance of functional microbes were observed in the main treatment units, resulting in different average RC to pollutants. The unit capital cost of CS purifying polluted river water was 260 USD/m3 and the operation and maintenance cost was 0.144 million USD/yr. Meanwhile, the ecosystem service value of the CS was 0.334 million USD in autumn and winter. CS not only possessed excellent pollutant purifying efficiencies, but also achieved high ecological service value in the cold season.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Jun'an Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Fang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| |
Collapse
|
16
|
Guan Y, Hou T, Li X, Feng L, Wang Z. Metagenomic insights into comparative study of nitrogen metabolic potential and microbial community between primitive and urban river sediments. ENVIRONMENTAL RESEARCH 2022; 212:113592. [PMID: 35654160 DOI: 10.1016/j.envres.2022.113592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 05/27/2023]
Abstract
As a result of anthropogenic pollution, the nitrogen nutrients load in urban rivers has increased, potentially raising the risk of river eutrophication. Here, we studied how anthropogenic impacts alter nitrogen metabolism in river sediments by comparing the metagenomic function of microbial communities between relatively primitive and human-disturbed sediments. The contents of organic matter (OM), total nitrogen (TN), NO3--N and NO2--N were higher in primitive site than in polluted sites, which might be due to vegetation density, sediment type, hydrology, etc. Whereas, NH4+-N content was higher in midstream and downstream, indicating that nitrogen loading increased in the anthropogenic regions and subsequently leading higher NH4+-N. Hierarchical cluster analyses revealed significant changes in the community structure and functional potential between the primitive and human-affected sites. Metagenomic analysis demonstrated that Demequina, Streptomyces, Rubrobacter and Dechloromonas were the predominant denitrifiers. Ardenticatena and Dechloromonas species were the most important contributors to dissimilatory nitrate reduction. Furthermore, anthropogenic pollution significantly increased their abundance, and resulting in a decrease in NO3-, NO2--N and an increase in NH4+-N contents. Additionally, the SOX metabolism of Dechloromonas and Sulfuritalea may involve in the sulfur-dependent autotrophic denitrification process by coupling the conversion of thiosulfate to sulfate with the reduction of NO3--N to N2. From pristine to anthropogenic pollution sediments, the major nitrifying bacteria harboring Hao transitioned from Nitrospira to Nitrosomonas. This study sheds light on the consequences of anthropogenic activities on nitrogen metabolism in river sediments, allowing for better management of nitrogen pollution and eutrophication in river.
Collapse
Affiliation(s)
- Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Leilei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Zhang H, Wang Y, Liu P, Sun Y, Dong X, Hu X. Unveiling the occurrence, hosts and mobility potential of antibiotic resistance genes in the deep ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151539. [PMID: 34762954 DOI: 10.1016/j.scitotenv.2021.151539] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
As emerging microbial contaminants, antibiotic resistance genes (ARGs) are widely reported in the neritic zone. However, the profiles of ARGs in the deep ocean have not yet been fully resolved. In this study, the distribution, hosts, and mobility potential of ARGs at different water depths in the Western Pacific (WP) were investigated and compared to those in Bohai Sea (BH) waters using environmental parameter measurements, amplicon sequencing, metagenomic assembly and binning approaches. Our results showed that the top eight most abundant known ARG types in WP and BH waters were multidrug (39.85%), peptide (14.98%), aminoglycoside (11.33%), macrolide-lincosamide-streptogramin (MLS, 4.06%), tetracycline (3.74%), beta-lactam (3.12%), fluoroquinolone (1.79%) and rifamycin (1.24%). The ARGs observed in mesopelagic and bathypelagic waters were abundant and diverse as those observed in neritic waters, indicating that deep-sea water could be another environmental reservoir for ARGs. For deep-sea ARGs, members from classes Gammaproteobacteria (70%) and Alphaproteobacteria (21.1%) were the most important potential hosts. In addition, mobile genetic element analysis suggested that the ARG migration potential in dee sea water (> 1000 m) was relatively high. Overall, our findings expanded the understanding of ARGs in deep seawater and provided guidance for ARG pollution control and risk prediction.
