1
|
Ali Abaker Omer A, Zhang CH, Liu J, Shan ZG. Comprehensive review of mapping climate change impacts on tea cultivation: bibliometric and content analysis of trends, influences, adaptation strategies, and future directions. FRONTIERS IN PLANT SCIENCE 2025; 15:1542793. [PMID: 39925372 PMCID: PMC11802803 DOI: 10.3389/fpls.2024.1542793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025]
Abstract
Climate change has a profound impact on tea cultivation, posing significant challenges to yield, quality, and sustainability due to stressors such as drought, temperature fluctuations, and elevated CO₂ levels. This study aims to address these challenges by identifying and synthesizing key themes, influential contributions, and effective adaptation strategies for mitigating the impacts of climate change on tea production. A systematic bibliometric and content analysis was conducted on 328 peer-reviewed documents (2004-2023), following the PRISMA methodology. Performance analysis using Bibliometrix examined trends in publication output, leading contributors, and geographical distribution, while science mapping with VOSviewer revealed collaboration networks and thematic clusters. A detailed review of highly cited studies highlighted the primary climate variables affecting tea cultivation and identified innovative adaptation strategies, as well as critical knowledge gaps. The results show significant progress in understanding the physiological, biochemical, and molecular responses of tea plants to climate-induced stressors, including antioxidant mechanisms, secondary metabolite regulation, and genomic adaptations. Despite these advancements, challenges remain, particularly regarding the combined effects of multiple stressors, long-term adaptation strategies, and the socioeconomic implications of climate change. The findings underscore the need for interdisciplinary approaches that integrate molecular, ecological, and socioeconomic research to address these issues. This study provides a solid foundation for guiding future research, fostering innovative adaptation strategies, and informing policy interventions to ensure sustainable tea production in a changing climate.
Collapse
Affiliation(s)
- Altyeb Ali Abaker Omer
- School of Tea and Coffee, Puer University, Puer, China
- Yunnan International Union Laboratory for Digital Protection and Germplasm Innovation Application of Tea Resource in China and Laos, Puer University, Puer, China
| | - Chun-Hua Zhang
- School of Tea and Coffee, Puer University, Puer, China
- Yunnan International Union Laboratory for Digital Protection and Germplasm Innovation Application of Tea Resource in China and Laos, Puer University, Puer, China
| | - Jie Liu
- School of Tea and Coffee, Puer University, Puer, China
- Yunnan International Union Laboratory for Digital Protection and Germplasm Innovation Application of Tea Resource in China and Laos, Puer University, Puer, China
| | - Zhi-guo Shan
- School of Tea and Coffee, Puer University, Puer, China
- Yunnan International Union Laboratory for Digital Protection and Germplasm Innovation Application of Tea Resource in China and Laos, Puer University, Puer, China
| |
Collapse
|
2
|
Wu T, Li J, Cao R, Chen X, Wang B, Huang T, Wen G. Nitrate removal by a novel aerobic denitrifying Pelomonas puraquae WJ1 in oligotrophic condition: Performance and carbon source metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176614. [PMID: 39357767 DOI: 10.1016/j.scitotenv.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Reducing nitrate contamination in drinking water has become a critical issue in urban water resource management. Here a novel oligotrophic aerobic denitrifying bacterium, Pelomonas puraquae WJ1, was isolated and purified from artificial lake sediments. For the first time, excellent aerobic denitrification capabilities were demonstrated. At a carbon-to‑nitrogen ratio of 5.0, strain WJ1 achieved 100.0 % nitrate removal and 84.92 % total nitrogen removal within 24 h, with no nitrite accumulation. PCR amplification and sequencing confirmed the presence of the denitrification genes napA, nirS, and nosZ in the strain. The nitrogen balance demonstrated that approximately 74.95 % of the initial nitrogen was eliminated as gaseous products under aerobic conditions. Furthermore, carbon balance analysis showed that most electron donors from strain WJ1 were directed towards oxygen, with limited availability for nitrate reduction. A combination of bio-ECO analysis and network modeling indicated that strain WJ1 has robust metabolic capabilities for diverse carbon sources and exhibits high adaptability to complex carbon environments. Overall, Pelomonas puraquae WJ1 removed approximately 45.89 % of the nitrates in raw water, demonstrating significant potential for practical applications in oligotrophic denitrification.
Collapse
Affiliation(s)
- Tianhua Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxin Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaojie Chen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
3
|
Niu G, He C, Mao S, Chen Z, Ma Y, Zhu Y. Enhanced Soil Fertility and Carbon Sequestration in Urban Green Spaces through the Application of Fe-Modified Biochar Combined with Plant Growth-Promoting Bacteria. BIOLOGY 2024; 13:611. [PMID: 39194549 DOI: 10.3390/biology13080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
The soil of urban green spaces is severely degraded due to human activities during urbanization, and it is crucial to investigate effective measures that can restore the ecological functions of the soil. This study investigated the effects of plant growth promoting bacteria (Bacillus clausii) and Fe-modified biochar on soil fertility increases and mechanisms of carbon sequestration. Additionally, the effects on C-cycling-related enzyme activity and the bacterial community were also explored. Six treatments included no biochar or Bacillus clausii suspension added (CK), only Bacillus clausii suspension (BC), only biochar (B), only Fe-modified biochar (FeB), biochar combined with Bacillus clausii (BBC), and Fe-modified biochar combined with Bacillus clausii (FeBBC). Compared with other treatments, the FeBBC treatment significantly decreased soil pH, alleviated soil alkalization, and increased the alkali-hydro nitrogen content in the soil. Compared to the individual application of FeB and BC, the FeBBC treatment significantly improved aggregates' stability and positively improved soil fertility and ecological function. Additionally, compared to the individual application of FeB and BC, the soil organic carbon (SOC), particulate organic carbon (POC), and soil inorganic carbon (SIC) contents for the FeBBC-treated soil increased by 28.46~113.52%, 66.99~434.72%, and 7.34~10.04%, respectively. In the FeBBC treatment, FeB can improve soil physicochemical properties and provide bacterial attachment sites, increase the abundance and diversity of bacterial communities, and promote the uniform distribution of carbon-related bacteria in the soil. Compared to a single ecological restoration method, FeBBC treatment can improve soil fertility and carbon sequestration, providing important reference values for urban green space soil ecological restoration.
Collapse
Affiliation(s)
- Guoyao Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shaohua Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zongze Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yangyang Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Zhu
- Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
| |
Collapse
|
4
|
Zhou T, Wu S, Gao M, Yang L. The Heterogeneous Habitat of Taiga Forests Changes the Soil Microbial Functional Diversity. Microorganisms 2024; 12:959. [PMID: 38792788 PMCID: PMC11124070 DOI: 10.3390/microorganisms12050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The soil contains abundant and diverse microorganisms, which interrelate closely with the aboveground vegetation and impact the structure and function of the forest ecosystem. To explore the effect of vegetation diversity on soil microbial functional diversity in taiga forests, we selected significantly different important values of Larix gmelinii as experimental grouping treatments based on plant investigation from fixed plots in Da Xing'anling Mountains. Following that, we collected soil samples and applied the Biolog-ECO microplate method to investigate differences in carbon source utilization, features of functional diversity in soil microorganisms, and factors influencing them in taiga forests. The AWCD decreased as the important value of Larix gmelinii grew, and soil microorganisms preferred carboxylic acids, amino acids, and carbohydrates over polymers, phenolic acids, and amines. The Shannon and McIntosh indexes decreased significantly with the increase of the important value of Larix gmelinii (p < 0.05) and were positively correlated with soil SOC, MBC, C/N, and pH, but negatively with TN, AP, and AN. Redundancy analysis revealed significant effects on soil microbial functional diversity from soil C/N, SOC, AP, MBC, TN, pH, AN, and WC. To sum up, heterogeneous habitats of taiga forests with different important values altered soil microbial functional diversity.
Collapse
Affiliation(s)
- Tian Zhou
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China;
| | - Song Wu
- Science and Technology Innovation Center, Institute of Scientific and Technical Information of Heilongjiang Province, Harbin 150028, China;
| | - Mingliang Gao
- Heilongjiang Huzhong National Nature Reserve, Huzhong 165038, China;
| | - Libin Yang
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China;
- Heilongjiang Huzhong National Nature Reserve, Huzhong 165038, China;
| |
Collapse
|
5
|
Jibola-Shittu MY, Heng Z, Keyhani NO, Dang Y, Chen R, Liu S, Lin Y, Lai P, Chen J, Yang C, Zhang W, Lv H, Wu Z, Huang S, Cao P, Tian L, Qiu Z, Zhang X, Guan X, Qiu J. Understanding and exploring the diversity of soil microorganisms in tea ( Camellia sinensis) gardens: toward sustainable tea production. Front Microbiol 2024; 15:1379879. [PMID: 38680916 PMCID: PMC11046421 DOI: 10.3389/fmicb.2024.1379879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Leaves of Camellia sinensis plants are used to produce tea, one of the most consumed beverages worldwide, containing a wide variety of bioactive compounds that help to promote human health. Tea cultivation is economically important, and its sustainable production can have significant consequences in providing agricultural opportunities and lowering extreme poverty. Soil parameters are well known to affect the quality of the resultant leaves and consequently, the understanding of the diversity and functions of soil microorganisms in tea gardens will provide insight to harnessing soil microbial communities to improve tea yield and quality. Current analyses indicate that tea garden soils possess a rich composition of diverse microorganisms (bacteria and fungi) of which the bacterial Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Chloroflexi and fungal Ascomycota, Basidiomycota, Glomeromycota are the prominent groups. When optimized, these microbes' function in keeping garden soil ecosystems balanced by acting on nutrient cycling processes, biofertilizers, biocontrol of pests and pathogens, and bioremediation of persistent organic chemicals. Here, we summarize research on the activities of (tea garden) soil microorganisms as biofertilizers, biological control agents and as bioremediators to improve soil health and consequently, tea yield and quality, focusing mainly on bacterial and fungal members. Recent advances in molecular techniques that characterize the diverse microorganisms in tea gardens are examined. In terms of viruses there is a paucity of information regarding any beneficial functions of soil viruses in tea gardens, although in some instances insect pathogenic viruses have been used to control tea pests. The potential of soil microorganisms is reported here, as well as recent techniques used to study microbial diversity and their genetic manipulation, aimed at improving the yield and quality of tea plants for sustainable production.
