1
|
Ye L, Zhang Y, Jin S, Zhou C, Pang J, Luo Y, Yu Y, Xu W. Mechanochemical Synthesis of High-Entropy MOF-74 with Multiple Active Sites for CO 2 Adsorption and Synergistic Conversion. Inorg Chem 2024; 63:20572-20583. [PMID: 39422667 DOI: 10.1021/acs.inorgchem.4c03228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Compared with monometallic metal-organic frameworks (MOFs), the synergistic effect of multiple metals significantly enhances the catalytic performance of the CO2 cycloesterification reaction, leading to improved CO2 adsorption and catalytic conversion capabilities. To investigate this concept, a high-entropy MOF-74 (HE-MOF-74) with a uniform distribution of five distinct metal ions (Zn2+, Mg2+, Ni2+, Co2+, and Cu2+) was successfully synthesized using a straightforward mechanical ball milling technique and comprehensively characterized (including structural, morphological, and physicochemical properties). The results reveal that HE-MOF-74 exhibits significantly increased specific surface area and CO2 adsorption capacity compared with those of monometallic MOF-74. The presence of multiple unsaturated metal centers as Lewis acid sites, oxygen atoms linking the metals, and ligand-based hydroxyl groups serving as base sites enable efficient immobilization of CO2 into cyclic carbonate. This study introduces a novel synthetic approach for the green and efficient production of HE-MOF-74 and proposes a new application for CO2 utilization.
Collapse
Affiliation(s)
- Liang Ye
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Siyang Jin
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Junbao Pang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Yuhang Yu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University─Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
2
|
Tang Z, Liu X, Yang Y, Jin F. Recent advances in CO 2 reduction with renewable reductants under hydrothermal conditions: towards efficient and net carbon benefit CO 2 conversion. Chem Sci 2024; 15:9927-9948. [PMID: 38966379 PMCID: PMC11220608 DOI: 10.1039/d4sc01265h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/19/2024] [Indexed: 07/06/2024] Open
Abstract
The ever-growing atmospheric CO2 concentration threatening the environmental sustainability of humankind makes the reduction of CO2 to chemicals or fuels an ideal solution. Two priorities are anticipated for the conversion technology, high efficiency and net carbon benefit, to ensure the mitigation of the CO2 problem both promptly and sustainably. Until now, catalytic hydrogenation or solar/electro-chemical CO2 conversion have achieved CO2 reduction promisingly while, to some extent, compromising to fulfill the two rules, and thus alternative approaches for CO2 reduction are necessary. Natural geochemical processes as abiotic CO2 reductions give hints for efficient CO2 reduction by building hydrothermal reaction systems, and this type of reaction atmosphere provides room for introducing renewable substances as reductants, which offers the possibility to achieve CO2 reduction with net carbon benefit. While the progress in CO2 reduction has been abundantly summarized, reviews on hydrothermal CO2 reduction are relatively scarce and, more importantly, few have focused on CO2 reduction with renewable reductants with the consideration of both scale of efficiency and sustainability. This review provides a fundamental and critical review of metal, biomass and polymer waste as reducing agents for hydrothermal CO2 reduction. Various products including formic acid, methanol, methane and multi-carbon chemicals can be formed, and effects of operational parameters such as temperature, batch holding time, pH value and water filing as well as detailed reaction mechanisms are illustrated. Particularly, the critical roles of high temperature and pressure water as reaction promotor and catalyst in hydrothermal CO2 conversion are discussed at the mechanistic level. More importantly, this review compares hydrothermal CO2 reduction with other methods such as catalytic hydrogenation and photo/electrocatalysis, evaluating their efficiency and potential for net carbon benefit. The aim of this review is to promote the understanding of CO2 activation under a hydrothermal environment and provide insights into the efficient and sustainable strategy of hydrothermal CO2 conversion for future fundamental research and industrial applications.