Collapse
Affiliation(s)
- Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yibo Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Pengyuan Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanyu Sun
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Xiaoke Hu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
18
|
Zhang Y, Hu Y, You Z, Li Z, Kong M, Han M, Liu Z, Zhang J, Yao Y. Soil Ventilation Benefited Strawberry Growth via Microbial Communities and Nutrient Cycling Under High-Density Planting. Front Microbiol 2021; 12:666982. [PMID: 34733241 PMCID: PMC8558626 DOI: 10.3389/fmicb.2021.666982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
In order to increase O2 concentration in the rhizosphere and reduce the continuous cropping obstacles under high-density cultivation, ventilation is often used to increase soil aeration. Yet, the effect of ventilation on soil microbial communities and nutrient cycling and, further, the extent to which they influence strawberry growth under greenhouse conditions are still poorly understood. Thus, four treatments—no ventilation + low planting density (LD), ventilation + LD, no ventilation + high planting density (HD), and ventilation + HD—of strawberry “Red cheeks” (Fragaria × ananassa Duch. cv. “Benihopp”) were studied in a greenhouse for 3 years. The ventilation pipe (diameter = 10 cm) was buried in the soil at a depth of 15 cm from the surface and fresh air was sent to the root zone through the pipe by a blower. Ten pipes (one pipeline in a row) were attached to a blower. Soil samples were collected using a stainless-steel corer (five-point intra-row sampling) for the nutrient and microbial analyses. The composition and structure of the soil bacterial and fungal communities were analyzed by high-throughput sequencing of the 16S and 18S rRNA genes, and functional profiles were predicted using PICRUSt and FUNGuild, respectively. The results showed that soil ventilation increased the net photosynthetic rate (Pn), transpiration rate (Tr), and water use efficiency (WUE) of strawberry plants across two growth stages [vegetative growth stage (VGS) and fruit development stage (FDS)]. Soil ventilation increased its available nutrient contents, but the available nutrient contents were reduced under the high planting density compared with low planting density. Both the O2 concentration and O2:CO2 ratio were increased by ventilation; these were positively correlated with the relative abundance of Bacilli, Gamma-proteobacteria, Blastocatella, as well as Chytridiomycota and Pezizomycetes. Conversely, ventilation decreased soil CO2 concentration and the abundance of Beta-proteobacteria and Gemmatimonadetes. The greater planting density increased the relative abundance of Acidobacteria (oligotrophic group). Ventilation altered soil temperature and pH along with carbon and nitrogen functional profiles in the VGS (more nitrogen components) and FDS (more carbon components), which benefited strawberry plant growth under high planting density. The practice of soil ventilation provides a strategy to alleviate hypoxia stress and continuous cropping obstacles for improving crop production in greenhouse settings.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Yujing Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Zijing You
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Zhenglin Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Miao Kong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Mingzheng Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Zhimin Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China.,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| |
Collapse
|
19
|
Wang X, Zhu H, Yan B, Shutes B, Bañuelos G, Wen H, Cheng R. Improving denitrification efficiency in constructed wetlands integrated with immobilized bacteria under high saline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117592. [PMID: 34171725 DOI: 10.1016/j.envpol.2021.117592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetlands (CWs) inoculated with exogenous microbes have great potential for removing pollutants in adverse environments. The rapid loss of functional bacteria and the high cost of repeated additions of inoculum, however, limit the practical application of this technology. In this study, C-F2 immobilized bacteria (i.e., immobilized salt-tolerant bacterium Alishewanella sp. F2 incorporated with a carbon source) were developed and utilized in CWs for solving the above problems. A 60-day experiment demonstrated that bioaugmented CWs (Bio-CWs) with the addition of C-F2 immobilized bacteria into the bottom gravel layer of CW microcosms (B-CF2 treatment) exhibited high nitrogen removal efficiency under a saline condition (electrical conductivity of 15 mS/cm). We measured mean nitrate nitrogen (NO3--N) and total nitrogen (TN) removal percentages of 97.8% and 88.1%, respectively, which were significantly (p < 0.05) higher than those in Bio-CWs with microbial inoculum (MI-F2 treatment, 63.5% and 78.2%) and unbioaugmented CWs (CK, 48.7% and 67.2%). The TN content of the entire plant was significantly (p < 0.05) increased in B-CF2 (636.06 mg/microcosm) compared with CK (372.06 mg/microcosm). The relative abundances of the genera Alishewanella (i.e., the exogenous bacterium, 5.5%), Clostridium-XlVa (8.8%) and Bacteroides (21.1%) in B-CF2 were significantly (p < 0.05) higher than in MI-F2 and CK, which improved the denitrification capacity of CWs. Overall, a high denitrification efficiency and durability were achieved in the newly developed Bio-CWs (i.e., B-CF2 treatment) with immobilized bacteria under saline conditions, which provides an alternative technology for the rapid removal of nitrogen from saline wastewater.