Collapse
Affiliation(s)
- Motunrayo Y. Jibola-Shittu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiang Heng
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, United States
| | - Yuxiao Dang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiya Chen
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Liu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongsheng Lin
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengyu Lai
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhui Chen
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenjie Yang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weibin Zhang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huajun Lv
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziyi Wu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuaishuai Huang
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Pengxi Cao
- School of Ecology and Environment, Tibet University, Lhasa, China
| | - Lin Tian
- Tibet Plateau Institute of Biology, Lhasa, China
| | - Zhenxing Qiu
- Fuzhou Technology and Business University, Fuzhou, Fujian, China
| | - Xiaoyan Zhang
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junzhi Qiu
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Zhuang Q, Zhang Y, Liu Q, Sun Y, Sharma S, Tang S, Dhankher OP, Yuan H. Effects of sulfur nanoparticles on rhizosphere microbial community changes in oilseed rape plantation soil under mercury stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1545-1555. [PMID: 38597454 DOI: 10.1080/15226514.2024.2335207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In the present study, experiments were conducted to assess the influence of nanoscale sulfur in the microbial community structure of metallophytes in Hg-contaminated rhizosphere soil for planting rapeseed. The results showed that the richness and diversity of the rhizobacteria community decreased significantly under Hg stress, but increased slightly after SNPs addition, with a reduction in the loss of Hg-sensitive microorganisms. Moreover, all changes in the relative abundances of the top ten phyla influenced by Hg treatment were reverted when subjected to Hg + SNPs treatment, except for Myxococcota and Bacteroidota. Similarly, the top five genera, whose relative abundance decreased the most under Hg alone compared to CK, increased by 19.05%-54.66% under Hg + SNPs treatment compared with Hg alone. Furthermore, the relative abundance of Sphingomonas, as one of the dominant genera for both CK and Hg + SNPs treatment, was actively correlated with plant growth. Rhizobacteria, like Pedobacter and Massilia, were significantly decreased under Hg + SNPs and were positively linked to Hg accumulation in plants. This study suggested that SNPs could create a healthier soil microecological environment by reversing the effect of Hg on the relative abundance of microorganisms, thereby assisting microorganisms to remediate heavy metal-contaminated soil and reduce the stress of heavy metals on plants.
Collapse
Affiliation(s)
- Qiurong Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Yuming Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of MA Amherst, Amherst, MA, USA
| | - Shijie Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of MA Amherst, Amherst, MA, USA
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| |
Collapse
|
7
|
Zhang K, Chen S, Ping Y, Song F, Fan X, Wang L, Zang C. Coinoculation of arbuscular mycorrhizal fungi and rhizobia stimulates atrazine dissipation by changing the atrazine-degrading bacterial community at the soil aggregate scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123507. [PMID: 38325508 DOI: 10.1016/j.envpol.2024.123507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
As a potential low-cost and environmentally friendly strategy, bioremediation of herbicide polluted soil has attracted increasing attention. However, there is a lack of knowledge regarding the response of the atrazine-degrading bacterial community to coinoculation of arbuscular mycorrhizal (AM) fungi and rhizobia for atrazine dissipation. In this study, a pot experiment was conducted with AM fungi Glomus mosseae (AM), rhizobia Rhizobium trifolii TA-1 (R) and their coinoculation (AMR) with atrazine. In each treatment, the atrazine-degrading bacterial community of four soil size aggregates, namely large macroaggregates (LMa), small macroaggregates (SMa), microaggregates (Mia) and primary particles (P) were investigated. The results showed that the atrazine residue concentration was lowest in AMR, and that in LMa was also significantly lower than that in the other smaller aggregate sizes. Overall, inoculation, the aggregate fraction and their interaction had significant effects on soil TN, SOC, AP and pH. For the atrazine-degrading bacterial community, the Chao1 index increased with decreasing particle size, but the Shannon index decreased. Moreover, the abundances of the dominant atrazine-degrading bacterial genera Arthrobacter, Bacillus, Marmoricola and Nocardioides in the Mia and P particle size groups were greater than those in the LMa and SMa groups in each treatment. The bacterial communities in the Mia and P particle sizes in each treatment group were more complex. Therefore, coinoculation of AM fungi and rhizobia stimulated atrazine dissipation by changing the atrazine-degrading bacterial community, and the response of the atrazine-degrading bacterial community to each aggregate size varied depending on its distinct soil physicochemical properties.
Collapse
Affiliation(s)
- Kai Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Sisi Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Lidong Wang
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, Hebei, 066102, China
| | - Chen Zang
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, Hebei, 066102, China
| |
Collapse
|
8
|
Zhang H, Zhang K, Duan Y, Sun X, Lin L, An Q, Altaf MM, Zhu Z, Liu F, Jiao Y, Yin J, Xie C, Wang B, Feng H, Zhang X, Li D. Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indica. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133266. [PMID: 38118201 DOI: 10.1016/j.jhazmat.2023.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
The negative impacts of soil heavy metals composite pollution on agricultural production and human health are becoming increasingly prevalent. The applications of green chelating agents and microorganisms have emerged as promising alternate methods for enhancing phytoremediation. The regulatory effects of root secretion composition, microbial carbon source utilization, key gene expression, and soil microbial community structure were comprehensively analyzed through a combination of HPLC, Biolog EcoPlates, qPCR, and high-throughput screening techniques. The application of EDDS resulted in a favorable rhizosphere ecological environment for the king grass Piriformospora indica, characterized by a decrease in soil pH by 0.41 units, stimulation of succinic acid and fumaric acid secretion, and an increase in carbon source metabolic activity of amino acids and carbohydrates. Consequently, this improvement enhanced the bioavailability of Cd/Cr and increased the biomass of king grass by 25.7%. The expression of dissimilatory iron-reducing bacteria was significantly upregulated by 99.2%, while there was no significant difference in Clostridium abundance. Furthermore, the richness of the soil rhizosphere fungal community (Ascomycota: 45.8%, Rozellomycota: 16.7%) significantly increased to regulate the proportion of tolerant microbial dominant groups, promoting the improvement of Cd/Cr removal efficiency (Cd: 23.4%, Cr: 18.7%). These findings provide a theoretical basis for the sustainable development of chelating agent-assisted plants-microorganisms combined remediation of heavy metals in soil.
Collapse
Affiliation(s)
- Haixiang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yali Duan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi) / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning 530007, China
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Fan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangqiu Jiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jing Yin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Can Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Baijie Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huiping Feng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Environmental Toxicology of Haikou / Center for Eco-Environmental Restoration aboratory of Marine Resource Utilization in South China Sea / Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
9
|
Su Y, Wang J, Gao W, Wang R, Yang W, Zhang H, Huang L, Guo L. Dynamic metabolites: A bridge between plants and microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165612. [PMID: 37478935 DOI: 10.1016/j.scitotenv.2023.165612] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Plant metabolites have a great influence on soil microbiomes. Although few studies provided insights into plant-microbe interactions, we still know very little about how plants recruit their microbiome. Here, we discuss the dynamic progress that typical metabolites shape microbes by a variety of factors, such as physiographic factors, cultivar factors, phylogeny factors, and environmental stress. Several kinds of metabolites have been reviewed, including plant primary metabolites (PPMs), phytohormones, and plant secondary metabolites (PSMs). The microbes assembled by plant metabolites in return exert beneficial effects on plants, which have been widely applied in agriculture. What's more, we point out existing problems and future research directions, such as unclear mechanisms, few species, simple parts, and ignorance of absolute abundance. This review may inspire readers to study plant-metabolite-microbe interactions in the future.
Collapse
Affiliation(s)
- Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
10
|
Yang S, Huang T, Zhang H, Guo H, Xu J, Cheng Y. Pollutants reduction via artificial mixing in a drinking water reservoir: Insights into bacterial metabolic activity, biodiversity, interactions and co-existence of core genera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165473. [PMID: 37454840 DOI: 10.1016/j.scitotenv.2023.165473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Endogenous pollution due to long periods of hypolimnetic anoxia in stratified reservoirs has become a worldwide concern, which can threaten metabolic activity, biodiversity, water quality security, and ultimately human health. In the present study, an artificial mixing system applied in a drinking water reservoir was developed to reduce pollutants, and the biological mechanism involved was explored. After approximately 44 days of system operation, the reservoir content was completely mixed resulting in the disappearance of anoxic layers. Furthermore, the metabolic activity estimated by the Biolog-ECO microplate technique and biodiversity was enhanced. 16S rRNA gene sequencing indicated a great variability on the composition of bacterial communities. Co-occurrence network analysis showed that interactions among bacteria were significantly affected by the proposed mixing system. Bacteria exhibited a more mutualistic state and >10 keystone genera were identified. Pollutants, including nitrogen, phosphorus, organic matter, iron, and manganese decreased by 30.63-80.15 %. Redundancy discriminant analysis revealed that environmental factors, especially the temperature and dissolved oxygen, were crucial drivers of the bacterial community structure. Furthermore, Spearman's correlation analysis between predominant genera and pollutants suggested that core genus played a vital role in pollutant reduction. Overall, our findings highlight the importance and provide insights on the artificial mixing systems' microbial mechanisms of reducing pollutants in drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
11
|
Tu J, Zhao X, Yang Y, Yi Y, Wang H, Wei B, Zeng L. Two Bacillus spp. Strains Improve the Structure and Diversity of the Rhizosphere Soil Microbial Community of Lilium brownii var. viridulum. Microorganisms 2023; 11:1229. [PMID: 37317201 DOI: 10.3390/microorganisms11051229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 06/16/2023] Open
Abstract
Lily Fusarium wilt disease caused by Fusarium spp. spreads rapidly and is highly destructive, leading to a severe reduction in yield. In this study, lily (Lilium brownii var. viridulum) bulbs were irrigated after planting with suspensions of two Bacillus strains that effectively control lily Fusarium wilt disease to assess their effects on the rhizosphere soil properties and microbial community. A high-throughput sequencing of microorganisms in the rhizosphere soil was performed and the soil physicochemical properties were measured. The FunGuild and Tax4Fun tools were used for a functional profile prediction. The results showed that Bacillus amyloliquefaciens BF1 and B. subtilis Y37 controlled lily Fusarium wilt disease with control efficacies of 58.74% and 68.93%, respectively, and effectively colonized the rhizosphere soil. BF1 and Y37 increased the bacterial diversity and richness of the rhizosphere soil and improved the physicochemical properties of the soil, thereby favoring the proliferation of beneficial microbes. The relative abundance of beneficial bacteria was increased and that of pathogenic bacteria was decreased. Bacillus abundance in the rhizosphere was positively correlated with most soil physicochemical properties, whereas Fusarium abundance was negatively correlated with most physicochemical properties. Functional prediction revealed that irrigation with BF1 and Y37 significantly upregulated glycolysis/gluconeogenesis among metabolism and absorption pathways. This study provides insights into the mechanism by which two Bacillus strains with antifungal activity, BF1 and Y37, antagonize plant pathogenic fungi and lays the foundation for their effective application as biocontrol agents.