Collapse
Affiliation(s)
- Zien Tang
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xu Liu
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fangming Jin
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Shanghai Key Laboratory of Hydrogen Science, Center of Hydrogen Science, Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| |
Collapse
|
3
|
Luo Y, Yue X, Zhang H, Liu X, Wu Z. Recent advances in energy efficiency optimization methods for plasma CO 2 conversion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167486. [PMID: 37788772 DOI: 10.1016/j.scitotenv.2023.167486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Efforts to develop efficient methods for converting carbon dioxide (CO2) have drawn mounting interest due to incremental concerns over carbon emissions. Non-thermal plasma (NTP) technology has shown promise in this regard by producing numerous reactive substances at relatively low temperatures. However, an analysis of relevant literature reveals an underwhelming level of overall energy efficiency for this technology and an insufficient level of attention being paid to it. It is crucial to put forward more effective energy-saving schemes based on a comprehensive analysis of past research results to promote sustained development. This review highlights the latest advances in pertinent energy efficiency optimization studies and outlines state-of-the-art methods. In terms of energy efficiency optimization for plasma CO2 conversion, a comparison is made among different research results in four aspects as follows. Specifically, this study analyzes reactor structure optimization in terms of discharge characteristic, flow field, and plasma contact area; discusses pathways of heat transfer optimization to suppress the competing reaction; and explores catalyst optimization in terms of active sites, calcination temperature, and product selectivity; examines the potential of utilizing solar energy for clean energy applications. The analysis of energy efficiency data indicates an overall improvement when the aforementioned optimization measures are applied, which is essential to validate the effectiveness of each method. Finally, this paper discusses the potential difficulties and future research areas of NTP technology. Urgent further research is imperative on energy efficiency optimization methods for potential large-scale industrial applications in the future.
Collapse
Affiliation(s)
- Yang Luo
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiaofeng Yue
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hongli Zhang
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiaoping Liu
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Institute of Building Carbon Neutrality, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
4
|
Fernández-González J, Rumayor M, Domínguez-Ramos A, Irabien A, Ortiz I. The Relevance of Life Cycle Assessment Tools in the Development of Emerging Decarbonization Technologies. JACS AU 2023; 3:2631-2639. [PMID: 37885586 PMCID: PMC10598561 DOI: 10.1021/jacsau.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
The development of emerging decarbonization technologies requires advanced tools for decision-making that incorporate the environmental perspective from the early design. Today, Life Cycle Assessment (LCA) is the preferred tool to promote sustainability in the technology development, identifying environmental challenges and opportunities and defining the final implementation pathways. So far, most environmental studies related to decarbonization emerging solutions are still limited to midpoint metrics, mainly the carbon footprint, with global sustainability implications being relatively unexplored. In this sense, the Planetary Boundaries (PBs) have been recently proposed to identify the distance to the ideal reference state. Hence, PB-LCA methodology can be currently applied to transform the resource use and emissions to changes in the values of PB control variables. This study shows a complete picture of the LCA's role in developing emerging technologies. For this purpose, a case study based on the electrochemical conversion of CO2 to formic acid is used to show the possibilities of LCA approaches highlighting the potential pitfalls when going beyond greenhouse gas emission reduction and obtaining the absolute sustainability level in terms of four PBs.
Collapse
Affiliation(s)
- Javier Fernández-González
- Department of Chemical and
Biomolecular Engineering, Universidad de
Cantabria, Avenida Los Castros s/n, 39005 Santander, Spain
| | - Marta Rumayor
- Department of Chemical and
Biomolecular Engineering, Universidad de
Cantabria, Avenida Los Castros s/n, 39005 Santander, Spain
| | - Antonio Domínguez-Ramos
- Department of Chemical and
Biomolecular Engineering, Universidad de
Cantabria, Avenida Los Castros s/n, 39005 Santander, Spain
| | - Angel Irabien
- Department of Chemical and
Biomolecular Engineering, Universidad de
Cantabria, Avenida Los Castros s/n, 39005 Santander, Spain
| | - Inmaculada Ortiz
- Department of Chemical and
Biomolecular Engineering, Universidad de
Cantabria, Avenida Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
5
|
Hermawan A, Amrillah T, Alviani VN, Raharjo J, Seh ZW, Tsuchiya N. Upcycling air pollutants to fuels and chemicals via electrochemical reduction technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117477. [PMID: 36780811 DOI: 10.1016/j.jenvman.2023.117477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The intensification of fossil fuel usage results in significant air pollution levels. Efforts have been put into developing efficient technologies capable of converting air pollution into valuable products, including fuels and valuable chemicals (e.g., CO2 to hydrocarbon and syngas and NOx to ammonia). Among the strategic efforts to mitigate the excessive concentration of CO2 and NOx pollutants in the atmosphere, the electrochemical reduction technology of CO2 (CO2RR) and NOx (NOxRR) emerges as one of the most promising approaches. It is even more attractive if CO2RR and NOxRR are paired with renewables to store intermittent electricity in the form of chemical feedstocks. This review provides an overview of the electrochemical reduction process to convert CO2 to C1 and/or C2+ chemicals and NOx to ammonia (NH3) with a focus on electrocatalysts, electrolytes, electrolyzer, and catalytic reactor designs toward highly selective electrochemical conversion of the desired products. While the attempts in these aspects are enormous, economic consideration and environmental feasibility for actual implementation are not comprehensively provided. We discuss CO2RR and NOxRR from the life cycle and techno-economic analyses to perceive the feasibility of the current achievements. The remaining challenges associated with the industrial implementation of electrochemical CO2 and NOx reduction are additionally provided.