Collapse
Affiliation(s)
- Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Huiyang Wen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| |
Collapse
|
20
|
He S, Li Y, Yang W, Huang J, Hou K, Zhang L, Song H, Yang L, Tian C, Rong X, Han Y. A comparison of the mechanisms and performances of Acorus calamus, Pontederia cordata and Alisma plantagoaquatica in removing nitrogen from farmland wastewater. BIORESOURCE TECHNOLOGY 2021; 332:125105. [PMID: 33857861 DOI: 10.1016/j.biortech.2021.125105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
This study examined the performances of Acorus calamus, Pontederia cordata, and Alisma plantagoaquatica in removing nitrogen (N) from farmland wastewater. P. cordata showed the fastest rate of N removal, followed by A. plantagoaquatica, whereas that of A. calamus was slowest. P. cordata and A. plantagoaquatica achieving a greater rate of TN reduction in soil than that by A. calamus. A. plantagoaquatica demonstrated the highest N adsorption capacity, 32.6% and 392.1% higher than that of P. cordata and A. calamus, respectively. The higher potential nitrification and denitrification rate, and abundance of functional genes in the P. cordata microcosm resulted in a stronger process of nitrification-denitrification, which accounted for 65.99% of TN loss. Plant uptake and nitrification-denitrification were responsible for 50.06% and 49.94% of TN removed within the A. plantagoaquatica. Nitrification-denitrification accounted for 86.35% of TN loss in A. calamus. These findings helped to insight into N removal mechanisms in different plants.
Collapse
Affiliation(s)
- Shifu He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China
| | - Yan Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Wei Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China
| | - Jiayi Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China
| | - Kun Hou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China
| | - Lian Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China
| | - Haixing Song
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China
| | - Lan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China
| | - Chang Tian
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China
| | - Xiangmin Rong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China
| | - Yongliang Han
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha 410128, PR China.