Collapse
Affiliation(s)
- Jing Tu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Xin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yuanru Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yongjian Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Hongying Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Baoyang Wei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
12
|
Zhang W, Wang J, Zhu L, Wang J, Mao S, Yan X, Wen S, Wang L, Dong Z, Kim YM. New insights into the effects of antibiotics and copper on microbial community diversity and carbon source utilization. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01491-1. [PMID: 36939996 DOI: 10.1007/s10653-023-01491-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Residual antibiotics (ABs) and heavy metals (HMs) are continuously released from soil, reflecting their intensive use and contamination of water and soil, posing an environmental problem of great concern. Relatively few studies exist of the functional diversity of soil microorganisms under the combined action of ABs and HMs. To address this deficiency, BIOLOG ECO microplates and the Integrated Biological Responses version 2 (IBRv2) method were used to comprehensively explore the effects of single and combined actions of copper (Cu) and enrofloxacin (ENR), oxytetracycline (OTC), and sulfadimidine (SM2) on the soil microbial community. The results showed that the high concentration (0.80 mmol/kg) compound group had a significant effect on average well color development (AWCD) and OTC showed a dose-response relationship. The results of IBRv2 analysis showed that the single treatment group of ENR or SM2 had a significant effect on soil microbial communities, and the IBRv2 of E1 was 5.432. Microbes under ENR, SM2, and Cu stress had more types of available carbon sources, and all treatment groups were significantly more enriched with microorganisms having D-mannitol and L-asparagine as carbon sources. This study confirms that the combined effects of ABs and HMs can inhibit or promote the function of soil microbial communities. In addition, this paper will provide new insights into IBRv2 as an effective method to evaluate the impacts of contaminants on soil health.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shushuai Mao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Xiaojing Yan
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shengfang Wen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Lanjun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Zikun Dong
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-Gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
13
|
Nwachukwu BC, Ayangbenro AS, Babalola OO. Structural diversity of bacterial communities in two divergent sunflower rhizosphere soils. ANN MICROBIOL 2023. [DOI: 10.1186/s13213-023-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Abstract
Purpose
Farming practices on farmlands aim to improve nutrients in the fields or crops, soil quality and functions, as well as boost and sustain crop yield; however, the effect of loss of ecological diversity and degradation have impacted ecosystem functions. The beneficial rhizosphere-microorganism network and crop rotation may enhance a stable ecosystem. The use of next-generation sequencing technique will help characterize the entire bacterial species in the sunflower rhizosphere compared with the nearby bulk soils. We investigated the potential of the bacterial community structure of sunflower rhizosphere and bulk soils cultivated under different agricultural practices at two geographical locations in the North West Province of South Africa.
Methods
DNA was extracted from rhizosphere and bulk soils associated with sunflower plants from the crop rotation (rhizosphere soils from Lichtenburg (LTR) and bulk soils from Lichtenburg (LTB) and mono-cropping (rhizosphere soils from Krayburg (KRPR) and bulk soils from Krayburg (KRPB) sites, and sequenced employing 16S amplicon sequencing. Bioinformatics tools were used to analyse the sequenced dataset.
Results
Proteobacteria and Planctomycetes dominated the rhizosphere, while Firmicutes and Actinobacteria were predominant in bulk soils. Significant differences in bacterial structure at phyla and family levels and predicted functional categories between soils (P < 0.05) across the sites were revealed. The effect of physicochemical parameters was observed to influence bacterial dispersal across the sites.
Conclusion
This study provides information on the predominant bacterial community structure in sunflower soils and their predictive functional attributes at the growing stage, which suggests their future study for imminent crop production and management for enhanced agricultural yields.
Collapse
|
14
|
Du L, Zheng Z, Li T, Wang Y, Huang H, Yu H, Ye D, Liu T, Zhang X. Aggregate-associated carbon compositions explain the variation of carbon sequestration in soils after long-term planting of different tea varieties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159227. [PMID: 36206909 DOI: 10.1016/j.scitotenv.2022.159227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Strategies to increase carbon (C) sequestration in tea plantation soils are pertinent to mitigating global climate change, but little is known about the variation in C sequestration in soils planted with different tea varieties. In the current study, we collected 0-20 and 20-40 cm layer soil samples from a tea plantation planted with four tea varieties (Chuancha No.3 (CC3), Chuanmu No. 217 (CM217), Chuannong Huangyazao (CN), and C. sinensis 'Fuding Dabaicha' (FD)). Soil organic carbon (SOC) stock and composition in the bulk soil and aggregate fractions, as well as the SOC stability index (SI), were investigated. Both SOC stock and composition in the bulk soil or aggregate fractions were variable among the soils after planting different tea varieties. Overall, the highest SOC stock (0-40 cm) was observed in FD soil, followed by CN, CC3, and CM217 soil. This difference was dominated by the SOC stock associated with macroaggregates, and the highest macroaggregate-associated SOC stock was detected in FD soil in both soil layers. Moreover, FD soil showed the highest proportion of macroaggregates in both soil layers, accumulated the greatest recalcitrant organic carbon (ROC) and further contributed to the highest SI values of SOC associated with most aggregate fractions. In contrast, CN topsoil (0-20 cm) accumulated the greatest labile organic carbon (LOC) in most aggregate fractions, which had a positive correlation with the amount of C return by pruning litter. Ultimately, long-term planting of FD promoted macroaggregate formation, and ROC accumulation in aggregates greatly contributed to maintaining high C sequestration in the tea plantation soils and showed a high potential for future C budgets; in contrast, the tea plantation soil planted with CN could be a potential C source because of high C return.
Collapse
Affiliation(s)
- Lei Du
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Tao Liu
- Information and Educational Technology Center, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
15
|
Liu Z, Xiao J, Zhang X, Dou S, Gao T, Wang D, Zhang D. Influence of Bacillus subtilis strain Z-14 on microbial communities of wheat rhizospheric soil infested with Gaeumannomyces graminis var. tritici. Front Microbiol 2022; 13:923242. [PMID: 36118228 PMCID: PMC9479631 DOI: 10.3389/fmicb.2022.923242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Wheat take-all disease caused by Gaeumannomyces graminis var. tritici (Ggt) spreads rapidly and is highly destructive, causing severe reductions in wheat yield. Bacillus subtilis strain Z-14 that significantly controlled wheat take-all disease effectively colonized the roots of wheat seedlings. Z-14 increased the metabolic activity and carbon source utilization of rhizospheric microorganisms, thus elevating average well-color development (AWCD) values and functional diversity indexes of soil microbial communities. Z-14 increased the abundance of Bacillus in the rhizosphere, which was positively correlated with AWCD and functional diversity indexes. The Z-14-treated samples acquired more linkages and relative connections between bacterial communities according to co-occurrence network analyses. After the application of Ggt, the number of linkages between fungal communities increased but later decreased, whereas Z-14 increased such interactions. Whole-genome sequencing uncovered 113 functional genes related to Z-14’s colonization ability and 10 secondary metabolite gene clusters in the strain, of which nine substances have antimicrobial activity. This study clarifies how bacterial agents like Z-14 act against phytopathogenic fungi and lays a foundation for the effective application of biocontrol agents.