Collapse
Affiliation(s)
- Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten, 15314, Indonesia.
| | - Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Vani Novita Alviani
- Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan
| | - Jarot Raharjo
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten, 15314, Indonesia
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Noriyoshi Tsuchiya
- Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan
| |
Collapse
|
6
|
Vallejo Narváez WE, de la Garza CGV, Rodríguez LDS, Fomine S. The CO
2
Reduction Reaction Mechanism on Silicene Nanoflakes. A Theoretical Perspective. ChemistrySelect 2023. [DOI: 10.1002/slct.202203484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Wilmer E. Vallejo Narváez
- Department of Polymers Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Apartado Postal 70–360, CU Coyoacán 04510 Ciudad de México México
| | - Cesar Gabriel Vera de la Garza
- Department of Polymers Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Apartado Postal 70–360, CU Coyoacán 04510 Ciudad de México México
| | - Luis Daniel Solís Rodríguez
- Department of Polymers Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Apartado Postal 70–360, CU Coyoacán 04510 Ciudad de México México
| | - Serguei Fomine
- Department of Polymers Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Apartado Postal 70–360, CU Coyoacán 04510 Ciudad de México México
| |
Collapse
|
7
|
Ioannou I, Javaloyes-Antón J, Caballero JA, Guillén-Gosálbez G. Economic and Environmental Performance of an Integrated CO 2 Refinery. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1949-1961. [PMID: 36778522 PMCID: PMC9906749 DOI: 10.1021/acssuschemeng.2c06724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Indexed: 06/18/2023]
Abstract
The consequences of global warming call for a shift to circular manufacturing practices. In this context, carbon capture and utilization (CCU) has become a promising alternative toward a low-emitting chemical sector. This study addresses for the first time the design of an integrated CO2 refinery and compares it against the business-as-usual (BAU) counterpart. The refinery, which utilizes atmospheric CO2, comprises three synthesis steps and coproduces liquefied petroleum gas, olefins, aromatics, and methanol using technologies that were so far studied decoupled from each other, hence omitting their potential synergies. Our integrated assessment also considers two residual gas utilization (RGU) designs to enhance the refinery's efficiency. Our analysis shows that a centralized cluster with an Allam cycle for RGU can drastically reduce the global warming impact relative to the BAU (by ≈135%) while simultaneously improving impacts on human health, ecosystems, and resources, thereby avoiding burden-shifting toward human health previously observed in some CCU routes. These benefits emerge from (i) recycling CO2 from the cycle, amounting to 11.2% of the total feedstock, thus requiring less capture capacity, and (ii) reducing the electricity use while increasing heating as a trade-off. The performance of the integrated refinery depends on the national grid, while its high cost relative to the BAU is due to the use of expensive electrolytic H2 and atmospheric CO2 feedstock. Overall, our work highlights the importance of integrating CCU technologies within chemical clusters to improve their economic and environmental performance further.
