1
|
Ma Y, Li Y, Fang T, He Y, Wang J, Liu X, Wang Z, Guo G. Analysis of driving factors of spatial distribution of heavy metals in soil of non-ferrous metal smelting sites: Screening the geodetector calculation results combined with correlation analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130614. [PMID: 37056003 DOI: 10.1016/j.jhazmat.2022.130614] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 12/13/2022] [Indexed: 06/19/2023]
Abstract
Heavy metals (HMs) discharged from smelting production may pose a major threat to human health and soil ecosystems. In this study, the spatial distribution characteristics of HMs in the soil of a non-ferrous metal smelting site were assessed. This study employed the geodetector (GD) by optimizing the classification condition and supplementing the correlation analysis (CA). The contribution of driving factors, such as production workshop distributions, hydrogeological conditions, and soil physicochemical properties, to the distribution of HMs in soil in the horizontal and vertical dimensions was assessed. The results showed that the main factors underlying the spatial distribution of As, Cd, Hg, Pb, Sb, and Zn in the horizontal direction were the distance from the sintering workshop (the maximum q value of that factor, q=0.28), raw material yard (q=0.14), and electrolyzer (q=0.29), while those in the vertical direction were the soil moisture content (q=0.17), formation lithology (q=0.12), and soil pH (q=0.06). The findings revealed that the CA is a simple and effective method to supplement the GD analysis underlying the spatial distribution characteristics of HMs at site scale. This study provides useful suggestions for environmental management to prevent HMs pollution and control HMs in the soil of non-ferrous metal smelting sites.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Tingting Fang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Yinhai He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Juan Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xiaoyang Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Zhiyu Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Guanlin Guo
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| |
Collapse
|
2
|
Zeng J, Luo X, Cheng Y, Ke W, Hartley W, Li C, Jiang J, Zhu F, Xue S. Spatial distribution of toxic metal(loid)s at an abandoned zinc smelting site, Southern China. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127970. [PMID: 34891013 DOI: 10.1016/j.jhazmat.2021.127970] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 05/16/2023]
Abstract
Toxic metal(loid) (TM) soil pollution at large-scale non-ferrous metal smelting contaminated sites is of great concern in China, but there are no detailed reports relating to them. A comprehensive study was conducted to determine contamination characteristics and horizontal and vertical spatial distribution patterns of soils at an abandoned zinc smelting site in Southern China. The spatial distribution of TMs revealed that soil environmental quality was seriously threatened, with Cd, Zn, As, Pb and Hg being the main contaminants present. The distribution of all TMs showed strong spatial heterogeneity and were expressed as a "patchy aggregation" pattern due to strong anthropogenic and production activities. Vertical migration of TMs indicated that the pollutants were mainly concentrated in the fill layers. Different contaminants had various migration depths, with migration occurring as: Cd > Hg > As > Zn > Pb> Cu> Mn> Sb. Analysis of their spatial variability showed that As, Pb, Cd and Hg had strong regional spatial variability. This research provides a new approach to comprehensively analyze TM pollution characteristics of non-ferrous smelting sites. It provides valuable information for guiding post-remediation strategies at abandoned non-ferrous metal smelting sites.
Collapse
Affiliation(s)
- Jiaqing Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yizhi Cheng
- New World Environment Protection Group of Hunan, Changsha 410083, China
| | - Wenshun Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - William Hartley
- Agriculture and Environment Department, Harper Adams University, Newport, Shropshire TF10 8NB, United Kingdom
| | - Chuxuan Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Ma J, Chen Y, Wang K, Huang Y, Wang H. Re-utilization of Chinese medicinal herbal residues improved soil fertility and maintained maize yield under chemical fertilizer reduction. CHEMOSPHERE 2021; 283:131262. [PMID: 34182644 DOI: 10.1016/j.chemosphere.2021.131262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Excessive utilization of chemical fertilizers (CF) is not a sustainable agricultural development strategy due to adverse effects on soil health. In contrast, a combination of organic and mineral fertilizers has a positive effect on both soil health and productivity. Chinese medicinal herbal residues (CMHR) is the plant material wastes remaining after drug extraction but has not been extensively used as fertilizer. We evaluated application of CMHR to maize fields over 3 consecutive growing seasons in the presence and absence of standard CF to assess improvements in soil fertility, maize yields and sustainable development. CMHR fertilization increased soil organic matter and total N and K when mixed with chemical fertilizer at 50 and 75% the standard application rate. Soil organic matter increased by 27.0-51.4% and available -N, -P and -K levels and grain yields as well as N and P use efficiency in the presence of CMHR mixes were similar to levels obtained with chemical fertilizer only. These increases in production were due to increased leaf areas, photosynthetic rates, grain number and 1000-grain weights. The addition of CMHR to fields posed a slightly risk of toxic-metal pollution. Overall, we found that (1) CMHR can be used as an effective organic fertilizer and replace up to 50% of the amount of chemical fertilizer normally applied to fields without hampering maize grain yields and (2) CMHR application to agricultural fields is an effective recycling strategy and nutrient management practice to improve soil fertility under CF usage reduction.
Collapse
Affiliation(s)
- Jifu Ma
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yiping Chen
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Kaibo Wang
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Yizong Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Hongjie Wang
- Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding, 071002, China
| |
Collapse
|