Collapse
Affiliation(s)
- Zhaosha Liu
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Jiawen Xiao
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Xuechao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Shijuan Dou
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Tongguo Gao
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Dongmei Wang
- College of Life Science, Hebei Agricultural University, Baoding, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Dongdong Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
- *Correspondence: Dongdong Zhang,
| |
Collapse
|
16
|
Zhang Y, Wu C, Deng S, Zhang J, Hou J, Wang C, Fu Z. Effect of different washing solutions on soil enzyme activity and microbial community in agricultural soil severely contaminated with cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54641-54651. [PMID: 35306650 DOI: 10.1007/s11356-022-19734-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Soil enzyme activities and microbial communities have a good response to the remediation effect of heavy metal-contaminated soils. To evaluate the effect of three commonly used washing agents, ferric chloride (FC), ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-tetra-methylenephosphonic acid (EDTMP) on soil enzyme activities and microbial community in cadmium (Cd)-contaminated agricultural soil were collected from farmland near a non-ferrous metal smelter. The soil enzyme activities, microbial community, chemical forms of Cd and some physicochemical properties of the soil washed with different washing solutions were determined. The results showed that the three washing solutions had moderate removal efficiencies for Cd in the tested soil and the breakdown product of EDTMP has a certain stabilizing effect on Cd. The geometric mean and the integrated total enzyme activity index showed that soil washing with FC and EDTA was more beneficial to the restoration of biochemical functions than that with EDTMP. After soil washing, the Chao1 index of bacteria increased, and the microbial community structure changed. Pearson correlation analysis and redundancy analysis (RDA) indicated that the three washing solutions affected soil enzyme activities and microbial community by altering soil nutrient, total Cd concentration and Cd fractions in soils.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Agricultural Resources and Environment, Nanjing University of Information Science and Technology, 219# Ningliu Rd, Nanjing, 210044, People's Republic of China
| | - Chunfa Wu
- Department of Agricultural Resources and Environment, Nanjing University of Information Science and Technology, 219# Ningliu Rd, Nanjing, 210044, People's Republic of China.
| | - Shaopo Deng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 219# Ningliu Rd, 210044, Nanjing, People's Republic of China.
| | - Jinlu Zhang
- Department of Agricultural Resources and Environment, Nanjing University of Information Science and Technology, 219# Ningliu Rd, Nanjing, 210044, People's Republic of China
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Chong Wang
- Department of Agricultural Resources and Environment, Nanjing University of Information Science and Technology, 219# Ningliu Rd, Nanjing, 210044, People's Republic of China
| | - Zhaocong Fu
- Department of Agricultural Resources and Environment, Nanjing University of Information Science and Technology, 219# Ningliu Rd, Nanjing, 210044, People's Republic of China
| |
Collapse
|
17
|
Zou Y, Shen F, Zhong Y, Lv C, Pokharel SS, Fang W, Chen F. Impacts of Intercropped Maize Ecological Shading on Tea Foliar and Functional Components, Insect Pest Diversity and Soil Microbes. PLANTS 2022; 11:plants11141883. [PMID: 35890516 PMCID: PMC9319426 DOI: 10.3390/plants11141883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Ecological shading fueled by maize intercropping in tea plantations can improve tea quality and flavor, and efficiently control the population occurrence of main insect pests. In this study, tea plants were intercropped with maize in two planting directions from east to west (i.e., south shading (SS)) and from north to south (i.e., east shading (ES) and west shading (WS)) to form ecological shading, and the effects on tea quality, and the population occurrence and community diversity of insect pests and soil microbes were studied. When compared with the non-shading control, the tea foliar nutrition contents of free fatty acids have been significantly affected by the ecological shading. SS, ES, and WS all significantly increased the foliar content of theanine and caffeine and the catechin quality index in the leaves of tea plants, simultaneously significantly reducing the foliar content of total polyphenols and the phenol/ammonia ratio. Moreover, ES and WS both significantly reduced the population occurrences of Empoasca onukii and Trialeurodes vaporariorum. Ecological shading significantly affected the composition of soil microbial communities in tea plantations, in which WS significantly reduced the diversity of soil microorganisms.
Collapse
Affiliation(s)
- Yan Zou
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (F.S.); (Y.Z.); (C.L.); (S.S.P.)
| | - Fangyuan Shen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (F.S.); (Y.Z.); (C.L.); (S.S.P.)
| | - Yanni Zhong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (F.S.); (Y.Z.); (C.L.); (S.S.P.)
| | - Changning Lv
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (F.S.); (Y.Z.); (C.L.); (S.S.P.)
| | - Sabin Saurav Pokharel
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (F.S.); (Y.Z.); (C.L.); (S.S.P.)
| | - Wanping Fang
- Department of Tea Science, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (W.F.); (F.C.)
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (F.S.); (Y.Z.); (C.L.); (S.S.P.)
- Correspondence: (W.F.); (F.C.)
| |
Collapse
|
18
|
Gui H, Fan L, Wang D, Yan P, Li X, Pang Y, Zhang L, Zamanian K, Shi L, Xu J, Han W. Variations in Soil Nutrient Dynamics and Bacterial Communities After the Conversion of Forests to Long-Term Tea Monoculture Systems. Front Microbiol 2022; 13:896530. [PMID: 35814650 PMCID: PMC9263701 DOI: 10.3389/fmicb.2022.896530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 01/04/2023] Open
Abstract
The soil microbial community is a key indicator to evaluate the soil health and productivities in agricultural ecosystems. Monoculture and conversions of forests to tea plantations have been widely applied in tea plantation globally, but long-term monoculture of tea plantation could lead to soil degradation and yield decline. Understanding how long-term monoculture systems influence the soil health and ecosystem functions in tea plantation is of great importance for soil environment management. In this study, through the comparison of three independent tea plantations across eastern China composed of varying stand ages (from 3 to 90 years after conversion from forest), we found that long-term tea monoculture led to significant increases in soil total organic carbon (TOC) and microbial nitrogen (MBN). Additionally, the structure, function, and co-occurrence network of soil bacterial communities were investigated by pyrosequencing 16S rRNA genes. The pyrosequencing analysis revealed that the structures and functions of soil bacterial communities were significantly affected by different stand ages, but sampling sites and land-use conversion (from forest to tea plantation) had stronger effects than stand age on the diversity and structure of soil bacterial communities. Soil bacterial diversity can be improved with increasing stand ages in tea plantation. Further RDA analysis revealed that the C and N availability improvement in tea plantation soils led to the variation of structure and function in soil bacterial communities. Moreover, co-occurrence network analysis of soil bacterial communities also demonstrated that interactions among soil bacteria taxa were strengthened with increasing stand age. Our findings suggest that long-term monoculture with proper managements could be beneficial to soil ecosystems by increasing the C and N content and strengthening bacterial associations in tea plantations. Overall, this study provides a comprehensive understanding of the impact of land-use change and long-term monoculture stand age on soil environments in tea plantation.
Collapse
Affiliation(s)
- Heng Gui
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lichao Fan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Lichao Fan,
| | - Donghui Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Yan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghua Pang
- Bureau of Agriculture and Rural Affairs of the Yuhang District, Hangzhou, China
| | - Liping Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Kazem Zamanian
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lingling Shi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wenyan Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Wenyan Han,
| |
Collapse
|
19
|
Yaashikaa PR, Kumar PS, Jeevanantham S, Saravanan R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119035. [PMID: 35196562 DOI: 10.1016/j.envpol.2022.119035] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 05/21/2023]
Abstract
Nowadays, the accumulation of toxic heavy metals in soil and water streams is considered a serious environmental problem that causes various harmful effects on plants and animals. Phytoremediation is an effective, green, and economical bioremediation approach by which the harmful heavy metals in the contaminated ecosystem can be detoxified and accumulated in the plant. Hyperaccumulators exude molecules called transporters that carry and translocate the heavy metals present in the soil to different plant parts. The hyperaccumulator plant genes can confine higher concentrations of toxic heavy metals in their tissues. The efficiency of phytoremediation relies on various parameters such as soil properties (pH and soil type), organic matters in soil, heavy metal type, nature of rhizosphere, characteristics of rhizosphere microflora, etc. The present review comprehensively discusses the toxicity effect of heavy metals on the environment and different phytoremediation mechanisms for the transport and accumulation of heavy metals from polluted soil. This review gave comprehensive insights into plants tolerance for the higher heavy metal concentration their responses for heavy metal accumulation and the different mechanisms involved for heavy metal tolerance. The current status and the characteristic features that need to be improved in the phytoremediation process are also reviewed in detail.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
20
|
Yang G, Zhou D, Wan R, Wang C, Xie J, Ma C, Li Y. HPLC and high-throughput sequencing revealed higher tea-leaves quality, soil fertility and microbial community diversity in ancient tea plantations: compared with modern tea plantations. BMC PLANT BIOLOGY 2022; 22:239. [PMID: 35550027 PMCID: PMC9097118 DOI: 10.1186/s12870-022-03633-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ancient tea plantations with an age over 100 years still reserved at Mengku Town in Lincang Region of Yunan Province, China. However, the characteristic of soil chemicophysical properties and microbial ecosystem in the ancient tea plantations and their correlation with tea-leaves chemical components remained unclear. Tea-leaves chemical components including free amino acids, phenolic compounds and purine alkaloids collected from modern and ancient tea plantations in five geographic sites (i.e. Bingdao, Baqishan, Banuo, Dongguo and Jiulong) were determined by high performance liquid chromatography (HPLC), while their soil microbial community structure was analyzed by high-throughput sequencing, respectively. Additionally, soil microbial quantity and chemicophysical properties including pH, cation exchange capacity (CEC), soil organic matter (SOM), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorous (AP) and available potassium (AK) were determined in modern and ancient tea plantations. RESULTS Tea-leaves chemical components, soil chemicophysical properties and microbial community structures including bacterial and fungal community abundance and diversity evaluated by Chao 1 and Shannon varied with geographic location and tea plantation type. Ancient tea plantations were observed to possess significantly (P < 0.05) higher free amino acids, gallic acid, caffeine and epigallocatechin (EGC) in tea-leaves, as well as soil fertility. The bacterial community structure kept stable, while fungal community abundance and diversity significantly (P < 0.05) increased in ancient tea plantation because of higher soil fertility and lower pH. The long-term plantation in natural cultivation way might significantly (P < 0.05) improve the abundances of Nitrospirota, Methylomirabilota, Ascomycota and Mortierellomycota phyla. CONCLUSIONS Due to the natural cultivation way, the ancient tea plantations still maintained relatively higher soil fertility and soil microbial ecosystem, which contributed to the sustainable development of tea-leaves with higher quality.