Collapse
Affiliation(s)
- Iasonas Ioannou
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093Zürich, Switzerland
| | - Juan Javaloyes-Antón
- Institute
of Chemical Processes Engineering, University
of Alicante, P.O. Box 99, E-03080Alicante, Spain
| | - José A. Caballero
- Institute
of Chemical Processes Engineering, University
of Alicante, P.O. Box 99, E-03080Alicante, Spain
| | - Gonzalo Guillén-Gosálbez
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093Zürich, Switzerland
| |
Collapse
|
8
|
Ioannou I, Galán-Martín Á, Pérez-Ramírez J, Guillén-Gosálbez G. Trade-offs between Sustainable Development Goals in carbon capture and utilisation. ENERGY & ENVIRONMENTAL SCIENCE 2023; 16:113-124. [PMID: 36744118 PMCID: PMC9847469 DOI: 10.1039/d2ee01153k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 06/18/2023]
Abstract
Carbon capture and utilisation (CCU) provides an appealing framework to turn carbon emissions into valuable fuels and chemicals. However, given the vast energy required to activate the CO2 molecule, CCU may have implications on sustainable development that are still poorly understood due to the narrow scope of current carbon footprint-oriented assessments lacking absolute sustainability thresholds. To bridge this gap, we developed a power-chemicals nexus model to look into the future and understand how we could produce 22 net-zero bulk chemicals of crucial importance in a sustainable manner by integrating fossil, CCU routes and power technologies, often assessed separately. We evaluated the environmental performance of these technologies in terms of their contribution to 5 Sustainable Development Goals (SDGs), using 16 life cycle assessment metrics and 9 planetary boundaries (PB) to quantify and interpret the impact values. We found that fossil chemicals could hamper the attainment of SDG 3 on good health and well-being and SDG 13 on climate change. CCU could help meet SDG 13 but would damage other SDGs due to burden-shifting to human health, water scarcity, and minerals and metals depletion impacts. The collateral damage could be mitigated by judiciously combining fossil and CCU routes with carbon-negative power sources guided by optimisation models incorporating SDGs-based performance criteria explicitly. Our work highlights the importance of embracing the SDGs in technology development to sensibly support the low-carbon energy and chemicals transition.
Collapse
Affiliation(s)
- Iasonas Ioannou
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Ángel Galán-Martín
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén Campus Las Lagunillas s/n 23071 Jaén Spain
- Center for Advanced Studies in Earth Sciences, Energy and Environment. Universidad de Jaén Campus Las Lagunillas s/n 23071 Jaén Spain
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Gonzalo Guillén-Gosálbez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
9
|
|
10
|
Implementation of Cross‐Industrial Networks Targeting CO
2
Reduction from a Systemic Approach. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
To Adopt CCU Technology or Not? An Evolutionary Game between Local Governments and Coal-Fired Power Plants. SUSTAINABILITY 2022. [DOI: 10.3390/su14084768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Carbon dioxide capture and utilization (CCU) technology is a significant means by which China can achieve its ambitious carbon neutrality goal. It is necessary to explore the behavioral strategies of relevant companies in adopting CCU technology. In this paper, an evolutionary game model is established in order to analyze the interaction process and evolution direction of local governments and coal-fired power plants. We develop a replicator dynamic system and analyze the stability of the system under different conditions. Based on numerical simulation, we analyze the impact of key parameters on the strategies of stakeholders. The simulation results show that the unit prices of hydrogen and carbon dioxide derivatives have the most significant impact: when the unit price of hydrogen decreases to 15.9 RMB/kg or the unit price of carbon dioxide derivatives increases to 3.4 RMB/kg, the evolutionary stabilization strategy of the system changes and power plants shift to adopt CCU technology. The results of this paper suggest that local governments should provide relevant support policies and incentives for CCU technology deployment, as well as focusing on the synergistic development of CCU technology and renewable energy hydrogen production technology.
