1
|
Xiang Z, Chen X, Li H, Zhu B, Bai J, Huang X. Iron-carbon micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification treating low carbon/nitrogen mariculture wastewater. ENVIRONMENTAL RESEARCH 2025; 269:120796. [PMID: 39800298 DOI: 10.1016/j.envres.2025.120796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Considering the unsatisfied nitrogen (N) and phosphorus (P) treatment performance of mariculture wastewater caused by low carbon/nitrogen (C/N), a novel iron-carbon (Fe-C) micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification (HNAD) process was proposed to enhance the N and P elimination. Results revealed that total nitrogen (TN) removal and total phosphorus (TP) removal efficiencies in Fe-C filter with HNAD (R-Fe) increased by 76.1% and 113.3% compared to filter packed with ceramsite (R-C). Fe-C micro-electrolysis reaction led to the decrease of microbial diversity and richness, the enrichment of heterotrophic nitrification aerobic denitrification bacteria (HNADB) and HNAD genes (napA and napB) by 7.3 times and 56.3%. Besides, a synergistic effect existed that Fe-C substances not only further accumulated main functional genes associated with the transformation of N, carbon (C) and iron (Fe), but also indirectly enhanced electron transport system activity and ATP generation, thus resulting in elevating TN removal.
Collapse
Affiliation(s)
- Zhuangzhuang Xiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xi Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Hui Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Baoxing Zhu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
2
|
Pyo M, Kim D, Kim HS, Hwang MH, Lee S, Lee EJ. Sulfur powder utilization and denitrification efficiency in an elemental sulfur-based membrane bioreactor with coagulant addition. WATER RESEARCH 2025; 272:122882. [PMID: 39674135 DOI: 10.1016/j.watres.2024.122882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
The integration of elemental sulfur-based autotrophic denitrification with membrane bioreactor (MBR) technology offers a cost-effective solution for nitrate removal; however, stable operation demands efficient sulfur utilization and phosphorus management. This study explores sulfur consumption dynamics and the impacts of coagulant injection on denitrification efficiency. Sulfur consumption was closely correlated with nitrate removal rates, highlighting the critical role of stoichiometric sulfur availability for sustained denitrification. While coagulant addition enhanced phosphorus removal, excessive dosing impaired elemental sulfur-based microbial activity, reducing nitrate removal efficiency and increasing nitrite accumulation. Notably, microbial community analysis revealed a decline in the abundance of key sulfur-oxidizing bacteria, such as Sulfurimonas, under high coagulant concentrations. These findings emphasize the need for optimized sulfur and coagulant dosing strategies to balance phosphorus and nitrate removal while preserving microbial diversity and reactor stability. This study provides practical insights into operational parameters for efficient and sustainable ESAD-MBR processes.
Collapse
Affiliation(s)
- Minsu Pyo
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea; Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440746, Republic of Korea
| | - Dongyeon Kim
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea
| | - Hyung Soo Kim
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440746, Republic of Korea
| | - Moon-Hyun Hwang
- Institute of Conversions Science, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea
| | - Sangyoup Lee
- Institute of Conversions Science, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea.
| | - Eui-Jong Lee
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
3
|
Desiriani R, Kresnowati MTAP, Julian H, Wenten IG. Membrane-based processes for xylitol production from oil palm empty fruit bunches hydrolysate fermentation broth. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:541-550. [PMID: 39917352 PMCID: PMC11794734 DOI: 10.1007/s13197-024-06044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 02/09/2025]
Abstract
Oil palm empty fruit bunch (OPEFB) is one of the wastes that has high hemicellulose composition and potentially processed into xylitol via biotransformation route. This study explores the effectiveness of ultrafiltration (UF) and nanofiltration (NF) in purifying and concentrating xylitol from OPEFB hydrolysate-fermentation broth. Various UF membranes, including UF1 (MWCO 150 kDa), UF2-Psf (MWCO 20 kDa), and UF2-PVDF (MWCO 50 kDa), were used, along with NF (MWCO 150 Da). Pre-treating the broth before UF was crucial to remove foulants such as microorganisms and macromolecules. While microfiltration (MF) achieved 100% microorganism rejection, its flux declined rapidly, necessitating feed centrifugation before MF. The choice of UF membrane MWCO significantly influenced xylitol retention, with UF2-PSf leading to substantial xylitol loss and UF2-PVDF showed promising results. NF has shown its applicability in concentrating xylitol in the UF permeate as much as 4 times higher, while permeating 90% of the acetic adic in the solution. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06044-7.
Collapse
Affiliation(s)
- Ria Desiriani
- Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl.Ganesha 10, Bandung, 40132 West Java Indonesia
| | - Made Tri Ari Penia Kresnowati
- Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl.Ganesha 10, Bandung, 40132 West Java Indonesia
- Food Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jatinangor Campus, Jln Let. Jend. Purn.Dr.(HC) Mashudi No 1. Jln Raya Jatinangor KM 20.75, Sumedang, Indonesia
| | - Helen Julian
- Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl.Ganesha 10, Bandung, 40132 West Java Indonesia
- Food Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jatinangor Campus, Jln Let. Jend. Purn.Dr.(HC) Mashudi No 1. Jln Raya Jatinangor KM 20.75, Sumedang, Indonesia
| | - I Gede Wenten
- Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl.Ganesha 10, Bandung, 40132 West Java Indonesia
| |
Collapse
|
4
|
Song Z, Liao R, Su X, Zhang X, Zhao Z, Sun F. Development of a novel three-dimensional biofilm-electrode system (3D-BES) loaded with Fe-modified biochars for enhanced pollutants removal in landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166980. [PMID: 37699484 DOI: 10.1016/j.scitotenv.2023.166980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Different mass ratio iron (Fe)-loaded biochars (FeBCs) were prepared from food waste and used in the three-dimensional biofilm-electrode systems (3D-BES) as particular electrodes for landfill leachate treatment. Compared to the unmodified biochar (BC), specific surface area of Fe-loaded biochars (FeBC-3 with a Fe: biochar of 0.2:1) increased from 63.01 m2/g to 184.14 m2/g, and pore capacity increased from 0.038 cm3/g to 0.111 cm3/g. FeBCs provided more oxygen-containing functional groups and exhibited excellent redox properties. Installed with FeBC-3 as particular electrode, both NH4+-N and chemical oxygen demand COD removals in 3D-BESs were well fitted with the pseudo-first-order model, with the maximum removal efficiencies of 98.6 % and 95.5 %, respectively. The batch adsorption kinetics experiments confirmed that the maximum NH4+-N (7.5 mg/g) and COD (21.8 mg/g) adsorption capacities were associated closely with the FeBC-3 biochar. In contrast to the 3D-BES with the unmodified biochar, Fe-loaded biochars significantly increased the abundance of microorganisms being capable of removing organics and ammonia. Meanwhile, the increased content of dehydrogenase (DHA) and electron transport system activity (ETSA) evidenced that FeBCs could enhance microbial internal activities and regulate electron transfer process among functional microorganisms. Consequently, it is concluded that Fe-loaded biochar to 3D-BES is effective in enhancing pollutant removals in landfill leachate and provided a reliable and effective strategy for refractory wastewater treatment.