Collapse
Affiliation(s)
- Guangrong Yang
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Dapeng Zhou
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Renyuan Wan
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Conglian Wang
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jin Xie
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Cunqiang Ma
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
21
|
Wu Z, Li Y, Chen H, Rao J, Sun Q. Effects of straw mulching on predatory myxobacterial communities in different soil aggregates under wheat-corn rotation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29062-29074. [PMID: 34993829 DOI: 10.1007/s11356-021-18350-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Crop straw mulching is an important organic supplement in sustainable agriculture; however, the effect of increased organic matter on the diversity of micropredators such as myxobacteria and the correlation between myxobacteria and microorganisms have been little explored. In the current investigation, high-throughput sequencing was performed to analyze the myxobacterial community composition in a wheat-corn rotation experimental field with 6-year straw mulching and fertilization treatments. The results reveal no significant influence of straw mulch application on myxobacterial α-diversity (P < 0.05). NMDS (nonmetric multidimensional scaling) and perMANOVA results indicate the significant influence of straw mulching application on myxobacterial community composition (P < 0.05), and several groups, including Haliangiaceae, Polyangiaceae, and Archangiaceae, also varied in soil aggregates. RDA (redundancy analysis) results show that TOC (total organic carbon) was the most important factor affecting the myxobacterial community structure. In addition, RDA and random forest analysis results show the contribution of myxobacterial community structure to soil bacterial community α- and β-diversity, especially in the 0.25-1 mm and < 0.25 mm soil aggregate fractions. In conclusion, we suggest that the variation in myxobacterial community structure may be a driver of bacterial α- and β-diversity in soil microhabitats and might be a cause of soil microbial community changes. Our results are fruitful for finding more efficient ways to use straw from waste for the betterment of sustainable agriculture by analyzing changes in myxobacterial community structure.
Collapse
Affiliation(s)
- Zhaojun Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Yang Li
- Anhui Kunlang New Energy Technology Co. Ltd, Huainan, Anhui Province, China
| | - Hao Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Jixiang Rao
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
22
|
Ibrahim MM, Guo L, Wu F, Liu D, Zhang H, Zou S, Xing S, Mao Y. Field-applied biochar-based MgO and sepiolite composites possess CO 2 capture potential and alter organic C mineralization and C-cycling bacterial structure in fertilized soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152495. [PMID: 34968614 DOI: 10.1016/j.scitotenv.2021.152495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Agricultural soils contribute a significant amount of anthropogenic CO2 emission, a greenhouse gas of global environmental concern. Hence, discovering sustainable materials that can capture CO2 in cultivated soils is paramount. Since the effect of biochar on C mineralization/retention in fertilized soils is unclear, we produced biochar-based MgO and sepiolite-nanocomposites with CO2 capture potential. The field-scale impacts of the modified-biochars were evaluated on net C exchange rate (NCER) periodically for 3 months in fertilized plots. The effects of the modified-biochar on organic-C mineralization, the activities, and dynamics of C-cycling-related 16S rRNA which are unknown, were investigated. Results revealed an initial rapid and higher cumulative CO2 emission from the sole fertilizer treatment (F). Unlike the biochar treatment (BF), the successful incorporation of MgO/Mg(OH)2 nanoparticles into the matrix and surface of biochar, and the potential formation of MgCO3 with soil CO2, mitigated CO2 emission, especially in the MgO-modified biochar (MgOBF), compared to the sepiolite-biochar treatment (SBF). Compared to F and BF, the higher C retention as MgCO3 in the modified biochar treatments led to an increase in cellulase activity, stimulation of key C-cycling-related bacteria, and the expression of genes associated with starch, sucrose, amino sugar, nucleotide sugar, ascorbate, aldarate, cellulose, and chitin degradation, thus, increasing organic C mineralization. Among the modified-biochar treatments, higher C mineralization was recorded in SBF, resulting in increased cumulative CO2 emission, despite its initial capture for up to 42 days. However, MgOBF was effective in capturing soil-derived CO2, despite the increased C mineralization compared to biochar. The changes in soil moisture and temperature significantly regulated NCER. Also, the modified biochars positively influenced the distribution of C-cycling-related bacteria by improving soil pH and available nutrients. Among the modified biochars, the observed higher mitigation effect of MgOBF on NCER indicated that it could be preferably applied in agricultural soils.
Collapse
Affiliation(s)
- Muhammed Mustapha Ibrahim
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China; Department of Soil Science, Joseph Sarwuan Tarka University, P.M.B, 2373 Makurdi, Nigeria
| | - Liming Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Fengying Wu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Dongming Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Hongxue Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Shuangquan Zou
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Shihe Xing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China
| | - Yanling Mao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Key Research Laboratory of Soil Ecosystem Health and Regulation in Fujian Provincial University, Fuzhou 350002, Fujian Province, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.
| |
Collapse
|
23
|
Adeleke BS, Ayangbenro AS, Babalola OO. Bacterial community structure of the sunflower ( Helianthus annuus) endosphere. PLANT SIGNALING & BEHAVIOR 2021; 16:1974217. [PMID: 34590546 PMCID: PMC9208795 DOI: 10.1080/15592324.2021.1974217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Agrochemical applications on farmland aim to enhance crop yield; however, the consequence of biodiversity loss has caused a reduction in ecological functions. The positive endosphere interactions and crop rotation systems may function in restoring a stable ecosystem. Employing culture-independent techniques will help access the total bacteria community in the sunflower endosphere. Limited information is available on the bacteria diversity in sunflower plants cultivated under different agricultural practices. Hence, this study was designed to investigate the endophytic bacterial community structure of sunflower at the growing stage. Plant root and stem samples were sourced from two locations (Itsoseng and Lichtenburg), for DNA extraction and sequenced on the Illumina Miseq platform. The sequence dataset was analyzed using online bioinformatics tools. Saccharibacteria and Acidobacteria were dominant in plant roots, while the stem is dominated by Proteobacteria, Bacteriodetes, and Gemmatimonadetes across the sites. Bacterial genera, Acidovorax, Flavobacterium, Hydrogenophaga, and Burkholderia-Paraburkhoderia were found dominant in the root, while the stem is dominated by Streptomyces. The diverse bacterial community structure at phyla and class levels were significantly different in plant organs across the sites. The influence of soil physical and chemical parameters analyzed was observed to induce bacterial distribution across the sites. This study provides information on the dominant bacteria community structure in sunflowers at the growing stage and their predictive functions, which suggest their future exploration as bioinoculants for improved agricultural yields.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- CONTACT Olubukola Oluranti Babalola Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho2735, South Africa
| |
Collapse
|
24
|
Runlong W, Shunan Z, Tong S, Yingming X, Tao S, Yuebing S. Microstructure characteristics of aggregates and Cd immobilization performance under a 3-year sepiolite amendment: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149269. [PMID: 34325144 DOI: 10.1016/j.scitotenv.2021.149269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Sepiolite is an efficient mineral for the immobilization of Cd in contaminated soils. Here, we conducted a 3-year field experiment to investigate the effect of sepiolite on soil aggregation and porosity, Cd availability, and organic carbon content in the bulk and aggregate soils and Cd accumulation by leafy vegetables. The sepiolite-treated soils showed a 15.4%-53.4% and 5.5%-63.0% reduction in available Cd content in the bulk soil and different particle-size aggregates, respectively. Moreover, the Cd concentrations in the edible parts of Brassica campestris, Lactuca sativa L., and Lactuca sativa var. ramosa Hort. decreased by 5.9%-26.2%, 22.8%-30.1%, and 14.4%-19.1%, respectively, compared with those of the control groups. Treatments with 0.5%-1.5% sepiolite resulted in a significant increase (P < 0.05) in the proportion of 0.25-5.0 mm aggregates, and the increase in the mean weight diameter and geometric mean weight of the soil aggregates indicated that sepiolite treatments enhanced soil aggregate stability. Furthermore, three-dimensional X-ray computed tomography imaging showed that sepiolite treatments resulted in an increase in the total area, average size, and pore perimeter of aggregates, with the maximum values being 1.63-, 1.41-, and 1.401-fold higher than those of the corresponding control groups, respectively. The highest values of soil organic carbon and particulate organic carbon were obtained in 1.5% sepiolite-treated soils and were 2.07- and 1.91-fold higher than those of the control groups, respectively. Additionally, the level of organic carbon functional groups in the bulk soil and different particle-size aggregates generally increased with increasing sepiolite application. Overall, sepiolite, as a soil amendment, not only reduced toxic element bioavailability and uptake by plants but also enhanced soil structure and function.