Collapse
|
12
|
Gao Z, Liang L, Zhang X, Xu P, Sun J. Facile One-Pot Synthesis of Zn/Mg-MOF-74 with Unsaturated Coordination Metal Centers for Efficient CO 2 Adsorption and Conversion to Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61334-61345. [PMID: 34905916 DOI: 10.1021/acsami.1c20878] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic metal-organic frameworks (MOFs) containing two different inorganic metal nodes exhibited enhanced properties in CO2 adsorption and catalytic conversion compared with the corresponding monometallic MOFs. In this work, the novel bimetallic Zn/Mg-MOF-74 with different ratios of Zn/Mg was synthesized successfully by a facile one-pot method. Powder X-ray diffraction, Fourier transform infrared, X-ray photoelectron spectroscopy, scanning electron microscopy/transmission electron microscopy, N2/CO2 adsorption/desorption, and CO2/NH3-temperature-programmed desorption techniques thoroughly characterized the structure, morphology, and physicochemical properties of Zn/Mg-MOF-74. Besides the excellent CO2 adsorption capacity (128.3 cm3/g at 273 K and 1 bar), Zn0.75Mg0.25-MOF-74 also showed efficient catalytic activity for the cycloaddition reaction of CO2 and epoxides to cyclic carbonates with outstanding yield and selectivity all over 99% under solvent-free and mild conditions (60 °C, 0.8 MPa), outperforming the mechanical combination of Zn-MOF-74 and Mg-MOF-74 with the same metal contents, indicating the synergistic effect of two adjacent metals in bimetallic MOF-74. In addition, the Zn0.75Mg0.25-MOF-74 catalyst could be recycled for at least five runs and possess good versatility to various substrates. Finally, a feasible mechanism of the catalytic reaction was proposed. Thanks to the high surface area, affinity toward CO2, and accessibility of multiple active sites of the unsaturated metal centers as active Lewis acid sites and O atoms from Zn-O and Mg-O as Lewis basic sites, efficient chemical fixation of CO2 to cyclic carbonates was obtained over the Zn0.75Mg0.25-MOF-74 catalyst. The present facile synthesis and application of a robust bimetallic MOF catalyst offered a competitive avenue for the integration of CO2 adsorption and CO2 catalytic conversion.
Collapse
Affiliation(s)
- Ziyu Gao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
13
|
|
14
|
Schuler E, Stoop M, Shiju NR, Gruter GJM. Stepping Stones in CO 2 Utilization: Optimizing the Formate to Oxalate Coupling Reaction Using Response Surface Modeling. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:14777-14788. [PMID: 34777925 PMCID: PMC8579406 DOI: 10.1021/acssuschemeng.1c04539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
One of the crucial steps for the conversion of CO2 into polymers is the catalytic formate to oxalate coupling reaction (FOCR). Formate can be obtained from the (electro)catalytic reduction of CO2, while oxalate can be further processed toward building blocks for modern plastics. In its 175 year history, multiple parameters for the FOCR have been suggested to be of importance. Yet, no comprehensive understanding considering all those parameters is available. Hence, we aim to assess the relative impact of all those parameters and deduce the optimal reaction conditions for the FOCR. We follow a systematic two-stage approach in which we first evaluate the most suitable categorical variables of catalyst, potential poisons, and reaction atmospheres. In the second stage, we evaluate the impact of the continuous variables temperature, reaction time, catalyst loading, and active gas removal within previously proposed ranges, using a response surface modeling methodology. We found KOH to be the most suitable catalyst, and it allows yields of up to 93%. Water was found to be the strongest poison, and its efficient removal increased oxalate yields by 35%. The most promising reaction atmosphere is hydrogen, with the added benefit of being equal to the gas produced in the reaction. The temperature has the highest impact on the reaction, followed by reaction time and purge rates. We found no significant impact of catalyst loading on the reaction within the ranges reported previously. This research provides a clear and concise multiparameter optimization of the FOCR and provides insight into the reaction cascade involving the formation and decomposition of oxalates from formate.