Collapse
Affiliation(s)
- Zi Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zilong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
5
|
Gong S, Cai Q, Hong P, Cai P, Xiao B, Wang C, Wu X, Tian C. Promoting heterotrophic denitrification of Pseudomonas hunanensis strain PAD-1 using pyrite: A mechanistic study. ENVIRONMENTAL RESEARCH 2023; 234:116591. [PMID: 37423367 DOI: 10.1016/j.envres.2023.116591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Denitrification is critical for removing nitrate from wastewater, but it typically requires large amounts of organic carbon, which can lead to high operating costs and secondary environmental pollution. To address this issue, this study proposes a novel method to reduce the demand for organic carbon in denitrification. In this study, a new denitrifier, Pseudomonas hunanensis strain PAD-1, was obtained with properties for high efficiency nitrogen removal and trace N2O emission. It was also used to explore the feasibility of pyrite-enhanced denitrification to reduce organic carbon demand. The results showed that pyrite significantly improved the heterotrophic denitrification of strain PAD-1, and optimal addition amount was 0.8-1.6 g/L. The strengthening effect of pyrite was positively correlated with carbon to nitrogen ratio, and it could effectively reduce demand for organic carbon sources and enhance carbon metabolism of strain PAD-1. Meanwhile, the pyrite significantly up-regulated electron transport system activity (ETSA) of strain PAD-1 by 80%, nitrate reductase activity by 16%, Complex III activity by 28%, and napA expression by 5.21 times. Overall, the addition of pyrite presents a new avenue for reducing carbon source demand and improving the nitrate harmless rate in the nitrogen removal process.
Collapse
Affiliation(s)
- Shihao Gong
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 100872, Hong Kong
| | - Qijia Cai
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Pei Hong
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Pei Cai
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, 650228, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, 650228, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, 650228, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, 650228, China.
| |
Collapse
|
6
|
Li C, Du X, Huang C, Zhang Z. Effects of High Pharmaceutical Concentrations in Domestic Wastewater on Membrane Bioreactor Treatment Systems: Performance and Microbial Community. MEMBRANES 2023; 13:650. [PMID: 37505016 PMCID: PMC10383461 DOI: 10.3390/membranes13070650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Despite pharmaceuticals being widely detected in water-bodies worldwide, what remain unclear are the effects of high pharmaceutical concentrations on the treatment efficiency of biological wastewater treatment processes, such as membrane bioreactor (MBR) systems. This study investigated the efficiency of MBR technology in the treatment of synthetic wastewater containing a mixture of five typical pharmaceuticals (ofloxacin, sulfamethoxazole, sulfamethylthiadiazole, carbamazepine and naproxen) with a total concentration of 500 µg/L. Both the control MBR (MBRc) without pharmaceutical dosing and the MBR operated with high influent pharmaceutical concentrations (MBRe) were operated under room temperature with the same hydraulic retention time of 11 h and the same sludge retention time of 30 d. The removal efficiency rates of total nitrogen and total phosphorus were 83.2% vs. 90.1% and 72.6% vs. 57.8% in the MBRc vs. MBRe systems, and both MBRs achieved >98% removal of organics for a 180-day period. The floc size decreased, and membrane fouling became more severe in the MBRe system. Microbial diversity increased in the MBRe system and the relative abundances of functional microbe differed between the two MBRs. Furthermore, the total relative abundances of genes involved in glycolysis, assimilating nitrate reduction and nitrification processes increased in the MBRe system, which could account for the higher organics and nitrogen removal performance. This work provides insights for MBR operation in wastewater treatment with high pharmaceutical concentrations.
Collapse
Affiliation(s)
- Chengyue Li
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xin Du
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuyi Huang
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Cheng Q, Tian H, Guo X, Feng S, Du E, Peng M, Zhang J. Advanced synergetic nitrogen removal of municipal wastewater using oxidation products of refractory organic matters in secondary effluent by biogenic manganese oxides as carbon source. WATER RESEARCH 2023; 241:120163. [PMID: 37276654 DOI: 10.1016/j.watres.2023.120163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Due to the high operational cost and secondary pollution of the conventional advanced nitrogen removal of municipal wastewater, a novel concept and technique of advanced synergetic nitrogen removal of partial-denitrification anammox and denitrification was proposed, which used the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by biogenic manganese oxides (BMOs) as carbon source. When the influent NH4+-N in the denitrifying filter was about 1.0, 2.0, 3.0, 4.0, 5.0 and 7.0 mg/L, total nitrogen (TN) in the effluent decreased from about 22 mg/L to 11.00, 7.85, 6.85, 5.20, 4.15 and 2.09 mg/L, and the corresponding removal rate was 49.15, 64.82, 69.40, 76.70, 81.36 and 90.58%, respectively. The proportional contribution of the partial-denitrification anammox pathway to the TN removal was 12.00, 26.45, 39.70, 46.04, 54.97 and 64.01%, and the actual CODcr consumption of removing 1 mg TN was 0.75, 1.43, 1.26, 1.17, 1.08 and 0.99 mg, respectively, which was much lower than the theoretical CODcr consumption of denitrification. Furthermore, CODcr in the effluent decreased to 8.12 mg/L with a removal rate of 72.40%, and the removed organic matters were mainly non-fluorescent organic matters. Kinds of denitrifying bacteria, anammox bacteria, hydrolytic bacteria and manganese oxidizing bacteria (MnOB) were identified in the denitrifying filter, which demonstrated that the advanced synergetic nitrogen removal was achieved. This novel technology presented the advantages of high efficiency of TN and CODcr removal, low operational cost and no secondary pollution.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China.
| | - Hui Tian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China.
| | - Shanshan Feng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
8
|
Cheng Q, Liu Z, Huang Y, Feng S, Du E, Peng M, Zhang J. Advanced nitrogen removal performance and microbial community structure of a lab-scale denitrifying filter with in-situ formation of biogenic manganese oxides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117299. [PMID: 36642053 DOI: 10.1016/j.jenvman.2023.117299] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Advanced nitrogen removal faces the challenges of high operational cost resulted from the additional carbon source and secondary pollution caused by inaccurate carbon source dosage in municipal wastewater. To address these problems, a novel carbon source was developed, which was the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by in-situ generated biogenic manganese oxides (BMOs) in the denitrifying filter. In the steady phase, the effluent chemical oxygen demand (CODcr), NO3--N and total nitrogen (TN) in the denitrifying filter 2# with BMOs was 11.27, 9.03 and 10.36 mg/L, and the corresponding removal efficiency was 54.79%, 51.85% and 48.03%, respectively, which was significantly higher than those in the control denitrifying filter 1# that the removal efficiency of CODcr, NO3--N and TN was only 32.30%, 28.58% and 29.36%, respectively. Kinds of denitrifying bacteria (Candidatus Competibacter, Defluviicoccus, Dechloromonas, Candidatus Competibacter, Dechloromonas, Pseudomonas, Thauera, Acinetobacter, Denitratisoma, Anaerolineae and Denitratisoma) and anammox bacteria (Pirellula, Gemmata, Anammoximicrobium and Brocadia) were identified in the denitrifying filters 1# and 2#, which explained why the actual CODcr consumption (1.55 and 1.44 mg) of reducing 1 mg NO3--N was much lower than the theoretical CODcr consumption. While manganese oxidizing bacteria (MnOB, Bacillus, Crenothrix and Pedomicrobium) was only identified in the denitrifying filter 2#. This novel technology presented the advantages of no additional carbon source, low operational cost and no secondary pollution. Therefore, the novel technology has superlative application value and broad application prospect.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China; College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China.