Collapse
Affiliation(s)
- Wang Runlong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Zheng Shunan
- Rural Energy & Environment Agency, MARA, Beijing 100125, China
| | - Sun Tong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xu Yingming
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Sun Tao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Sun Yuebing
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
25
|
Ma Y, Feng C, Wang Z, Huang C, Huang X, Wang W, Yang S, Fu S, Chen HY. Restoration in degraded subtropical broadleaved forests induces changes in soil bacterial communities. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Liu C, Lin H, Li B, Dong Y, Yin T, Chen X. Endophyte inoculation redistributed bioavailable Cd and nutrient in soil aggregates and enhanced Cd accumulation in Phytolacca acinosa. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125952. [PMID: 34492871 DOI: 10.1016/j.jhazmat.2021.125952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Plant growth and heavy metal (HM) accumulation is affected by heavy metal bioavailability and nutrient content in soil aggregates during endophyte-assisted phytoremediation. In this study, we evaluated the influence of endophytes inoculation on P. acinosa HM accumulation and soil aggregate physicochemical properties and explored the correlation among them. Endophyte inoculation increased the plant growth and Cd accumulation by 7.95-25.13% and 3.27-19.22%, respectively and the soil aggregate was redistributed with a decrease of 1.88-5.41% of the clay fraction. The available nitrogen, phosphorus and potassium, and organic matter in macro-aggregate and micro-aggregate were significantly improved with endophyte inoculation. In addition, compared to the no inoculation group, endophytes inoculation enhanced the bioavailability of Cd in macro-aggregates by 4.92-15.00% and in micro-aggregate by 0-9.37%. Both multiple linear regression analysis and the structural equation modeling (SEM) analysis showed that the Cd accumulation in P. acinosa was mainly depended on the Cd bioavailability in macro-aggregates and micro-aggregates. In general, this study helped to improve our understanding of soil aggregate HM bioavailability and nutrient content distribution characteristics under endophyte inoculation, which could further explain the mechanisms of endophytes in plant growth promoting and HM accumulation improving.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Tingting Yin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
27
|
Yukun G, Jianghui C, Genzeng R, Shilin W, Puyuan Y, Congpei Y, Hongkai L, Jinhua C. Changes in the root-associated bacteria of sorghum are driven by the combined effects of salt and sorghum development. ENVIRONMENTAL MICROBIOME 2021; 16:14. [PMID: 34380546 PMCID: PMC8356455 DOI: 10.1186/s40793-021-00383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sorghum is an important food staple in the developing world, with the capacity to grow under severe conditions such as salinity, drought, and a limited nutrient supply. As a serious environmental stress, soil salinization can change the composition of rhizosphere soil bacterial communities and induce a series of harm to crops. And the change of rhizospheric microbes play an important role in the response of plants to salt stress. However, the effect of salt stress on the root bacteria of sorghum and interactions between bacteria and sorghum remains poorly understood. RESULTS The purpose of this study was to assess the effect of salt stress on sorghum growth performance and rhizosphere bacterial community structure. Statistical analysis confirmed that low high concentration stress depressed sorghum growth. Further taxonomic analysis revealed that the bacterial community predominantly consisted of phyla Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Bacteroidetes and Firmicutes in sorghum rhizosphere soil. Low salt stress suppressed the development of bacterial diversity less than high salt stress in both bulk soil and planted sorghum soil. Different sorghum development stages in soils with different salt concentrations enriched distinctly different members of the root bacteria. No obviously different effect on bacterial diversity were tested by PERMANOVA analysis between different varieties, but interactions between salt and growth and between salt and variety were detected. The roots of sorghum exuded phenolic compounds that differed among the different varieties and had a significant relationship with rhizospheric bacterial diversity. These results demonstrated that salt and sorghum planting play important roles in restructuring the bacteria in rhizospheric soil. Salinity and sorghum variety interacted to affect bacterial diversity. CONCLUSIONS In this paper, we found that salt variability and planting are key factors in shifting bacterial diversity and community. In comparison to bulk soils, soils under planting sorghum with different salt stress levels had a characteristic bacterial environment. Salinity and sorghum variety interacted to affect bacterial diversity. Different sorghum variety with different salt tolerance levels had different responses to salt stress by regulating root exudation. Soil bacterial community responses to salinity and exotic plants could potentially impact the microenvironment to help plants overcome external stressors and promote sorghum growth. While this study observed bacterial responses to combined effects of salt and sorghum development, future studies are needed to understand the interaction among bacteria communities, salinity, and sorghum growth.
Collapse
Affiliation(s)
- Gao Yukun
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Cui Jianghui
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Ren Genzeng
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Wei Shilin
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Yang Puyuan
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Yin Congpei
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Liang Hongkai
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Chang Jinhua
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| |
Collapse
|
28
|
Liu D, Ju W, Jin X, Li M, Shen G, Duan C, Guo L, Liu Y, Zhao W, Fang L. Associated soil aggregate nutrients and controlling factors on aggregate stability in semiarid grassland under different grazing prohibition timeframes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146104. [PMID: 33677288 DOI: 10.1016/j.scitotenv.2021.146104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Grazing prohibition is an effective measure in improving soil stability and ecological quality. However, only a limited number of studies have been published on the dominant factors that impact soil aggregate stability and their associated effects on nutrient distribution for different size soil aggregates under long-term grazing prohibition management. In this study, we investigated variation in soil aggregate stability and nutrient distribution characteristics in semiarid grassland sites under different grazing prohibition timeframes (0 years [GP0], 11 years [GP11], 26 years [GP26], and 36 years [GP36]). Results showed that organic carbon (C) and total nitrogen (TN) concentrations in soil aggregates decreased at GP11 before progressively increasing and reaching its highest value at GP36, and the total phosphorus (TP) concentration did not change significantly. Most nutrients accumulated in macroaggregates (> 0.25 mm) under grazing prohibition, and the nutrient stoichiometry in soil aggregates increased after 26 years. Compared to the control (GP0), the mean weight diameter (MWD) value of the soil stability index increased at GP11 (21.7%) and decreased at GP26 (18.9%). Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) also showed that the proportion of stable organic C-related functional groups (i.e., alkene-C and aromatic-C) in macroaggregates were higher at GP11 and GP36 than at GP26. Furthermore, principal component analysis (PCA), partial least squares path modeling (PLS-PM), and the relative importance of regressors all showed that glomalin-related soil proteins (GRSP) and nutrients indirectly improved aggregate stability in semiarid grassland through their influence on the GRSP accumulation potential and nutrient stoichiometry. Generally, after 26 years grazing prohibition had a positive effect on soil aggregate stability and nutrient accumulation in the semiarid grassland sites investigated for this study. Results from this study provide a theoretical basis to select appropriate grazing prohibition timeframes under grassland management initiatives to optimize ecological quality measures in semiarid regions.
Collapse
Affiliation(s)
- Dongdong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wenliang Ju
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaolian Jin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mengdi Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Guoting Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chengjiao Duan
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Guo
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China
| | - Yanyan Liu
- Department of Geography, Texas State University, 601 University Drive, San Marcos, TX 78640, USA
| | - Wei Zhao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China.
| |
Collapse
|
29
|
Chen W, Guo X, Guo Q, Tan X, Wang Z. Long-Term Chili Monoculture Alters Environmental Variables Affecting the Dominant Microbial Community in Rhizosphere Soil. Front Microbiol 2021; 12:681953. [PMID: 34276615 PMCID: PMC8281244 DOI: 10.3389/fmicb.2021.681953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Continuous cropping negatively affects soil fertility, physicochemical properties and the microbial community structure. However, the effects of long-term chili monoculture on the dominant microbial community assembly are not known. In this study, the impact of long-term chili monoculture on the correlation between the dominant microbial community and soil environmental variables was assessed. The results indicated that increasing duration of chili monoculture generated significant changes in soil nutrients, soil aggregates and soil enzymes: nutrient contents increased overall, mechanically stable macroaggregates increased and microaggregates decreased, water-stable macroaggregates and microaggregates decreased, β-glucosidase decreased nonlinearly, and nitrate reductase and alkaline phosphatase activities showed a nonlinear increase. Moreover, an increasing number of years of chili monoculture also affected the structure of the dominant microbiota, with substantial changes in the relative abundances of 11 bacterial and fungal genera. The drivers of the dominant microbial community assembly in rhizosphere soil were soil moisture, abiotic nitrogen, pH and salt.
Collapse
Affiliation(s)
- Wenjing Chen
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China.,College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China.,Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Xiaodong Guo
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Quanen Guo
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xuelian Tan
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Efficient Utilization of Water in Dry Farming, Lanzhou, China
| | - Zhigang Wang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China.,Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| |
Collapse
|
30
|
Tian W, Xiang X, Wang H. Differential Impacts of Water Table and Temperature on Bacterial Communities in Pore Water From a Subalpine Peatland, Central China. Front Microbiol 2021; 12:649981. [PMID: 34122363 PMCID: PMC8193233 DOI: 10.3389/fmicb.2021.649981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022] Open
Abstract
The level of water table and temperature are two environmental variables shaping soil bacterial communities, particularly in peatland ecosystems. However, discerning the specific impact of these two factors on bacterial communities in natural ecosystems is challenging. To address this issue, we collected pore water samples across different months (August and November in 2017 and May 2018) with a gradient of water table changes and temperatures at the Dajiuhu peatland, Central China. The samples were analyzed with 16S rRNA high-throughput sequencing and Biolog EcoMicroplates. Bacterial communities varied in the relative abundances of dominant taxa and harbored exclusive indicator operational taxonomic units across the different months. Despite these differences, bacterial communities showed high similarities in carbon utilization, with preferences for esters (pyruvic acid methyl ester, Tween 40, Tween 80, and D-galactonic acid γ-lactone), amino acids (L-arginine and L-threonine), and amines (phenylethylamine and putrescine). However, rates of carbon utilization (as indicated by average well-color development) and metabolic diversity (McIntosh and Shannon index) in May and August were higher than those in November. Redundancy analysis revealed that the seasonal variations in bacterial communities were significantly impacted by the level of the water table, whereas the temperature had a fundamental role in bacterial carbon utilization rate. Co-occurrence analysis identified Sphingomonas, Mucilaginibacter, Novosphingobium, Lacunisphaera, Herminiimonas, and Bradyrhizobium as keystone species, which may involve in the utilization of organic compounds such as amino acids, phenols, and others. Our findings suggest that bacterial community functions were more stable than their compositions in the context of water table changes. These findings significantly expand our current understanding of the variations of bacterial community structures and metabolic functions in peatland ecosystems in the context of global warming and fluctuation of the water table.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| |
Collapse
|
31
|
Chen YP, Tsai CF, Rekha PD, Ghate SD, Huang HY, Hsu YH, Liaw LL, Young CC. Agricultural management practices influence the soil enzyme activity and bacterial community structure in tea plantations. BOTANICAL STUDIES 2021; 62:8. [PMID: 34003387 PMCID: PMC8131499 DOI: 10.1186/s40529-021-00314-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The soil quality and health of the tea plantations are dependent on agriculture management practices, and long-term chemical fertilizer use is implicated in soil decline. Hence, several sustainable practices are used to improve and maintain the soil quality. Here, in this study, changes in soil properties, enzymatic activity, and dysbiosis in bacterial community composition were compared using three agricultural management practices, namely conventional (CA), sustainable (SA), and transformational agriculture (TA) in the tea plantation during 2016 and 2017 period. Soil samples at two-months intervals were collected and analyzed. RESULTS The results of the enzyme activities revealed that acid phosphatase, arylsulfatase, β-glucosidase, and urease activities differed considerably among the soils representing the three management practices. Combining the redundancy and multiple regression analysis, the change in the arylsulfatase activity was explained by soil pH as a significant predictor in the SA soils. The soil bacterial community was predominated by the phyla Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Bacteroidetes in the soil throughout the sampling period. Higher Alpha diversity scores indicated increased bacterial abundance and diversity in the SA soils. A significant relationship between bacterial richness indices (SOBS, Chao and ACE) and soil pH, K and, P was observed in the SA soils. The diversity indices namely Shannon and Simpson also showed variations, suggesting the shift in the diversity of less abundant and more common species. Furthermore, the agricultural management practices, soil pH fluctuation, and the extractable elements had a greater influence on bacterial structure than that of temporal change. CONCLUSIONS Based on the cross-over analysis of the bacterial composition, enzymatic activity, and soil properties, the relationship between bacterial composition and biologically-driven ecological processes can be identified as indicators of sustainability for the tea plantation.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Chia-Fang Tsai
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| | - Sudeep D Ghate
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| | - Hsi-Yuan Huang
- School of Life and Health Sciences and Warshel Institute for Computational Biology, Chinese University of Hong Kong, Shenzhen, 518172, Guangdong,, China
| | - Yi-Han Hsu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Li-Ling Liaw
- Food Industry Research and Development Institute, Bioresource Collection and Research Center, HsinChu, 300, Taiwan
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
32
|
Priming Effects of Cover Cropping on Bacterial Community in a Tea Plantation. SUSTAINABILITY 2021. [DOI: 10.3390/su13084345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The acidic nature of red soil commonly found in tea plantations provides unique niches for bacterial growth. These bacteria as well as soil properties are dynamic and vary with agricultural management practices. However, less is known about the influence of manipulation such as cover cropping on bacterial communities in tea plantations. In this study a field trial was conducted to address the short-term effects of soybean intercropping on a bacterial community. Diversity, metabolic potential and structure of the bacterial community were determined through community level physiological profiling and amplicon sequencing approaches. Cover cropping was observed to increase soil EC, available P, K, and microelements Fe, Mn, Cu, and Zn after three months of cultivation. Bacterial functional diversity and metabolic potential toward six carbon source categories also increased in response to cover cropping. Distinct bacterial communities among treatments were revealed, and the most effective biomarkers, such as Acidobacteriaceae, Burkholderiaceae, Rhodanobacteraceae, and Sphingomonadaceae, were identified in cover cropping. Members belonging to these families are considered as organic matter decomposers and/or plant growth promoting bacteria. We provided the first evidence that cover cropping boosted both copiotrophs (Proteobacteria) and oligotrophs (Acidobacteria), with potentially increased functional stability, facilitated nutrient cycling, and prospective benefits to plants in the tea plantation.