Collapse
Affiliation(s)
- Eric Schuler
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Marit Stoop
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - N. Raveendran Shiju
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
| | - Gert-Jan M. Gruter
- Van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands
- Avantium
Chemicals BV, Zekeringstraat
29, 1014 BV Amsterdam, The Netherlands
| |
Collapse
|
15
|
Proietto F, Patel U, Galia A, Scialdone O. Electrochemical conversion of CO2 to formic acid using a Sn based electrode: A critical review on the state-of-the-art technologies and their potential. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Somoza-Tornos A, Guerra OJ, Crow AM, Smith WA, Hodge BM. Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO 2: a review. iScience 2021; 24:102813. [PMID: 34337363 PMCID: PMC8313747 DOI: 10.1016/j.isci.2021.102813] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The electrochemical reduction of CO2 has emerged as a promising alternative to traditional fossil-based technologies for the synthesis of chemicals. Its industrial implementation could lead to a reduction in the carbon footprint of chemicals and the mitigation of climate change impacts caused by hard-to-decarbonize industrial applications, among other benefits. However, the current low technology readiness levels of such emerging technologies make it hard to predict their performance at industrial scales. During the past few years, researchers have developed diverse techniques to model and assess the electrochemical reduction of CO2 toward its industrial implementation. The aim of this literature review is to provide a comprehensive overview of techno-economic and life cycle assessment methods and pave the way for future assessment approaches. First, we identify which modeling approaches have been conducted to extend analysis to the production scale. Next, we explore the metrics used to evaluate such systems, regarding technical, environmental, and economic aspects. Finally, we assess the challenges and research opportunities for the industrial implementation of CO2 reduction via electrolysis.
Collapse
Affiliation(s)
- Ana Somoza-Tornos
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
| | | | - Allison M. Crow
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Wilson A. Smith
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Bri-Mathias Hodge
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- National Renewable Energy Laboratory, Golden, CO, USA
| |
Collapse
|
17
|
Ioannou I, D'Angelo SC, Galán-Martín Á, Pozo C, Pérez-Ramírez J, Guillén-Gosálbez G. Process modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels. REACT CHEM ENG 2021; 6:1179-1194. [PMID: 34262788 PMCID: PMC8240698 DOI: 10.1039/d0re00451k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Abstract
Meeting the sustainable development goals and carbon neutrality targets requires transitioning to cleaner products, which poses significant challenges to the future chemical industry. Identifying alternative pathways to cover the growing demand for chemicals and fuels in a more sustainable manner calls for close collaborative programs between experimental and computational groups as well as new tools to support these joint endeavours. In this broad context, we here review the role of process systems engineering tools in assessing and optimising alternative chemical production patterns based on renewable resources, including renewable carbon and energy. The focus is on the use of process modelling and optimisation combined with life cycle assessment methodologies and network analysis to underpin experiments and generate insight into how the chemical industry could optimally deliver chemicals and fuels with a lower environmental footprint. We identify the main gaps in the literature and provide directions for future work, highlighting the role of PSE concepts and tools in guiding the future transition and complementing experimental studies more effectively.
Collapse
Affiliation(s)
- Iasonas Ioannou
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Sebastiano Carlo D'Angelo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Ángel Galán-Martín
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Carlos Pozo
- LEPAMAP Research Group, University of Girona C/Maria Aurèlia Capmany 61 17003 Girona Spain
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Gonzalo Guillén-Gosálbez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
18
|
Proietto F, Galia A, Scialdone O. Towards the Electrochemical Conversion of CO
2
to Formic Acid at an Applicative Scale: Technical and Economic Analysis of Most Promising Routes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Federica Proietto
- Dipartimento di Ingegneria Università degli Studi di Palermo Viale delle Scienze, Ed.6 90128 Palermo Italy
| | - Alessandro Galia
- Dipartimento di Ingegneria Università degli Studi di Palermo Viale delle Scienze, Ed.6 90128 Palermo Italy
| | - Onofrio Scialdone
- Dipartimento di Ingegneria Università degli Studi di Palermo Viale delle Scienze, Ed.6 90128 Palermo Italy
| |
Collapse
|
19
|
Schuler E, Ermolich PA, Shiju NR, Gruter GM. Monomers from CO 2 : Superbases as Catalysts for Formate-to-Oxalate Coupling. CHEMSUSCHEM 2021; 14:1517-1523. [PMID: 33427392 PMCID: PMC8048464 DOI: 10.1002/cssc.202002725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Indexed: 05/09/2023]
Abstract
An interesting contribution to solving the climate crisis involves the use of CO2 as a feedstock for monomers to produce sustainable plastics. In the European Horizon 2020 project "OCEAN" a continuous multistep process from CO2 to oxalic acid and derivatives is developed, starting with the electrochemical reduction of CO2 to potassium formate. The subsequent formate-to-oxalate coupling is a reaction that has been studied and commercially used for over 150 years. With the introduction of superbases as catalysts under moisture-free conditions unprecedented improvements were shown for the formate coupling reaction. With isotopic labelling experiments the presence of carbonite as an intermediate was proven during the reaction, and with a unique operando set-up the kinetics were studied. Ultimately, the required reaction temperature could be dropped from 400 to below 200 °C, and the reaction time could be reduced from 10 to 1 min whilst achieving 99 % oxalate yield.