| |
Collapse
|
21
|
Wang J, Chen G, Fu Z, Qiao H, Liu F. Assessing wetland nitrogen removal and reed (Phragmites australis) nutrient responses for the selection of optimal harvest time. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111783. [PMID: 33349513 DOI: 10.1016/j.jenvman.2020.111783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Wetlands play an important role in reducing the impact of nitrogen pollution on natural aquatic environments. However, during the plant wilting period (winter) there will inevitably be a reduction in nitrogen removal from wetlands. Understanding optimum harvest time will allow the use of management practices to balance the trade-off between nitrogen removal and the sustainability of wetlands. In this study, we investigated wetland nitrogen removal and reed (Phragmites australis) nutrient responses for two years [first year: influent total nitrogen (TN) 17.6-34.7 mg L-1; second year: influent TN 3.2-10.0 mg L-1] to identify the optimal harvest time: before wilting, mid-wilting, or late wilting. Harvesting decreased wetland nitrogen removal in both years, with later harvest time producing a smaller decrease in TN and ammonium-nitrogen (NH4+-N) removal. In addition to harvest before wilting, aboveground reed harvest at mid-wilting harvested more nutrients [carbon (C) 7.9%, nitrogen (N) 46.6% and phosphorus (P) 43.6%] in the first year, while harvest at late wilting harvested more nutrients (C 4.9%, N 7.8% and P 24.1%) in the second year, although this was not statistically significant. The late wilting harvest caused fewer disturbances to root stoichiometric homeostasis in the first year, while mid-wilting harvest promoted root nutrient availability in the second year. In addition, redundancy analysis (RDA) showed that root stoichiometry was interrelated with wetland nitrogen removal. Our results suggest that optimal harvest time was late wilting on the basis of wetland nitrogen removal, or either mid- or late wilting according to reed nutrient response to influent nitrogen concentration in some years. Our results provide crucial information for winter wetlands management.
Collapse
Affiliation(s)
- Junli Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| | - Guifa Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Zishi Fu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Hongxia Qiao
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Fuxing Liu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
22
|
Zhang Q, Yang Y, Chen F, Zhang L, Ruan J, Wu S, Zhu R. Effects of hydraulic loading rate and substrate on ammonium removal in tidal flow constructed wetlands treating black and odorous water bodies. BIORESOURCE TECHNOLOGY 2021; 321:124468. [PMID: 33296774 DOI: 10.1016/j.biortech.2020.124468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The efficient removal of ammonium nitrogen (NH4+-N) is vital to eliminating black and odorous water bodies. In this work, tidal flow constructed wetlands with gravel (TFCW-G) and with a mixture of zeolite and gravel (TFCW-Z) were set up to treat black and odorous water bodies at different hydraulic loading rates (HLRs). Results showed that zeolite significantly enhanced nitrogen removal, and the maximum NH4+-N removal efficiency of 96.69% was achieved in TFCW-Z at HLR of 3 m·d-1 with a flooding and drying cycle of 2 h. Zeolite addition changed the microbial community structure and the abundance of nitrification genes. Comammox Nitrospira was the only enriched strain accounting for NH4+-N removal in TFCW-G, while the co-occurrence of comammox Nitrospira and the canonical and potential ammonia-oxidizing bacteria were identified in TFCW-Z. Summarily, high performance, together with low footprint and low maintenance cost, are characteristics that make the TFCW-Z a promising and competitive alternative.
Collapse
Affiliation(s)
- Quan Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China.
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China
| | - Lingling Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Jingjun Ruan
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
23
|
Lu J, Guo Z, Kang Y, Fan J, Zhang J. Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111330. [PMID: 32977288 DOI: 10.1016/j.ecoenv.2020.111330] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetland has attracted more and more attention for wastewater purification due to its low construction cost and convenient operation recently. However, the unique waterflooding structure of constructed wetland makes the low dissolved oxygen level, which limits the effect of nitrogen removal in the system. Therefore, it is necessary to develop the oxygen-increasing technology to overcome the drawback in constructed wetlands. In this review, the mechanism of nitrogen removal in constructed wetland is discussed and oxygen is main influence factor is concluded. In addition, oxygen-increasing technologies in recent advances which improve the nitrogen removal efficiency greatly, are emphatically introduced. Finally, some future perspectives about oxygen-increasing techniques are also put forward in order to provide reference for further research and engineering application.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jinlin Fan
- Department of Science and Technology Management, Shandong University, Jinan, 250100, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
24
|
Yu G, Wang G, Li J, Chi T, Wang S, Peng H, Chen H, Du C, Jiang C, Liu Y, Zhou L, Wu H. Enhanced Cd 2+ and Zn 2+ removal from heavy metal wastewater in constructed wetlands with resistant microorganisms. BIORESOURCE TECHNOLOGY 2020; 316:123898. [PMID: 32736182 DOI: 10.1016/j.biortech.2020.123898] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
The bioaugmentation role of microbes is often impeded by heavy metal (HM) ions in constructed wetlands (CWs). To explore the interaction between microbes and HM ions, two identical CWs: an MCW (with resistant microorganisms) and a CCW (as control) were used in this study. Experiments analyzed static adsorption performance in a synthetic HM solution. The removal performance of Cd2+ and Zn2+ was further investigated in both CWs. The removal efficiencies (REs) of 81.92-99.56% and 74.05-98.79% were achieved for Cd2+ and Zn2+ in the adsorption study, respectively. Significantly higher REs of Cd2+ (99.60%), and Zn2+ (94.41%) were achieved in the MCW. The microbial community analysis revealed that the dominant genera were Serratia and Pseudomonas in the MCW. The subcellular analysis further demonstrated that the HMs bioaccumulated mainly in the cytomembrane and cell wall. These results indicate that CW with resistant microorganisms inoculated was an effective strategy for treating HMs wastewater.