Collapse
|
33
|
Sludge amendment accelerating reclamation process of reconstructed mining substrates. Sci Rep 2021; 11:2905. [PMID: 33536526 PMCID: PMC7859177 DOI: 10.1038/s41598-021-81703-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/06/2021] [Indexed: 01/20/2023] Open
Abstract
We constructed a mining soil restoration system combining plant, complex substrate and microbe. Sludge was added to reconstructed mine substrates (RMS) to accelerate the reclamation process. The effect of sludge on plant growth, microbial activity, soil aggregate stability, and aggregation-associated soil characteristics was monitored during 10 years of reclamation. Results show that the height and total biomass of ryegrass increases with reclamation time. Sludge amendment increases the aggregate binding agent content and soil aggregate stability. Soil organic carbon (SOC) and light-fraction SOC (LFOC) in the RMS increase by 151% and 247% compared with those of the control, respectively. A similar trend was observed for the glomalin-related soil protein (GRSP). Stable soil aggregate indexes increase until the seventh year. In short, the variables of RMS determined after 3-7 years insignificantly differ from those of the untreated sample in the tenth-year. Furthermore, significant positive correlations between the GRSP and SOC and GRSP and soil structure-related variables were observed in RMS. Biological stimulation of the SOC and GRSP accelerates the recovery of the soil structure and ecosystem function. Consequently, the plant-complex substrate-microbe ecological restoration system can be used as an effective tool in early mining soil reclamation.
Collapse
|
34
|
Li S, Zhang H, Huang T, Ma B, Miao Y, Shi Y, Xu L, Liu K, Huang X. Aerobic denitrifying bacterial communities drive nitrate removal: Performance, metabolic activity, dynamics and interactions of core species. BIORESOURCE TECHNOLOGY 2020; 316:123922. [PMID: 32758920 DOI: 10.1016/j.biortech.2020.123922] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Three novel mix-cultured aerobic denitrifying bacteria (Mix-CADB) consortia named D14, X21, and CL exhibited excellent total organic carbon (TOC) removal and aerobic denitrification capacities. The TOC and nitrate removal efficiencies were higher than 93.00% and 98.00%. The results of Biolog demonstrated that three communities displayed high carbon metabolic activity. nirS gene sequencing and ecological network model revealed that Pseudomonas stutzeri, Paracoccus sp., and Paracoccus denitrificans dominated in the D14, X21, and CL communities. The dynamics and co-existence of core species in communities drove the nutrient removal. Response surface methodology showed the predicted total nitrogen removal efficiency reached 99.43% for D14 community. The three Mix-CADB consortia have great potential for nitrogen-polluted aquatic water treatment because of their strong adaptability and removal performance. These results will provide new understanding of co-existence, interaction and dynamics of Mix-CADB consortia for nitrogen removal in nitrogen-polluted aquatic ecosystems.
Collapse
Affiliation(s)
- Sulin Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutian Miao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Xu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
35
|
Zheng N, Yu Y, Wang J, Chapman SJ, Yao H, Zhang Y. The conversion of subtropical forest to tea plantation changes the fungal community and the contribution of fungi to N 2O production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115106. [PMID: 32806403 DOI: 10.1016/j.envpol.2020.115106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The conversion of natural forests to tea plantations largely affects soil nitrous oxide (N2O) emissions and soil microbial communities. However, the impacts of this conversion on the contribution of fungi to N2O emission and on fungal community structure remain unclear. In this study, we determined the soil N2O emission rate, N2O production by fungi, associated fungal community diversity, and related ecological factors in chronological changes of tea crop systems (3, 36 and 105 years old tea orchards named T3, T36 and T105, respectively), and in an adjacent soil from a natural forest. The results indicate that the tea plantations significantly enhanced soil N2O production compared with the forest soil. Tea plantations significantly decreased soil pH and C/N ratio, but increased soil inorganic nitrogen (N). Furthermore, they increased the fungal contribution to the production of soil N2O, but decreased the bacterial counterpart. We also observed that fungal community and functional composition differed distinctly between tea plantations and forest. Additionally, most of the fungal groups in high N2O emission soils (T36 and T105) were identified as the genus Fusarium, which were positively correlated with soil N2O emissions. The variation in N2O emission response could be well explained by NO3--N, soil organic carbon (SOC), C/N, and Fusarium, which contributed to up to 97% of the observed variance. Altogether, these findings provide significant direct evidence that the increase of soil N2O emissions and fungal communities be attributed to the conversion of natural forest to tea plantations.
Collapse
Affiliation(s)
- Ningguo Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan, 430205, People's Republic of China
| | - Juan Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | | | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan, 430205, People's Republic of China.
| | - Yingying Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
36
|
Liu C, Lin H, Li B, Dong Y, Yin T. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110958. [PMID: 32800230 DOI: 10.1016/j.ecoenv.2020.110958] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation is an effective way to repair heavy metal contaminated soil and rhizosphere microorganisms play an important role in plant regulation. Nevertheless, little information is known about the variation of microbial metabolic activities and community structure in rhizosphere during phytoremediation. In this study, the rhizosphere soil microbial metabolic activities and community structure of Trifolium repensL. during Cd-contaminated soil phytoremediation, were analyzed by Biolog EcoPlate™ and high-throughput sequencing. The uptake in the roots of Trifolium repensL. grown in 5.68 and 24.23 mg/kg Cd contaminated soil was 33.51 and 84.69 mg/kg respectively, causing the acid-soluble Cd fractions decreased 7.3% and 5.4%. Phytoremediation significantly influenced microbial community and Trifolium repensL. planting significantly increased the rhizosphere microbial population, diversity, the relative abundance of plant growth promoting bacteria (Kaistobacter and Flavisolibacter), and the utilization of difficultly metabolized compounds. The correlation analysis among substrate utilization and microbial communities revealed that the relative abundance increased microorganisms possessed stronger carbon utilization capacity, which was beneficial to regulate the stability of plant-microbial system. Collectively, the results of this study provide fundamental insights into the microbial metabolic activities and community structure during heavy metal contaminated soil phytoremediation, which may aid in the bioregulation of phytoremediation.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Tingting Yin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
37
|
Xie J, Xu W, Zhang M, Qiu C, Liu J, Wisniewski M, Ou T, Zhou Z, Xiang Z. The impact of the endophytic bacterial community on mulberry tree growth in the Three Gorges Reservoir ecosystem, China. Environ Microbiol 2020; 23:1858-1875. [PMID: 32902116 DOI: 10.1111/1462-2920.15230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 11/29/2022]
Abstract
Plant-associated microbes influence plant performance and may also impact biotic and abiotic stress tolerance. The microbiome of mulberry trees planted for ecological restoration in the hydro-fluctuation belt of the Three Gorges Reservoir Region, China, exhibited distinct patterns of localization. The endosphere exhibited lower α-diversity relative to the rhizosphere, but was more closely related to host growth status, especially in stem tissues. Pantoea was the predominant bacterial genus inhabiting the stems of two well-growing plants, while sequences identified as Pseudomonas and Pantoea were abundant in poorly growing plants. The complexity of the endophytic community was more connected to growth status in well-growing plants than it was in poorly growing plants. Among 151 endophytes cultured from collected samples of mulberry, 64 exhibited plant growth-promoting (PGP) potential in vitro and the majority of beneficial taxa were harvested from well-growing plants. Collectively, the present study indicates that the recruitment of beneficial endophytes may contribute to mulberry fitness under abiotic stress, and it provides a foundation for the development of a new strategy in vegetation restoration.