| | - Zongyang Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Shanshan Feng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
9
|
Huang X, Yao K, Yu J, Dong W, Zhao Z. Nitrogen removal performance and microbial characteristics during simultaneous chemical phosphorus removal process using Fe 3. BIORESOURCE TECHNOLOGY 2022; 363:127972. [PMID: 36122847 DOI: 10.1016/j.biortech.2022.127972] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the effect of Fe3+ on nitrogen (N) removal and associated microbial characteristics during simultaneous chemical phosphorus (P) removal, a sequencing batch reactor was used to analyze the changes in the microbial community and metabolic pathways caused by Fe3+ addition. Results demonstrated that Fe3+ promoted ammonia nitrogen (NH4+-N) removal and inhibited denitrification process, and increased the sludge particles (D50) and the biomass per sludge particle size. Furthermore, the abundances of denitrifying bacteria (Haliangium and Terrimonas) and biological phosphorus removing bacteria (Halaingium, norank_f_Saprospiraceae and SM1A02) were decreased. On the contrary, the increase of nitrifying bacteria abundance and the coding genes of nitrification-related enzymes confirmed the promotion for nitrification with Fe3+ addition. Besides, Fe3+ inhibited the interspecific relationship between denitrifying bacteria genera and other genera to reduce denitrification efficiency.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Kai Yao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zilong Zhao
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
10
|
Li C, Maqbool T, Kang H, Zhang Z. In-Situ Sludge Reduction Performance and Mechanism in Sulfidogenic Anoxic-Oxic-Anoxic Membrane Bioreactors. MEMBRANES 2022; 12:865. [PMID: 36135885 PMCID: PMC9502630 DOI: 10.3390/membranes12090865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The excess sludge generated from the activated sludge process remains a big issue. Sustainable approaches that achieve in situ sludge reduction with satisfactory effluent quality deserve attention. This study explored the sludge reduction performance of sulfidogenic anoxic-oxic-anoxic (AOA) membrane bioreactors. The dynamics of the microbial community and metabolic pathways were further analyzed to elucidate the internal mechanism of sludge reduction. Compared with the conventional anoxic-oxic-oxic membrane bioreactor (MBRcontrol), AOAS150 (150 mg/L SO42- in the membrane tank) and AOAS300 (300 mg/L SO42- in the membrane tank) reduced biomass production by 40.39% and 47.45%, respectively. The sulfide reduced from sulfate could enhance the sludge decay rate and decrease sludge production. Extracellular polymeric substances (EPSs) destruction and aerobic lysis contributed to sludge reduction in AOA bioreactors. The relative abundance of Bacteroidetes (phylum), sulfate-reducing bacteria (SRB, genus), and Ignavibacterium (genus) increased in AOA bioreactors compared with MBRcontrol. Our metagenomic analysis indicated that the total enzyme-encoding genes involved in glycolysis, denitrification, and sulfate-reduction processes decreased over time in AOAS300 and were lower in AOAS300 than AOAS150 at the final stage of operation. The excess accumulation of sulfide in AOAS300 may inactive the functional bacteria, and sulfide inhibition induced sludge reduction.
Collapse
Affiliation(s)
- Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongyu Kang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
He S, Zhao Z, Tian Z, Xu C, Liu Y, He D, Zhang Y, Zheng M. Comammox bacteria predominate among ammonia-oxidizing microorganisms in municipal but not in refinery wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115271. [PMID: 35594823 DOI: 10.1016/j.jenvman.2022.115271] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Comammox bacteria have proved to be one dominant and significant ammonia-oxidizing microorganisms (AOMs) in municipal wastewater treatment plants (WWTPs), however, it still remains unknown about their abundance and diversity in industrial WWTPs. In this study, activated sludge samples from 8 municipal WWTPs and 6 industrial WWTPs treating refinery wastewater were taken and analyzed using qPCR and amoA gene sequencing. Intriguingly, quantitative real-time PCR (qPCR) results suggested that comammox bacteria had a higher numerical abundance compared with ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in municipal WWTPs but did not in refinery WWTPs. Moreover, comammox amoA sequences obtained from high-throughput sequencing were retrieved from all the 8 municipal samples but only 1 industrial sample. Further phylogenetic analysis revealed that N. nitrosa cluster accounted for as high as 79.56% of the total comammox affiliated sequences, which was the most numerically abundant comammox species in municipal WWTPs. This study provided new insights into the abundance and diversity of comammox bacteria in the biological nitrification process in municipal and refinery wastewater treatment systems.
Collapse
Affiliation(s)
- Shishi He
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Zhirong Zhao
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Zhichao Tian
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Chi Xu
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Yuan Liu
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Da He
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, China
| | - Yinghui Zhang
- Guangxi Huantou Water Group Co. LTD, Nanning, 530015, China
| | - Maosheng Zheng
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
12
|
Zhang H, Zhang X, Liu J, Zhang L, Li G, Zhang Z, Gong Y, Li H, Li J. Coal gangue modified bioretention system for runoff pollutants removal and the biological characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115044. [PMID: 35427943 DOI: 10.1016/j.jenvman.2022.115044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, coal gangue (CG) was applied as media in bioretention system to remove runoff pollutant. CG modified bioretention systems show good removal efficiency towards runoff pollutant due to the high adsorption capacity of CG. The removal of total phosphorus (TP), total nitrogen (TN), ammonia (NH4+-N) and chemical oxygen demand (COD) by CG modified bioretention systems was influenced by diverse rainfall conditions including rainfall concentration, recurrence period and drying period, and their removal rate ranged 94-99%, 30-70%, 83-97% and 33-86%, respectively. The effluent concentration of Zn, Pb and Cu was as low as 3.14-10.99 μg/L, 0.66-2.56 μg/L and 0.60-3.15 μg/L, respectively. In addition, CG could promote the plant heavy metal uptake and thus decrease their accumulation in soil to a certain extent. Meanwhile, Malondialdehyde (MDA) content and peroxidases (POD) activities of plants in CG modified bioretention were lower than that in tradition bioretention, indicating that CG could help plants recovery and lessened the oxidative stress for the negative impact of high heavy metals accumulation. CG-based media alleviated the inhibitory effect of rainwater runoff pollutant accumulation (especially heavy metals) on microbial diversity and the enhancement of the dominant bacteria (such as Proteobacteria and Bacteroidota) could conduce the nutrients removal in the bioretention systems. In overall, this study demonstrated that the CG modified bioretention systems show an excellent removal performance combine with biological effects.