Collapse
Affiliation(s)
- Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Guoliang Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Jianbing Li
- Northern Soil and Groundwater Remediation Research Laboratory, University of Northern British Columbia, Prince George V2N 4Z9, Canada
| | - Tianying Chi
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Shitao Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Haiyuan Peng
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China.
| | - Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Changbo Jiang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yuanyuan Liu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Lu Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Haipeng Wu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| |
Collapse
|
25
|
Lai X, Zhao Y, Pan F, Yang B, Wang H, Wang S, Yuan Y. Enhanced nitrogen removal in filled-and-drained vertical flow constructed wetlands: microbial responses to aeration mode and carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37650-37659. [PMID: 32608006 DOI: 10.1007/s11356-020-09915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
For the purpose of enhancing the removal rate of nitrogen (N) and organic matters, intermittent aeration and carbon source were used in filled-and-drained vertical flow constructed wetlands (VFCWs). The results showed that the best removal of COD (74.16%), NH4+-N (93.56%), TN (86.88%), and NO3--N (79.65%) was achieved in VFCW1 (aerated with carbon source system). Illumina MiSeq300 high-throughput sequencing showed that carbon source aerated system increases the diversity and richness of the microbial community. The copy numbers of nitrification functional genes (nxrA, amoA), denitrification functional genes (nirS, nirK, nosZ), and anammox functional gene (anammox 16S rRNA) displayed various changes when applied different aeration modes and additional carbon source to each system. An increase of the DO concentration and carbon source facilitated the absolute abundance of microbial nitrification and denitrification functional genes, respectively. All in all, these results demonstrate that carbon source combined with intermittent aeration is valid to improve the pollutant treatment performance in these systems.
Collapse
Affiliation(s)
- Xiaoshuang Lai
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yuqiang Zhao
- Jinan Environmental Research Academy, Jinan, 250102, Shandong, China
| | - Fuxia Pan
- Jinan Environmental Research Academy, Jinan, 250102, Shandong, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
- Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong Province, University of Jinan, Jinan, 250022, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
- Key Laboratory of Water Resources and Environmental Engineering in Universities of Shandong Province, University of Jinan, Jinan, 250022, China.