Collapse
Affiliation(s)
- Eric Schuler
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdam (TheNetherlands
| | - Pavel A. Ermolich
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdam (TheNetherlands
| | - N. Raveendran Shiju
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdam (TheNetherlands
| | - Gert‐Jan M. Gruter
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdam (TheNetherlands
- Avantium Chemicals BVZekeringstraat 291014 BVAmsterdam (TheNetherlands
| |
Collapse
|
20
|
Ghiat I, Al-Ansari T. A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101432] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Ioannou I, D'Angelo SC, Martín AJ, Pérez-Ramírez J, Guillén-Gosálbez G. Hybridization of Fossil- and CO 2 -Based Routes for Ethylene Production using Renewable Energy. CHEMSUSCHEM 2020; 13:6370-6380. [PMID: 32662586 DOI: 10.1002/cssc.202001312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Carbon capture and utilization (CCU) has recently gained broad interest in the chemical industry. Direct electro- and thermocatalytic technologies are currently the focus of intense research, where the former employs electricity directly to reduce the CO2 molecule, while the latter comprises hydrogenation of CO2 in tandem with electrocatalytic water splitting. So far, it remains unclear which of the two is superior, yet this information is considered critical. Focusing on the platform chemical ethylene, the two CCU routes were compared using state-of-the-art performances with the fossil technology considering different power and CO2 sources. The thermo-route was found to be, at present, economically and environmentally better, yet under the same electrolyzer efficiencies, the electro-route would become superior. CCU routes could substantially improve the carbon footprint of the fossil ethylene (by 236 %) while decreasing at the same time impacts on human health, ecosystem quality, and resources (64, 140, and 80 %, respectively). However, they are economically unattractive even when considering externalities (indirect cost of environmental impacts), that is, 1.7- to 3.9-fold more expensive compared to the current fossil-based analogue. Acknowledging this limitation, the concept of hybridization was applied as a means to smooth the transition towards more sustainable chemicals. Accordingly, it was found that an optimal hybrid plant could produce carbon-neutral (cradle-to-gate) ethylene with a premium of only 30 % over the current market prices by judiciously combining CCU routes with fossil technologies.
Collapse
Affiliation(s)
- Iasonas Ioannou
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Sebastiano C D'Angelo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Antonio J Martín
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Gonzalo Guillén-Gosálbez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| |
Collapse
|
22
|
Hoehn D, Laso J, Cristóbal J, Ruiz-Salmón I, Butnar I, Borrion A, Bala A, Fullana-i-Palmer P, Vázquez-Rowe I, Aldaco R, Margallo M. Regionalized Strategies for Food Loss and Waste Management in Spain under a Life Cycle Thinking Approach. Foods 2020; 9:foods9121765. [PMID: 33260541 PMCID: PMC7760710 DOI: 10.3390/foods9121765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Food loss and waste (FLW) has become a central concern in the social and political debate. Simultaneously, using FLW as a bioenergy source could significantly contribute to closing the carbon cycle by reintroducing energy into the food supply chain. This study aims to identify best strategies for FLW management in each of the 17 regions in Spain, through the application of a Life Cycle Assessment. To this end, an evaluation of the environmental performance over time between 2015 and 2040 of five different FLW management scenarios implemented in a framework of (i) compliance and (ii) non-compliance with the targets of the Paris Agreement was performed. Results revealed savings in the consumption of abiotic resources in those regions in which thermal treatment has a strong presence, although their greenhouse gas (GHG) emissions in a scenario of compliance with climate change targets are higher. In contrast, scenarios that include anaerobic digestion and, to a lesser extent those applying aerobic composting, present lower impacts, including climate change, suggesting improvements of 20-60% in non-compliance and 20-80% in compliance with Paris Agreement targets, compared to the current scenarios.