Collapse
Affiliation(s)
- Huakang Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Junfeng Liu
- Department of Water Conservancy and Civil Engineering, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Liming Zhang
- Shanxi Water Affairs Group Construction Investment Co., Ltd, Taiyuan, 030000, China
| | - Guodong Li
- Shanxi Water Affairs Group Construction Investment Co., Ltd, Taiyuan, 030000, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Haiyan Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
13
|
Li C, Maqbool T, Kang H, Zhang Z. In-Situ Sludge Reduction in Membrane-Controlled Anoxic-Oxic-Anoxic Bioreactor: Performance and Mechanism. MEMBRANES 2022; 12:membranes12070659. [PMID: 35877863 PMCID: PMC9321052 DOI: 10.3390/membranes12070659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
Conventional and advanced biological wastewater treatment systems generate excess sludge, which causes socio-economic and environmental issues. This study investigated the performance of membrane-controlled anoxic-oxic-anoxic (AOA) bioreactors for in-situ sludge reduction compared to the conventional anoxic-oxic-oxic membrane bioreactor (MBRcontrol). The membrane units in the AOA bioreactors were operated as anoxic reactors at lower sludge recirculation rates to achieve hydrolysis of extracellular polymeric substances (EPS) and extensive endogenous respiration. Compared to MBRcontrol, the AOA bioreactors operated with 90%, and 80% recirculation rates reduced the sludge growth up to 19% and 30%, respectively. Protein-like components were enriched in AOA bioreactors while fulvic-like components were dominant in MBRcontrol. The growth of Dechloromonas and Zoogloea genra was promoted in AOA bioreactors and thus sludge reduction was facilitated. Metagenomics analysis uncovered that AOA bioreactors exhibited higher proportions of key genes encoding enzymes involved in the glycolysis and denitrification processes, which contributed to the utilization of carbon sources and nitrogen consumption and thus sludge reduction.
Collapse
Affiliation(s)
- Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongyu Kang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
14
|
Effect of modified microbial flocculant on membrane fouling alleviation in a hybrid aerobic granular sludge membrane system for wastewater reuse. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Cui X, Zhang M, Ding Y, Sun S, He S, Yan P. Enhanced nitrogen removal via iron‑carbon micro-electrolysis in surface flow constructed wetlands: Selecting activated carbon or biochar? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152800. [PMID: 34982986 DOI: 10.1016/j.scitotenv.2021.152800] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The iron-assisted autotrophic denitrification was plagued by passivation when introduced in surface flow constructed wetlands (SFCWs). Iron‑carbon micro-electrolysis (Fe/C-M/E) could facilitate the transfer of electrons during the utilization of iron. In this study, iron scraps coupling with activated carbon and biochar were applied to explore the effects of carbon materials on autotrophic denitrification. The results showed that TN removal rate in the SFCW with iron scraps and activated carbon (SFCW-IAC) and the SFCW with iron scraps and biochar (SFCW-IBC) were improved by 31.61% ± 8.18% and 14.09% ± 7.15%, and N2O fluxes were reduced to 2.73 and 3.12 mg m-2 d-1, respectively. The greater iron mass loss rate (0.91%) was confirmed in SFCW-IAC. Microbial community analysis reported that autotrophic denitrification and iron related genera were increased. This study proved that activated carbon was more suitable than biochar to Fe/C-M/E for denitrification enhancement and N2O emission reduction.
Collapse
Affiliation(s)
- Xijun Cui
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - YiJing Ding
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
16
|
Nadeem K, Alliet M, Plana Q, Bernier J, Azimi S, Rocher V, Albasi C. Modeling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151109. [PMID: 34688739 DOI: 10.1016/j.scitotenv.2021.151109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) removal from the domestic wastewater is required to counter the eutrophication in receiving water bodies and is mandated by the regulatory frameworks in several countries with discharge limits within 1-2mgPL-1. Operating at higher sludge retention time (SRT) and higher biomass concentration than the conventional activated sludge process (CASP), membrane bioreactors (MBRs) are able to remove 70-98% phosphorus without addition of coagulant. In full-scale facilities, enhanced biological phosphorus removal (EBPR) is assisted by the addition of metal coagulant to ensure >95% P-removal. MBRs are successfully used for super-large-scale wastewater treatment facilities (capacity >100,000 m3d-1). This paper documents the knowledge of P-removal modeling from lab to full-scale submerged MBRs and assesses the existing mathematical models for P-removal from domestic wastewater. There are still limited studies involving integrated modeling of the MBRs (full/super large-scale), considering the complex interactions among biology, chemical addition, filtration, and fouling. This paper analyses the design configurations and the parameters affecting the biological and chemical P-removal in MBRs to understand the P-removal process sensitivity and their implications for the modeling studies. Furthermore, it thoroughly reviews the applications of bio-kinetic and chemical precipitation models to MBRs for assessing their effectiveness with default stoichiometric and kinetic parameters and the extent to which these parameters have been calibrated/adjusted to simulate the P-removal successfully. It also presents a brief overview and comparison of seven (7) chemical precipitation models, along with a quick comparison of commercially available simulators. In addition to advantages associated with chemical precipitation for P-removal, its role in changing the relative abundance of the microbial community responsible for P-removal and denitrification and the controversial role in fouling mitigation/increase are discussed. Lastly, it encompasses several coagulant dosing control systems and their applications in the pilot to full-scale facilities to save coagulants and optimize the P-removal performance.
Collapse
Affiliation(s)
- Kashif Nadeem
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Queralt Plana
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France
| | - Jean Bernier
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France
| | - Sam Azimi
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France.
| | - Vincent Rocher
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France.
| | - Claire Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
17
|
Zhang B, Mao X, Tang X, Tang H, Zhang B, Shen Y, Shi W. Pre-coagulation for membrane fouling mitigation in an aerobic granular sludge membrane bioreactor: A comparative study of modified microbial and organic flocculants. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Peng Y, He S, Gu X, Yan P, Tang L. Zero-valent iron coupled plant biomass for enhancing the denitrification performance of ecological floating bed. BIORESOURCE TECHNOLOGY 2021; 341:125820. [PMID: 34454238 DOI: 10.1016/j.biortech.2021.125820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The ecological floating bed (EFB) coupled with zero-valent iron (ZVI) is proposed to treat low carbon-to-nitrogen ratio water. However, the application of ZVI is limited by low electron transfer efficiency. Coupling ZVI with carbon materials may improve the performance. In this study, the EFB with ZVI coupled plant biomass (IB-EFB) was established to enhance denitrification performance and compared to the EFB with ZVI coupled activated carbon (IC-EFB). The results showed that higher denitrification rate was observed in IB-EFB (68.8%) than that in IC-EFB (54.40%), which attributed to the synergistic effect of ZVI and plant biomass. Plant biomass also promoted the electron transfer of ZVI which enhanced the Fe(II)-mediated denitrification. High-throughput sequencing analysis revealed that IB-EFB enriched iron-related denitrifying bacteria more effectively than IC-EFB, and obtained high abundance of phototrophic Fe(II)-oxidizing bacteria Rhodopseudomonas (19.26%). Thus coupling ZVI with plant biomass has a potential for enhanced nitrogen removal in EFB.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Li Tang
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China
| |
Collapse
|
19
|
Xiao X, Guo H, Ma F, You S, Geng M, Kong X. Biological mechanism of alleviating membrane biofouling by porous spherical carriers in a submerged membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148448. [PMID: 34146804 DOI: 10.1016/j.scitotenv.2021.148448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, porous spherical carriers were fixed around the hollow fiber membrane module to mitigate membrane biofouling. Two MBRs (R1 without carriers, R2 with carriers) were operated for 31 days under identical operating conditions to investigate the effects of the carriers on the reactor performances, the production of extracellular polymeric substances (EPS), the level of N-acyl-homoserine lactones (AHLs), and the microbial communities. The results showed that the presence of carriers in MBR was conducive to nitrogen removal and decreased the total membrane filtration resistance by about 1.7 times. Slower transmembrane pressure (TMP) rise-up, thinner bio-cakes, lower EPS production, and fewer tryptophan and aromatic proteins substances on the membrane surface were observed in R2. The polysaccharides secretion of EPS in bio-cakes was mainly regulated by C4-HSL and 3OC6-HSL in the presence of carriers. The microbial community analysis revealed that carriers addition reduced the relative abundance of EPS and AHL producing bacteria in the membrane bio-cakes and enriched the accumulation of functional bacteria conducive to nutrient removal in the mixed liquor. This study provided an in-depth understanding for the application of porous spherical carriers to alleviate membrane biofouling.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijuan Guo
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China..