| | - Shuzhi Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yingrui Yuan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
26
|
Gaballah MS, Abdelwahab O, Barakat KM, Aboagye D. A novel horizontal subsurface flow constructed wetland planted with Typha angustifolia for treatment of polluted water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28449-28462. [PMID: 32418087 DOI: 10.1007/s11356-020-08669-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Rapid population growth and urbanization has put a lot of stress on existing water bodies in most developing countries such as the Marriott Lake of Egypt. Three constructed wetland configurations including Typha angustifolia planted with enhanced atmospheric aeration by using perforated pipes networks (CWA), planted without perforated pipe network (CWR), and a control non-planted and without perforated pipes wetland (Control) were used in the study. Changes in physicochemical properties and microbial community over four seasons and hydraulic loading rate (HLR) (50, 100, 200, 300, and 400 L day-1 m-1) were monitored using influent from Marriott Lake in Egypt. Overall, the removal performance followed the sequence CWA>CWR>control. Turbidity removal of 98.4%; biochemical oxygen demand (BOD5) removal of 83.3%; chemical oxygen demand (COD) removal of 95.8%; NH3-N removal of 99.9%; total nitrogen (TN) removal of 94.7%; NO3--N and NO2--N increased; total P (TP) removal of 99.7%, Vibrio sp. of 100%, Escherichia coli 100%; total bacterial count of 92.3%; and anaerobic bacteria reduction of 97.5% were achieved by using CWA. Seasonal variation and variation in HLRs had significant effect on performance. The modified planted CWA system enhances the removal of pollutants and could present a novel route for reducing the cost associated with integrating artificial aeration into wetlands.
Collapse
Affiliation(s)
- Mohamed S Gaballah
- Environmental Division, National Institute of Oceanography and Fisheries, Alexandria, 21544, Egypt
| | - Ola Abdelwahab
- Environmental Division, National Institute of Oceanography and Fisheries, Alexandria, 21544, Egypt.
| | - Khouloud M Barakat
- Environmental Division, National Institute of Oceanography and Fisheries, Alexandria, 21544, Egypt
| | - Dominic Aboagye
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, People's Republic of China
- Department of Agricultural and Bio-systems Engineering, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
27
|
Operational Performances and Enzymatic Activities for Eutrophic Water Treatment by Vertical-Flow and Horizontal-Flow Constructed Wetlands. WATER 2020. [DOI: 10.3390/w12072007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, pilot-scale vertical-flow constructed wetland (VFCW) and horizontal-flow constructed wetland (HFCW) were constructed to treat eutrophic water, and dissolved oxygen (DO) distributions, decontamination performances and key enzymes activities were compared under different influent loads. The influent load increase caused reductions of DO levels and removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), NH4+−N and organic nitrogen, but it had no remarkable effect on the removal of NO3−−N and total phosphorus (TP). The interior DO concentrations of VFCW were higher than those of HFCW, indicating a vertical hydraulic flow pattern was more conducive to atmospheric reoxygenation. The VFCW and HFCW ecosystems possessed comparable removal capacities for TN, NO3−−N and TP. VFCW had a remarkable superiority for COD and organic nitrogen degradation, but its effluent NH4+−N concentration was higher, indicating the NH4+−N produced from organic nitrogen degradation was not effectively further removed in the VFCW system. The activities of protease, urease and phosphatase declined with the increasing depth of substrate layers, and they were positively correlated with DO concentrations. The enzymatic activities of VFCW were significantly higher than that of HFCW in the upper layers. Taken together, VFCW and HFCW presented a certain difference in operational properties due to the different hydraulic flow patterns.
Collapse
|
28
|
Liang Y, Wang Q, Huang L, Liu M, Wang N, Chen Y. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: Microbial community structure, functional genes and enzyme activity. BIORESOURCE TECHNOLOGY 2020; 307:123249. [PMID: 32244072 DOI: 10.1016/j.biortech.2020.123249] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
A set of constructed wetlands (CWs) under different biochar addition ratios (0%, 10%, 20%, and 30%) was established to analyze the pollutant removal performance enhancement and nitrous oxide (N2O) emission reduction from various angles, including microbial community structure, functional genes and enzyme activity. Results revealed that the average removal efficiencies of ammonium (NH4+-N) and total nitrogen (TN) were improved by 2.6%-5.2% and 2.5%-7.0%. Meanwhile, N2O emissions were reduced by 56.0%-67.5% after biochar addition. Increased nitrogen removal efficiency and decreased N2O emissions resulted from the increase of biochar addition ratio. Biochar addition changed the microbial community diversity and similarity. The relative abundance of functional microorganisms such as Nitrosomonas, Nitrospira, Thauera and Pseudomonas, increased due to biochar addition, which promoted the nitrogen cycle and N2O emission reduction. High gene copy number and enzyme activity involved in nitrification and denitrification process were obtained in biochar CWs, moderating N2O emission.