Collapse
Affiliation(s)
- Jie Xie
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Weifang Xu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Meng Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Changyu Qiu
- Promotion Station of Sericulture Technology, Guangxi Zhuang Autonomous Region, 530007, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ting Ou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China.,College of Life Science, Chongqing Normal University, Chongqing, 400047, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding in Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
38
|
Su X, Su X, Yang S, Zhou G, Ni M, Wang C, Qin H, Zhou X, Deng J. Drought changed soil organic carbon composition and bacterial carbon metabolizing patterns in a subtropical evergreen forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139568. [PMID: 32485376 DOI: 10.1016/j.scitotenv.2020.139568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Subtropical forests are considerable carbon sinks in the northern hemisphere, yet are increasingly suffering from the impact of extreme drought. To better understand the dynamics and kinetics of forest soil carbon storage under long-term drought, a rainfall-reduction experiment was established in a subtropical evergreen forest of eastern China. Soil organic carbon (SOC) composition, microbial carbon metabolism and the interactions with soil microbial community structure were investigated across different soil aggregate size fractions. After five years' treatment of rainfall reduction, a significant loss of large macroaggregates, as well as an increase of microaggregates by over 100% was observed. Meanwhile, drought changed the composition of SOC, reducing the non-hydrolyzed carbon and humin contents in large- to medium-size macroaggregates. Microbial metabolizing capacity of polymeric compounds was also reduced especially in the above aggregate fractions, whereas the utilization of small-molecular compounds was more impacted in small macroaggregates and microaggregates. The changes in carbon metabolizing patterns were further associated with the abundance changes of specific microbial taxa, revealing the microbially mediated mechanism of soil carbon metabolism under long-term drought. In addition, carbon metabolism in microaggregates was particularly sensitive to the changes of soil moisture, suggesting long-term drought may continually influence the functional resistance of the microbial communities. Taken together, our results provide insights into how biotic and abiotic processes together influence the SOC metabolizing processes, continued monitoring and investigation of which shall contribute to better understanding of the dynamics and kinetics of SOC storage under the impact of long-term drought.
Collapse
Affiliation(s)
- Xin Su
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China
| | - Xueling Su
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China
| | - Songchen Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China
| | - Guiyao Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China
| | - Mengying Ni
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China
| | - Chao Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China
| | - Hua Qin
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Xuhui Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China; Shanghai Institute of Eco-Chongming, Shanghai 200241, China
| | - Jie Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, Shanghai 200241, China; Shanghai Institute of Eco-Chongming, Shanghai 200241, China.
| |
Collapse
|
39
|
Xiao L, Yu Z, Liu H, Tan T, Yao J, Zhang Y, Wu J. Effects of Cd and Pb on diversity of microbial community and enzyme activity in soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:551-558. [PMID: 32394358 DOI: 10.1007/s10646-020-02205-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Pollution due to heavy metals is a serious global environmental problem, particularly in China. It is thus important to study the effects of heavy metal pollution, especially in mining areas. Cadmium(Cd) and lead(Pb) severely damage the microbial life in soil. The concentration of heavy metals and their toxic effects on microbes and enzymes in soil were examined in this study using contaminated soil samples. The Biolog method was used to analyze the characteristics of the microbial community. The results showed that the addition of Cd2+ and Pb2+ in different concentrations has a significant impact on microbial and enzyme activity in soil. With an increase in their concentrations, activities of the microbial community and enzymes decreased gradually. Each index related to the structure of the microbial community in soil decreased, indicating that pollution due to Cd and Pb reduced its size and functional activity. This study provides a reference for future research on the functional diversity of the microbial community in soil and plays its role in their environmental management.
Collapse
Affiliation(s)
- Lei Xiao
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Ministry of Education, China University of Mining & Technology, No1, Daxue Road, Xuzhou, 221116, Jiangsu, China.
| | - Zijing Yu
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Ministry of Education, China University of Mining & Technology, No1, Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Haiqin Liu
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Ministry of Education, China University of Mining & Technology, No1, Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Tian Tan
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Ministry of Education, China University of Mining & Technology, No1, Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Jinghua Yao
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Ministry of Education, China University of Mining & Technology, No1, Daxue Road, Xuzhou, 221116, Jiangsu, China.
| | - Yixin Zhang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Ministry of Education, China University of Mining & Technology, No1, Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Jianjun Wu
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Ministry of Education, China University of Mining & Technology, No1, Daxue Road, Xuzhou, 221116, Jiangsu, China
| |
Collapse
|
40
|
Liu H, Wang C, Xie Y, Luo Y, Sheng M, Xu F, Xu H. Ecological responses of soil microbial abundance and diversity to cadmium and soil properties in farmland around an enterprise-intensive region. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122478. [PMID: 32193118 DOI: 10.1016/j.jhazmat.2020.122478] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 05/12/2023]
Abstract
Microorganisms play a vital role in soil biochemical process in contaminated managed ecosystems. In the present study, a field investigation was conducted in farmland around an industrial intensive region contaminated with cadmium, and the changes of microbial assemblages in contaminated soils were assessed by 16S rRNA sequencing and the further statistical analysis. The results revealed obvious variations in microbial richness between referenced and contaminated soils, with Proteobacteri, Chloroflexi, Actinobacteria, Acidobacteria and Nitrospirae dominating the studied communities around the industrial intensive region. Redundancy analysis and Spearman correlation heatmap revealed that about 68.95 % of overall variation in microbial community composition was explained by soil physiochemical properties and Cd existence, among which pH, soil total phosphorus, total nitrogen, organic carbon (OC) and available Cd were identified as dominant factors. No significant difference was found in the similarities and Beta-diversity analysis among different groups. In conclusion, this study revealed the ecological effects of physiochemical parameters and Cd stress on the diversity and abundance of microbial communities, and these findings provided the detailed and integrated correlation between the main factors and microbial indexes in Cd contaminated farmland around the industrial intensive region.
Collapse
Affiliation(s)
- Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Can Wang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yanluo Xie
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yao Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Mingping Sheng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
41
|
Wang H, Jin J, Yu P, Fu W, Morrison L, Lin H, Meng M, Zhou X, Lv Y, Wu J. Converting evergreen broad-leaved forests into tea and Moso bamboo plantations affects labile carbon pools and the chemical composition of soil organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135225. [PMID: 31818594 DOI: 10.1016/j.scitotenv.2019.135225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to explore the effects of conversion from evergreen broad-leaved forests (EBFs) to tea plantations (TPs) and Moso bamboo (Phyllostachys heterocycla var. pubescens) plantations (MBPs) and the subsequent long-term intensive management on the soil carbon pool and the chemical composition of soil organic carbon (SOC). Soil samples from three layers (0-10, 10-30 and 30-60 cm, respectively) were collected from adjacent EBFs, TPs and MBPs in An'ji County, Zhejiang Province, China. The physico-chemical properties of soils, including bulk density, SOC and its different fractions were determined. The chemical composition of SOC was also measured using 13C-nuclear magnetic resonance spectroscopy (NMR). The results showed that conversion from EBFs to TPs and MBPs decreased the concentrations of water soluble organic carbon (WSOC), light and heavy fraction organic carbon (LFOC, HFOC) and humus carbon (HC) (P < 0.05), reduced the O-alkyl C and carbonl C content, but increased the alkyl C, Aromatic C, aromaticity and the ratio of alkyl C/O-alkyl C (A/O-A) (P < 0.05). These results suggested that intensive management markedly altered the chemical structure of SOC and labile carbon pools. Our results demonstrated that converting EBFs to TPs and MBPs had a negative effect on SOC content and a positive effect on SOC stability. Therefore, management practices such as rational fertilization and sod cultivation are recommended after land-use conversion.
Collapse
Affiliation(s)
- Haibo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jin Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Peiyao Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Weijun Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; School of Environmental and Resources Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences & Ryan Institute, National University of Ireland, Galway, H91TK33, Ireland
| | - Haiping Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Miaojing Meng
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiufeng Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yulong Lv
- Forest Enterprise of Anji County, Anji 313300, Zhejiang, China
| | - Jiasen Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
42
|
Responses of Microbial Communities and Interaction Networks to Different Management Practices in Tea Plantation Soils. SUSTAINABILITY 2019. [DOI: 10.3390/su11164428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Soil microorganisms play important roles in the plant health and agricultural production. However, little is known about the complex responses of microbial communities and interaction networks to different agricultural management practices in tea plantation soils. In the present study, Illumina Miseq high-throughput sequencing technology and molecular ecological network (MEN) analysis were used to investigate the soil microbial diversity, community structure and composition, interaction networks of organic tea plantation (OTP), non-polluted tea plantation (NPTP) and conventional tea plantation (CTP). Alpha-diversity indices, Chao1 and richness, of OTP soil were significantly higher than those of NPTP and CTP soils. The beta-diversity analysis showed there were significant differences among bacterial community structures of OTP, NPTP and CTP soils. Composition analysis showed that Proteobacteria, Acidobacteria and Chloroflexi were the most dominant bacteria in all tea plantation soil samples under different management practices, and the beneficial community compositions of OTP soil were significantly different from NPTP and CTP soils at the phylum and genus levels. Canonical correspondence analysis (CCA) and mantel test revealed that TOC and NO3-N contents as well as pH values were the key soil factors to affect the bacterial community structures of tea plantation soils. Furthermore, network analysis showed that the network of OTP soil possessed more functionally interrelated microbial modules than NPTP and CTP soils, indicating that OTP soil possessed the higher ecosystem multi-functionality. These results provided the theoretical basis and reference for improving soil microbial diversity and enhancing community multi-functionality in tea plantation soil ecosystems through effective agricultural management practices.
Collapse
|