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mingyue Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiangzhen Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
20
|
Ma H, Gao X, Chen Y, Zhu J, Liu T. Fe(II) enhances simultaneous phosphorus removal and denitrification in heterotrophic denitrification by chemical precipitation and stimulating denitrifiers activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117668. [PMID: 34426390 DOI: 10.1016/j.envpol.2021.117668] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Using Fe(II) salt as the precipitant in heterotrophic denitrification achieves improved TP removal, and enhancement in denitrification was often observed. This study aimed to obtain a better understanding of Fe(II)-enhanced denitrification with sufficient carbon source supply. Laboratory-scale experiments were conducted in SBRs with or without Fe(II) addition. Remarkably improved TP removal was experienced. TP removal efficiency in Fe(II) adding reactor was 85.8 ± 3.4%; whereas, that in the reactor without Fe(II) addition was 31.1 ± 2.8%. Besides improved TP removal, better TN removal efficiency (94.1 ± 1.1%) were recorded when Fe(II) was added, and that in the reactor without Fe(II) addition was 89 ± 0.8%. The specific denitrification rate were observed increase by 12.6% when Fe(II) was added. Further microbial analyses revealed increases in the abundances of typical denitrifiers (i.e. Niastella, Opitutus, Dechloromonas, Ignavibacterium, Anaeromyxobacter, Pedosphaera, and Myxococcus). Their associated denitrifying genes, narG, nirS, norB, and nosZ, were observed had 14.2%, 19.4%, 21.6%, and 9.9% elevation, respectively. Such enhancement in denitrification shall not be due to nitrate-dependent ferrous oxidation, which prevails in organic-deficient environments. In an environment with a continuous supply of Fe(II) and plenty of carbon sources, a cycle of denitrifying enzyme activity enhancement in the presence of Fe(II) facilitating nitrogen substrate utilization, stimulating denitrifier metabolism and growth, elevating denitrifying genes abundance, and increasing denitrifying enzymes expression were thought to be responsible for the Fe(II)-enhanced heterotrophic denitrification. Fe(II) salt is often a less expensive precipitant and has recently become attractive for TP removal in wastewater. The findings of this study solidify previous observation of enhancement of both TP and TN removal by adding Fe(II) in denitrification, and would be helpful for developing cost-effective pollutant removal processes.
Collapse
Affiliation(s)
- Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Xinlei Gao
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; Guangdong Water Co., Ltd, Shenzhen, 518021, China
| | - Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
21
|
Zhao N, Liang D, Li X, Meng S, Liu H. Hydrophilic porous materials provide efficient gas-liquid separation to advance hydrogen production in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2021; 337:125352. [PMID: 34098503 DOI: 10.1016/j.biortech.2021.125352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Preventing methane evolution is a key issue to guarantee stable hydrogen production in microbial electrolysis cell (MEC). In this study, low-cost hydrophilic porous materials, such as non-woven cloth (NWC) and polyvinylidenedifluoride (PVDF), were investigated as alternatives to proton exchange membrane (PEM) in MEC. The MEC with a NWC (NWC-MEC) improved the current density and hydrogen production rate (HPR) of 262.5±10 A m-3 and 2.5±0.2 m3 m-3 d-1, respectively, due to its lower pH gradient (0.37) and ion transport resistance (0.9±0.1 mΩ m2). Hydrogen production in NWC-MEC (from 2.5 to 2.1 m3 m-3 d-1) and PVDF-MEC (from 2.2 to 2.0 m3 m-3 d-1) showed more stable performance compared to PEM-MECs (from 2.2 to 1.6 m3 m-3 d-1) during 30 days of operation. Moreover, results of anodic microbial community analysis indicate that the growth of methanogens of NWC-MEC and PVDF-MEC was effectively inhibited in 30 days.
Collapse
Affiliation(s)
- Na Zhao
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China.
| | - Xiaohu Li
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Shujuan Meng
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Shahe Campus, Beijing 102206, China
| | - Hong Liu
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, USA
| |
Collapse
|
22
|
Asif MB, Ren B, Li C, He K, Zhang X, Zhang Z. Understanding the role of in-situ ozonation in Fe(II)-dosed membrane bioreactor (MBR) for membrane fouling mitigation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Zhang L, Zhang M, You S, Ma D, Zhao J, Chen Z. Effect of Fe 3+ on the sludge properties and microbial community structure in a lab-scale A 2O process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146505. [PMID: 33770607 DOI: 10.1016/j.scitotenv.2021.146505] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
During biological wastewater treatment, ferric salt (Fe3+) usually serves as an inorganic flocculant to improve the agglomeration and sedimentation of suspended solids, and thus the removal efficiency of pollutants to meet the increasing strictly regulated wastewater discharge standards. In this study, we investigated the effects of Fe3+ on the removal efficiencies of pollutants, sludge properties, dominant flora and metabolic pathways of bacterial community in a classical anaerobic-anoxic-oxic (A2O) process. The results showed that a Fe3+ concentration lower than 10 mg·L-1 could improve the removal efficiencies of chemical oxygen demand (COD) and total nitrogen (TN), while an inhibition effect was exerted at concentration higher than 10 mg·L-1. The maximum removal efficiencies of COD and TN were 97% and 89%, respectively, under the critical Fe3+ concentration of 10 mg·L-1. Total phosphorous (TP) removal was constantly positively correlated with Fe3+ concentration, due to the enhanced adsorption of phosphorus on activated sludge with the increase of surface roughness. Thauera displayed the highest relative abundance, and certain bacteria in Proteobacteria, Dehloromonas and Candidatus-Competibacter exhibited good adaptability to high concentration of Fe3+. In the context of metabolic collaterals, the most abundant functional gene families were identified to be Carbohydrate Metabolism, Amino Acid Metabolism, Cell Motility, Membrane Transport, and Replication and Repair. This study provides an extensive mechanistic insight into the impact of Fe3+ on the A2O process, which is of fundamental significance to exploit the contributions of inorganic salts to biological wastewater treatment.