Collapse
Affiliation(s)
- Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| | - Maolin Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Ning Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| |
Collapse
|
29
|
Wang X, Zhu H, Yan B, Shutes B, Bañuelos G, Wen H. Bioaugmented constructed wetlands for denitrification of saline wastewater: A boost for both microorganisms and plants. ENVIRONMENT INTERNATIONAL 2020; 138:105628. [PMID: 32155514 DOI: 10.1016/j.envint.2020.105628] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
The inhibition of salt stress on plant and microbial functions has led to the reduction of nitrogen removal capacity of constructed wetlands (CWs) under saline conditions. The mechanisms and effectiveness of bioaugmented CW (Bio-CW) microcosms with a salt-tolerant microbial inoculum were evaluated for nitrogen removal at different salinity levels. The results showed that the denitrification capacity of CWs was improved under saline conditions by adding the salt-tolerant microbial inoculum. At an EC of 15 mS/cm, the removal percentages of ammonia nitrogen (NH4+-N) and total nitrogen (TN) in Bio-CW microcosms (95.7% and 99.4%) on Day 5 were significantly (p < 0.05) higher than that in unbioaugmented CW (un-Bio-CW) microcosms (68.5% and 76.4%), respectively. The high throughput sequencing data of substrate samples indicated that the microbial community in the CWs was changed by the addition of the salt-tolerant microbial inoculum and the frequency of bacteria with nitrogen removal function was increased in the CWs. Furthermore, both growth and the TN accumulation capacity of plants in Bio-CW microcosms were promoted compared with the un-Bio-CW microcosms. In conclusion, the addition of the salt-tolerant microbial inoculum can enhance the nitrogen removal efficiency of CWs under saline condition via boosting the function of both microorganisms and plants.
Collapse
Affiliation(s)
- Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT, UK
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Huiyang Wen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
| |
Collapse
|
30
|
Zuo X, Zhang H, Yu J. Microbial diversity for the improvement of nitrogen removal in stormwater bioretention cells with three aquatic plants. CHEMOSPHERE 2020; 244:125626. [PMID: 32050356 DOI: 10.1016/j.chemosphere.2019.125626] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 05/20/2023]
Abstract
The aquatic plants Iris pseudacorus L., Canna indica L. and Lythrum salicaria L. have been proved to be potential choices for nitrogen removal. However, little is known about microbial diversity for the improvement of nitrogen removal (nitrification and denitrification) in stormwater bioretention cells with the above plants. In this study, batch experiments were conducted to investigate nitrogen removal, substrate layer status, and bacterial community structure to understand microbial diversity and evaluate its effects on performances of nitrogen removal. Ammonia nitrogen removal in the bioretention cell with Lythrum salicaria L. was the highest (88.1%), which was consistent with oxidation reduction potential (ORP) in the bioretention cells. Whilst, removals for both total nitrogen and nitrate were the highest in the bioretention cell with Canna indica L., which was in line with urease activity in the mentioned cells. The used plants had different impact on top 11 dominant microflora at phylum level in the used bioretention cells. Ramlibacter and Nitrosomonadaceaea were both responsible for the difference of nitrogen removal in the bioretention cells with three aquatic plants, suggesting the enhancement of the above dominant microflora could strengthen nitrogen removal in the used bioretention cells.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China.