Collapse
Affiliation(s)
- Daniel Hoehn
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda, De Los Castros, s.n., 39005 Santander, Spain; (D.H.); (J.L.); (J.C.); (I.R.-S.); (M.M.)
| | - Jara Laso
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda, De Los Castros, s.n., 39005 Santander, Spain; (D.H.); (J.L.); (J.C.); (I.R.-S.); (M.M.)
| | - Jorge Cristóbal
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda, De Los Castros, s.n., 39005 Santander, Spain; (D.H.); (J.L.); (J.C.); (I.R.-S.); (M.M.)
| | - Israel Ruiz-Salmón
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda, De Los Castros, s.n., 39005 Santander, Spain; (D.H.); (J.L.); (J.C.); (I.R.-S.); (M.M.)
| | - Isabela Butnar
- Institute for Sustainable Resources, University College of London, Central House, 14 Upper Woburn Place, London WC1H 0NN, UK;
| | - Aiduan Borrion
- Department of Civil, Environmental and Geomatic Engineering (CEGE), University College London, London WC1E 6DE, UK;
| | - Alba Bala
- UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç International (ESCI-UPF), Pg. Pujades 1, 08003 Barcelona, Spain; (A.B.); (P.F.-i-P.)
| | - Pere Fullana-i-Palmer
- UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç International (ESCI-UPF), Pg. Pujades 1, 08003 Barcelona, Spain; (A.B.); (P.F.-i-P.)
| | - Ian Vázquez-Rowe
- Peruvian Life Cycle Assessment and Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, Lima 15088, Peru;
| | - Rubén Aldaco
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda, De Los Castros, s.n., 39005 Santander, Spain; (D.H.); (J.L.); (J.C.); (I.R.-S.); (M.M.)
- Correspondence:
| | - María Margallo
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda, De Los Castros, s.n., 39005 Santander, Spain; (D.H.); (J.L.); (J.C.); (I.R.-S.); (M.M.)
| |
Collapse
|
23
|
|
24
|
Santos A, Barbosa-Póvoa A, Carvalho A. Life cycle assessment in chemical industry – a review. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Thonemann N, Schulte A. From Laboratory to Industrial Scale: A Prospective LCA for Electrochemical Reduction of CO 2 to Formic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12320-12329. [PMID: 31603653 DOI: 10.1021/acs.est.9b02944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
CO2-based production technologies unveil the possibility of sustainable production in the chemical industry. However, so-called carbon capture and utilization (CCU) options do not inevitably lead to improved environmental performance, which is especially uncertain for emerging technologies compared to present production practices. Thus, far, emerging CCU technologies have been environmentally assessed with conventional life cycle assessment (LCA). Therefore, this study aims to develop a methodology for applying prospective LCA to emerging production technologies from the laboratory to industrial scale. The developed four-step approach for implementing prospective LCA is applied to the case of electrochemical formic acid (FA) production via supercritical CO2 (scCO2) under consideration of different reactor designs to guide process engineers from an environmental standpoint. While using prospective LCA, the underlying modeling approach relies on consequential LCA (cLCA). Fourteen out of the 15 analyzed impact categories (IC) reveal lower environmental impacts for the scale-ups, which are based on the best-case assumptions and on a flow-through regime compared to the conventional FA production. Nevertheless, the impacts of the scale-ups that are based on a batch reactor (BR) and a three compartment cell (TCC) are higher than for the best case and the flow-through reactor scale-up.
Collapse
Affiliation(s)
- Nils Thonemann
- Fraunhofer Institute for Environmental , Safety, and Energy Technology UMSICHT , Osterfelderstraße 3 , 46047 Oberhausen , Germany
| | - Anna Schulte
- Fraunhofer Institute for Environmental , Safety, and Energy Technology UMSICHT , Osterfelderstraße 3 , 46047 Oberhausen , Germany
| |
Collapse
|