Collapse
Affiliation(s)
- Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Mingshuang Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Shijie You
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dongmei Ma
- Changchun Power Supply Company, State Grid Jilin Electric Power Co., Ltd, Changchun 130000, China
| | - Juntian Zhao
- Assets Management Department, Northeast Electric Power University, Jilin 132012, China
| | - Zhao Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
24
|
Tang P, Xie W, Tiraferri A, Zhang Y, Zhu J, Li J, Lin D, Crittenden JC, Liu B. Organics removal from shale gas wastewater by pre-oxidation combined with biologically active filtration. WATER RESEARCH 2021; 196:117041. [PMID: 33774348 DOI: 10.1016/j.watres.2021.117041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Biological treatment technology is increasingly explored in shale gas wastewater (SGW) treatment owing to its cost effectiveness and requires efforts to improve its efficacy. In this work, ozone and ferrate(VI) oxidation pre-treatment were evaluated to enhance the performance of the subsequent biologically active filtration (BAF) in the removal of organic contaminants. The oxidation improved the SGW biodegradability and organic composition under relative high salinity (~20 g/L). Due to the degradation activity of microorganisms, the organics removal efficiency in the BAF system was observed to gradually improve and then reaching stability in long-term continuous-mode operation. The removal rate of dissolved organic carbon (DOC) of the ozone-BAF (O3-BAF) and the ferrate(VI)-BAF (Fe(VI)-BAF) systems was 83.2% and 82.8% , respectively, higher than that of BAF alone (80.9%). This increase was attributed to higher activity and content of microorganisms in O3-BAF and Fe(VI)-BAF systems. Two uncultured bacterial species with high abundance of 7.2-21.0% and 2.24-22.31% in genus Rehaibacterium and genus Methyloversatilis were significantly correlated with DOC removal and fluorescent organics removal, respectively. More research is needed to understand whether the species were new and their specific function. This study provides valuable suggestions for extracting safe water from SGW with an efficient treatment train.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Wancen Xie
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Yongli Zhang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Jin Zhu
- Petro China Southwest Oil & Gasfield Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - Jing Li
- Petro China Southwest Oil & Gasfield Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - Dong Lin
- Petro China Southwest Oil & Gasfield Company, No.5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, North Ave. NW, Atlanta, Georgia, 30332, USA
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
25
|
Liu A, Nelson MJ, Wang X, Li H, He X, Zhao Z, Zhong H, Nakhla G, Zhu J. Decentralized wastewater treatment in an urban setting: a pilot study of the circulating fluidized bed bioreactor treating septic tank effluent. ENVIRONMENTAL TECHNOLOGY 2021; 42:1911-1921. [PMID: 31631798 DOI: 10.1080/09593330.2019.1683614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
To meet the increasing wastewater treatment demand while minimizing the land footprint of the treatment systems and plants, more efficient and compact processes are needed. The circulating fluidized bed bioreactor (CFBBR) has been proven to achieve high levels of biological nutrient removal. Past studies at the lab and pilot scale achieved 94% COD removal and 80% nitrogen removal at HRT's of 2-4 h. A collaborative project between Western University and the Guangzhou Institute of Energy Conversion (GIEC), in Guangzhou, China, further explored the treatment of municipal wastewater with the CFBBR. A pilot CFBBR, with aerobic and anoxic columns for nitrification and denitrification, was constructed at the GIEC for in-situ treatment of septic tank effluent from a residential building. Due to high concentrations of ammonia (NH4-N), the wastewater had a COD/N ratio of 2-3. Thus, operating at a longer HRT and supplementing COD, in the form of glucose, was necessary to achieve a high nitrogen removal efficiency. The system was run both with and without supplemental COD at HRT's between 16 and 21 h, treating approximately 1000-1270 L/d. Overall, a COD removal efficiency of at least 92%, ammonia removal of 97%, and nitrogen removal of 82% was achieved. The CFBBR system achieved an effluent with BOD and NH4-N concentrations both below 5 mg/L, a NO3-N concentration below 15 mg/L, and a total nitrogen concentration below 25 mg/L. The compact design of this pilot-CFBBR, coupled with its high BNR performance make it an excellent option for decentralized treatment of urban wastewaters.
Collapse
Affiliation(s)
- Anqi Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, People's Republic of China
| | | | - Xiaobo Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, People's Republic of China
| | - Haibin Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, People's Republic of China
| | - Xiaoqin He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, People's Republic of China
| | - Zengli Zhao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, People's Republic of China
| | - Huiqiong Zhong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, People's Republic of China
| | | | - Jesse Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, People's Republic of China
- University of Western Ontario, London, Canada
| |
Collapse
|
26
|
Asif MB, Li C, Ren B, Maqbool T, Zhang X, Zhang Z. Elucidating the impacts of intermittent in-situ ozonation in a ceramic membrane bioreactor: Micropollutant removal, microbial community evolution and fouling mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123730. [PMID: 33254762 DOI: 10.1016/j.jhazmat.2020.123730] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 06/12/2023]
Abstract
In this study, impacts of in-situ ozonation applied directly in the membrane tank of a ceramic MBR (Oz-MBR) were assessed to elucidate its implications on micropollutant removal, microbial taxa and membrane fouling. The basic effluent quality (i.e., bulk organics and nutrients) of the MBR without and with in-situ ozonation was comparable. Importantly, pollutant-specific (10-26%) improvement in micropollutant removal was achieved by the Oz-MBR, which could be attributed to the increase in the abundance of microbial taxa responsible for the removal of structurally complex pollutants and/or ozone-assisted oxidation. In-situ ozonation affected the abundance of denitrifying bacteria and functional genes but total nitrogen removal by the Oz-MBR was comparable to that achieved by the control (C)-MBR. Improved mixed liquor properties, and the reduced accumulation of foulants on the membrane surface resulted in membrane fouling alleviation (53%) in the Oz-MBR. In addition, fouling models evaluated for the first time in the case of Oz-MBR indicated that the cake-complete model was suitable to explain membrane fouling mechanism. This comprehensive study demonstrates the performance of MBR coupled with in-situ ozonation, and the obtained results would serve as a useful reference for its implementation at pilot- and/or full-scale.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Baoyu Ren
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xihui Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
27
|
Wu M, Liu J, Gao B, Sillanpää M. Phosphate substances transformation and vivianite formation in P-Fe containing sludge during the transition process of aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2021; 319:124259. [PMID: 33254472 PMCID: PMC7558235 DOI: 10.1016/j.biortech.2020.124259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 05/30/2023]
Abstract
Excess sludge was considered as a promising raw material for phosphorus recovery. In this study, the P-Fe containing sludge came from the aerobic membrane bioreactor with electrocoagulation (EC), which was refluxed to the anaerobic unit for iron reduction. Under anaerobic condition, the ORP and pH maintained at -350 mV and 7.5, which exactly met the conditions for vivianite formation. According to the analysis of X-ray polycrystalline diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), the final product of the sludge after anaerobic condition was mainly vivianite. Microbial analysis showed that there were iron reducing bacteria (IRB) in sludge before and after anaerobic process, including Dechloromonas, Desulfovibrio. Aeromonas and Methanobacterium. During the transition process of aerobic and anaerobic conditions, amorphous phosphate substances in P-Fe containing sludge could be transformed vivianite just with long term standing, which could promote the recovery of phosphate resource from wastewater.