| | - HongSheng Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| | - Jianghua Yu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| |
Collapse
|
31
|
The Improvement of Pollutant Removal in the Ferric-Carbon Micro-Electrolysis Constructed Wetland by Partial Aeration. WATER 2020. [DOI: 10.3390/w12020389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Subsurface flow constructed wetland (SSFCW) has been applied for wastewater treatment for several decades. In recent years, the combination of ferric-carbon micro-electrolysis (Fe/C-M/E) and SSFCW was proven to be an effective method of multifarious sewage treatment. However, Ferric substrate created a relatively reductive condition, decreased the oxidation efficiency of NH4+-N, and blocked the following denitrification process, which led to the low removal efficiencies of NH4+-N and total nitrogen (TN). In this study, partial aeration was introduced into the ferric-carbon micro-electrolysis SSFCW (Fe/C-M/E CW) system to solve the problem above. The water quality and nitrogen-related functional genes of bacteria on the surface of substrate were measured for mechanism exploration. The results showed that, the removal efficiencies of NH4+-N and total phosphorus (TP) in an aerated Fe/C-M/E CW system were 96.97% ± 6.06% and 84.62% ± 8.47%, much higher than 43.33% ± 11.27% and 60.16% ± 2.95% in the unaerated Fe/C-M/E CW systems. However, the TN removal in Fe/C-M/E CW system was not enhanced by aeration, which could be optimized by extending more anoxic section for denitrification.
Collapse
|
32
|
Deng C, Huang L, Liang Y, Xiang H, Jiang J, Wang Q, Hou J, Chen Y. Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands: Microbial community structure and metabolite characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133687. [PMID: 31382172 DOI: 10.1016/j.scitotenv.2019.133687] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Four subsurface flow constructed wetlands (SFCWs) were constructed on the basis of the volume ratio of biochar in common gravel (0%, 10%, 20%, and 30%) for the evaluation of microbe and metabolite characteristics response to biochar addition. The results showed that the biochar added SFCWs provided higher removal efficiencies for ammonium (49.69%-63.51%) and total nitrogen (81.83%-86.36%), compared with pure gravel packed SFCWs for ammonium (47.40%) and total nitrogen (80.75%), respectively. Illumina MiSeq sequencing results revealed that the dominant phyla were Proteobacteria, Bacteroidetes, and Firmicutes. Biochar addition can improve the removal of nitrogen by altering microbial community and increasing the relative abundance of Thauera, Candidatus Competibacter, Dechloromonas, Desulfobulbus, Chlorobium, and Thiobacillus. Protein and humic substances were the primary components of extracellular polymeric substance (EPS) in SFCWs. The amount of total EPS considerably decreased with biochar addition, which caused a shift in the EPS functional groups including carbonyl of protein, amide, and hydroxyl groups. Moreover, biochar could enhance the high molecular weight compounds metabolized into low molecular compounds. The results can provide new insights into the use of biochar in the enhancement of nitrogen removal by microbial community and metabolic product characteristics.
Collapse
Affiliation(s)
- Chaoren Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Hongyu Xiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Jie Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China
| | - Jie Hou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| |
Collapse
|
33
|
Zhuang LL, Yang T, Zhang J, Li X. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. BIORESOURCE TECHNOLOGY 2019; 293:122086. [PMID: 31495460 DOI: 10.1016/j.biortech.2019.122086] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/10/2023]
Abstract
Constructed wetland (CW) for wastewater treatment has attracted increasing attention. In this review, the system configuration optimization, purification effect and general mechanisms of nitrogen removal in CW are systematically summarized and discussed. Ammonia oxidation is a crucial and primary process for total nitrogen (TN) removal in domestic or livestock wastewater treatment. Aeration, waterdrop influent and tidal operation are three main methods to strengthen the oxygen supplement and nitrification process in CW. Aeration significantly increases the ammonia removal rate (almost 100%), followed by the removal of chemical oxygen demand (COD) and TN. Solid carbon source, iron and anode material can be filled as electron donor for the denitrification process. The co-adjustment of oxygen and carbon/electron donor can form different conditions for different nitrogen removal pathways (e.g. the simultaneous nitrification-denitrification, the partial nitrification-denitrification and the anammox process), and achieve the optimal removal of nitrogen.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| | - Xiangzheng Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|