Collapse
Affiliation(s)
- Mingzhao Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
28
|
Asif MB, Ren B, Li C, Maqbool T, Zhang X, Zhang Z. Powdered activated carbon - Membrane bioreactor (PAC-MBR): Impacts of high PAC concentration on micropollutant removal and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141090. [PMID: 32758744 DOI: 10.1016/j.scitotenv.2020.141090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 05/27/2023]
Abstract
In this study, the effect of a high concentration of powdered activated carbon (PAC) on pollutant removal and microbial communities was systematically investigated. Micropollutant removal by the 'control' MBR (without PAC addition) was pollutant-specific and was mainly controlled by their molecular properties. The PAC-MBR achieved enhanced removal of micropollutant by 10% (ofloxacin) to 40% (caffeine). Analysis of the microbial communities in the sludge samples collected from both MBRs indicated an increase in the abundance of 24 (out of 31) genera following PAC addition. Notably, bacterial diversity enriched, particularly in the anoxic zone of the PAC-MBR, indicating a positive impact of recirculating mixed liquor containing PAC from the aerobic to the anoxic zone. In addition, PAC improved the abundance of Comamonas and Methanomethylovorans (up to 2.5%) that can degrade recalcitrant micropollutants. According to the quantitative PCR (qPCR) analysis, the copies of functional genes (nirS, nosZ and narG) increased in PAC-MBR. This study demonstrated that MBR could be operated at a high PAC concentration without compromising the pollutant removal and microbial community evolution during wastewater treatment.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Baoyu Ren
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xihui Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Asif MB, Maqbool T, Zhang Z. Electrochemical membrane bioreactors: State-of-the-art and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140233. [PMID: 32570070 DOI: 10.1016/j.scitotenv.2020.140233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Integration of an electrochemical process with membrane bioreactor (MBR) has attracted considerable attention in the last decade for simultaneous improvement in pollutant removal and hydraulic performance of MBR. Electrochemical MBR (eMBR) with sacrificial anodes has been observed to achieve enhanced phosphorus (up to 40%) and micropollutant removal (5-60%). This is because direct anodic oxidation, indirect oxidation by reactive oxygen species and electrocoagulation can supplement the biological process. The application of an electric field can substantially reduce membrane fouling by 10% to 95% in the eMBR as compared to the conventional MBR. Sacrificial electrodes (e.g., iron or aluminium) have been reported to be more suitable for fouling mitigation than non-sacrificial electrodes (e.g., titanium). However, during prolonged operation, metal ions released from sacrificial electrodes can adversely affect microbial activity and could accumulate in activated sludge. Depending on the current density and electrode material (sacrificial or non- sacrificial), anodic oxidation, electrocoagulation, electrophoresis and/or electroosmosis mechanisms are responsible for suppressing membrane fouling propensity. This paper critically reviews the current status of the electrochemical MBR technology and presents a concise summary of eMBR configurations and electrode materials. Comparative removal of bulk organics, nutrients and micropollutants in the eMBR and conventional MBR is discussed, and performance governing factors are elucidated. Impacts of operating conditions such as current density on mixed liquor properties (e.g., floc size and zeta potential) and microbial activity are elucidated. The extent of membrane fouling mitigation along with associated mechanisms as well as energy consumption is explained and critically analysed. Future research directions are suggested to fast track the scalability of eMBR, which include but are not limited to electrode lifetime, development of self-cleaning conductive membranes, optimisation of operating parameters, removal of emerging micropollutants, accumulation of toxic metals in activated sludge, and degradation by-products and ecotoxicity.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Ouyang J, Li C, Wei L, Wei D, Zhao M, Zhao Z, Zhang J, Chang CC. Activated sludge and other aerobic suspended culture processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1717-1725. [PMID: 32762078 DOI: 10.1002/wer.1427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
This paper provides an overview of activated sludge related to suspended growth processes for the year 2019. The review encompasses process modeling of activated sludge, microbiology of activated sludge, process kinetics and mechanism, nitrogen and phosphorus control, design, and operation in the activated sludge field. The fate and effect of xenobiotics in activated sludge, including trace organic contaminant and heavy metal xenobiotics, which had influence on the growth of suspended sludge, are covered in this review. Compared to past reviews, many topics show increase in activity in 2019. These include, biokinetics process of aerobic granular sludge formation, pyrolysis kinetic mechanism of granular sludge. These topics are referred to formation and disintegration of granular sludge. Other sections include activated sludge settling model, toxicity resistant microbial community, nitritation-anammox processes for nitrogen removal, and respirometry used in the operation of real wastewater treatment plant are especially highlighted in this review. PRACTITIONER POINTS: Biokinetics process of aerobic granular sludge formation Toxicity resistant microbial community in activated sludge Nitritation-anammox processes for nitrogen removal in activated sludge.
Collapse
Affiliation(s)
- Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Min Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Zhen Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Jie Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| |
Collapse
|
31
|
Shen Q, Ji F, Wei J, Fang D, Zhang Q, Jiang L, Cai A, Kuang L. The influence mechanism of temperature on solid phase denitrification based on denitrification performance, carbon balance, and microbial analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139333. [PMID: 32438161 DOI: 10.1016/j.scitotenv.2020.139333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, the influence mechanism of temperature on solid phase denitrification (SPD) was investigated using a pilot-scale reactor supported with polycaprolactone (PCL). The results showed that under nitrate loads of ~31.5 mg N/(L·h), as temperature decreased from 30 °C to 13 °C, the nitrate removal efficiency declined from 94% to 57%. Furthermore, denitrification rate constants were input into Arrhenius equation and the resulting temperature coefficient was 1.04. Significantly nitrite accumulation and less effluent COD residue occurred at low-temperatures. Via stoichiometry, the sludge yield coefficient and COD demand for nitrate removal both increased as a function of increasing temperature; and were calculated at 20 °C as 0.069 g MLVSS/(g COD·d) and 3.265 g COD/g N, respectively. Carbon balance analysis indicated that the COD release rate (υ) at 30 °C was twice that at 13 °C. LEfSe analysis demonstrated that Desulfomicrobium, Desulfovibrio, and Meganema were abundant at low-temperature, while Simplicispira, Aquabacterium, and Acidovorax were enriched at high-temperature. Besides, carboxylesterase (PCL depolymerase) was more abundant at high-temperature, implying an association with a fast υ. Moreover, nar was enriched at low-temperature, while nir was depleted, which led to nitrite accumulation. These results provide reference for SPD design parameter estimation and/or optimal operation strategy.
Collapse
Affiliation(s)
- Qiushi Shen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Jiazhi Wei
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Dexin Fang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qian Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Anrong Cai
- Chongqing Yuxi Water Co., Ltd, Chongqing 402160, China
| | - Li Kuang
- Chongqing Gangli Environmental Protection Co., Ltd, Chongqing 404100, China
| |
Collapse
|
32
|
Optimization of In Situ Backwashing Frequency for Stable Operation of Anaerobic Ceramic Membrane Bioreactor. Processes (Basel) 2020. [DOI: 10.3390/pr8050545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.
Collapse
|
33
|
Nguyen LN, Commault AS, Kahlke T, Ralph PJ, Semblante GU, Johir MAH, Nghiem LD. Genome sequencing as a new window into the microbial community of membrane bioreactors - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135279. [PMID: 31791792 DOI: 10.1016/j.scitotenv.2019.135279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Recent developed sequencing techniques have resulted in a new and unprecedented way to study biological wastewater treatment, in which most organisms are uncultivable. This review provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a critical assessment of the microbial community in biological reactor and biofouling layer in a membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer microbial growth conditions and metabolisms of microorganisms present in MBRs at the time of sampling. These data shed new insight to two fundamental questions about a microbial community in the MBR process namely the microbial composition (who are they?) and the functions of each specific microbial assemblage (what are their function?). The results to date also highlight the complexity of the microbial community growing on MBRs. Environmental conditions are dynamic and diverse, and can influence the diversity and structural dynamics of any given microbial community for wastewater treatment. The benefits of understanding the structure of microbial communities on three major aspects of the MBR process (i.e. nutrient removal, biofouling control, and micropollutant removal) were symmetrically delineated. This review also indicates that the deployment of microbial community analysis for a practical engineering context, in terms of process design and system optimization, can be further realized.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Audrey S Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Galilee U Semblante
- Technical Services, Western Sydney University, Kingswood, NSW 2747, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
34
|
Ji B, Zhu L, Wang S, Qin H, Ma Y, Liu Y. A novel micro-ferrous dosing strategy for enhancing biological phosphorus removal from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135453. [PMID: 31810675 DOI: 10.1016/j.scitotenv.2019.135453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Ferrous salts have been widely used to enhance phosphorus removal in full-scale wastewater treatment plants, with an average dosage of 0.24-0.35 mM. However, such high dosage inevitably caused serious concerns on operation, potential biological toxicity and excessive sludge production. Thus, this study investigated the effect of micro-dosing of ferrous salt at the level of 0.02 mM on enhanced biological phosphorus removal (EBPR) in sequencing batch reactors. Results showed that micro-dosing of ferrous salt enhanced the overall performance, with average COD, TN and TP removal of more than 4.2%, 2.0% and 5.8%, respectively. In addition, the sequencing analysis further revealed that micro-ferrous dosing could significantly improve the diversity and richness of the microbial community (p < 0.05), whereas the regular dosing of ferrous salts (0.25 mM) negatively impacted on the EBPR performance. It was found that the abundances of phosphorus accumulating organisms (PAOs) in R2 (micro-dosing) were nearly 1.5-fold and 2-fold higher than those in R1 (control) and R3 (regular dosing). The contributions of biological and chemical pathways towards the observed phosphorus removal were also determined according to the phosphorus releasing rate. For micro-dosage and regular dosage of ferrous salts, phosphorus removal mainly relied on biological phosphorus removal and chemical phosphorus removal, respectively. It appears from this this study that the micro-ferrous dosing strategy is practically feasible and economically viable for enhanced phosphorus removal from municipal wastewater.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| | - Lin Zhu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hui Qin
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
35
|
Du X, Xu J, Mo Z, Luo Y, Su J, Nie J, Wang Z, Liu L, Liang H. The performance of gravity-driven membrane (GDM) filtration for roofing rainwater reuse: Implications of roofing rainwater energy and rainwater purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134187. [PMID: 32380628 DOI: 10.1016/j.scitotenv.2019.134187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 06/11/2023]
Abstract
Rainwater harvesting (RWH) coupled with gravity-driven membrane (GDM) filtration was used to simultaneously treat rainwater and recover energy. A pilot GDM could obtain a relatively stable level of permeate flux (~4.0 L/(m2·h)) under a set water head (ΔH = 0.4 m) over 140 days of operation. An increase water head (ΔH = 0.6 m) did not achieve a sharp increase in stabilized flux (~2.4 L/(m2·h)) over 20 days of operation until the end. It was found that GDM filtration could produce a permeate that was almost free of particles. However, only a small amount of organic matter and trace metals (i.e., Cr, Al, Fe, Cu, Al, Mn and Ca) were removed, as demonstrated by excitation-emission matrix (EEM) and energy dispersive spectrometry (EDS) analysis. Additionally, the bacterial abundance within the permeate ((8.45 ± 0.11) × 102 cells/mL) decreased compared to that within the GDM tank ((1.85 ± 0.14) × 105 cells/mL), revealing that the rejected bacteria might enhance biofilm formation. The presence of extracellular polymeric substances (EPS), adenosine triphosphate (ATP) and assimilable organic carbon (AOC) indicated a high level of microbial activity within the biofilm, which was also demonstrated by the porous cake layer morphology observed by scanning electron microscopy (SEM) and results from confocal laser scanning microscopy (CLSM) imaging of the biofilm. NH3-N was removed by Nitrospira within the biofilm, which was identified by microbial community analysis. Overall, this novel approach has the potential to improve municipal water availability and stormwater management practices.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jiongji Xu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhuoyu Mo
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yunlong Luo
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, UNSW Sydney, Australia
| | - Junhao Su
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jinxu Nie
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lifan Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
36
|
Li C, Li X, Qin L, Wu W, Meng Q, Shen C, Zhang G. Membrane photo-bioreactor coupled with heterogeneous Fenton fluidized bed for high salinity wastewater treatment: Pollutant removal, photosynthetic bacteria harvest and membrane anti-fouling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133953. [PMID: 31450050 DOI: 10.1016/j.scitotenv.2019.133953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, efficient photosynthetic bacteria (PSB)-GO/PVDF membrane photo-bioreactor (MPBR) combined with heterogeneous Fenton fluidized bed was built and successfully applied for treatment of actual refractory seafood-processing wastewater with extremely high salinity. As effective pre-treatment, heterogeneous Fenton was designed for removing non-biodegradable organics and reducing iron-sludge discharge. In MPBR, GO/PVDF membrane fabricated by chemical grafting GO nanosheets was first used for salt-tolerated PSB harvest. Compared with original PVDF membrane, GO/PVDF membrane exhibited enhanced hydrophilicity, better permeability (4.4 times) and attractive flux recover rate (94%), which was attributed to remarkable reduction in hydrophobic proteins amount of extracellular polymeric substances (EPS). Importantly, COD and NH3-N removal efficiency of MPBR with GO/PVDF membrane were kept about 95 and 98%, respectively, and average biomass productivity reached as high as 105 mg/L·d. This study provides a promising and economical way to build efficient MBR combined with new materials for high salinity hazardous wastewater treatment.
Collapse
Affiliation(s)
- Chang Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Xiong Li
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Lei Qin
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Wei Wu
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China
| | - Qin Meng
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38(#), 310027 Hangzhou, PR China
| | - Chong Shen
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38(#), 310027 Hangzhou, PR China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18(#), 310014 Hangzhou, PR China.
| |
Collapse
|