1
|
Liu D, Qin Z, Wei M, Kong D, Zheng Q, Bai S, Lin S, Zhang Z, Ma Y. Genome-Wide Analyses of Heat Shock Protein Superfamily Provide New Insights on Adaptation to Sulfide-Rich Environments in Urechis unicinctus (Annelida, Echiura). Int J Mol Sci 2022; 23:2715. [PMID: 35269857 PMCID: PMC8910992 DOI: 10.3390/ijms23052715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
The intertidal zone is a transitional area of the land-sea continuum, in which physical and chemical properties vary during the tidal cycle and highly toxic sulfides are rich in sediments due to the dynamic regimes. As a typical species thriving in this habitat, Urechis unicinctus presents strong sulfide tolerance and is expected to be a model species for sulfide stress research. Heat shock proteins (HSPs) consist of a large group of highly conserved molecular chaperones, which play important roles in stress responses. In this study, we systematically analyzed the composition and expression of HSPs in U. unicinctus. A total of eighty-six HSP genes from seven families were identified, in which two families, including sHSP and HSP70, showed moderate expansion, and this variation may be related to the benthic habitat of the intertidal zone. Furthermore, expression analysis revealed that almost all the HSP genes in U. unicinctus were significantly induced under sulfide stress, suggesting that they may be involved in sulfide stress response. Weighted gene co-expression network analysis (WGCNA) showed that 12 HSPs, including 5 sHSP and 4 HSP70 family genes, were highly correlated with the sulfide stress response which was distributed in steelblue and green modules. Our data indicate that HSPs, especially sHSP and HSP70 families, may play significant roles in response to sulfide stress in U. unicinctus. This systematic analysis provides valuable information for further understanding of the function of the HSP gene family for sulfide adaptation in U. unicinctus and contributes a better understanding of the species adaptation strategies of marine benthos in the intertidal zone.
Collapse
Affiliation(s)
- Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Dexu Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Qiaojun Zheng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Siyu Lin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| |
Collapse
|
2
|
Jang J, Forbes VE, Sadowsky MJ. Probable role of Cutibacterium acnes in the gut of the polychaete Capitella teleta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151127. [PMID: 34688749 DOI: 10.1016/j.scitotenv.2021.151127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Capitella teleta, a marine polychaete that feeds on a refractory diet consisting of sediment, was shown to contain unique gut microbiota comprised of microbial functional groups involved in fermentation. Results of our previous studies showed that C. teleta's core gut microbiota were dominated by propionibacteria, and that these bacteria were more abundant in worms than in sediment and feces. In order to test the hypothesis that the worm nutritionally benefits from its gut microbiota, we identified, and genetically and biochemically characterized Cutibacterium acnes strains (formerly Propionibacterium acnes) that were isolated from the gut of C. teleta. Here we show that 13 worm-isolated Cutibacterium acnes strains primarily belonged to phylotype group IB, likely as a clonal population. We also provide evidence that all tested strains produced propionate and vitamin B12, which are essential host-requiring microbial metabolites. The presence of C. acnes in C. teleta was not unique to our worm culture and was also found in those obtained from geographically distant laboratories located in the U.S. and Europe. Moreover, populations of worm gut-associated C. acnes increased following antibiotic treatment. Collectively, results of this study demonstrated that C. acnes is a member of the worm's core functional microbiota and is likely selectively favored by the physiology and chemistry of the host gut environment. To our knowledge, this is the first report of the presence of C. acnes in the C. teleta gut. Our data strongly suggest that C. acnes, a bacterium previously studied as an opportunistic pathogen, can likely act as a symbiont in C. teleta providing the host essential nutrients for survival, growth, and reproduction.
Collapse
Affiliation(s)
- Jeonghwan Jang
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
3
|
Divergence together with microbes: A comparative study of the associated microbiomes in the closely related Littorina species. PLoS One 2021; 16:e0260792. [PMID: 34932575 PMCID: PMC8691637 DOI: 10.1371/journal.pone.0260792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Any multicellular organism during its life is involved in relatively stable interactions with microorganisms. The organism and its microbiome make up a holobiont, possessing a unique set of characteristics and evolving as a whole system. This study aimed to evaluate the degree of the conservativeness of microbiomes associated with intertidal gastropods. We studied the composition and the geographic and phylogenetic variability of the gut and body surface microbiomes of five closely related sympatric Littorina (Neritrema) spp. and a more distant species, L. littorea, from the sister subgenus Littorina (Littorina). Although snail-associated microbiomes included many lineages (207–603), they were dominated by a small number of OTUs of the genera Psychromonas, Vibrio, and Psychrilyobacter. The geographic variability was greater than the interspecific differences at the same collection site. While the microbiomes of the six Littorina spp. did not differ at the high taxonomic level, the OTU composition differed between groups of cryptic species and subgenera. A few species-specific OTUs were detected within the collection sites; notably, such OTUs never dominated microbiomes. We conclude that the composition of the high-rank taxa of the associated microbiome (“scaffolding enterotype”) is more evolutionarily conserved than the composition of the low-rank individual OTUs, which may be site- and / or species-specific.
Collapse
|
4
|
Jang J, Hochstein R, Forbes VE, Sadowsky MJ. Bioturbation by the marine polychaete Capitella teleta alters the sediment microbial community by ingestion and defecation of sediment particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142239. [PMID: 33207493 DOI: 10.1016/j.scitotenv.2020.142239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Deposit-feeding benthic invertebrates are known to modify sediment structure and impact microbial processes associated with biogeochemical cycles in marine sedimentary environments. Despite this, however, there is limited information on how sediment ingestion and defecation by marine benthos alters microbial community structure and function in sediments. In the current study, we used high-throughput sequencing data of 16S rRNA genes obtained from a previous microcosm study to examine how sediment processing by the marine polychaete Capitella teleta specifically affects sediment microbiota. Here we show that both sediment ingestion and defecation by C. teleta significantly alters overall microbial community structure and function. Sediment processing by C. teleta resulted in significant enrichment of sediment microbial communities involved in sulfur and carbon cycling in worm fecal pellets. Moreover, C. teleta's microbiota was predominantly comprised of bacterial functional groups involved in fermentation, relative to microbiota found outside of the host. Collectively, results of this study indicate that C. teleta has the ability to alter microbial biogeochemical cycles in the benthic sedimentary environment by altering microbial assemblages in the worm gut, and in the sediment ingested and defecated by worms as they feed on sediment particles. In this sense, C. teleta plays an important role as an ecosystem engineer and in shaping nutrient cycling in the benthic environment.
Collapse
Affiliation(s)
- Jeonghwan Jang
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Rebecca Hochstein
- Separation and Purification Sciences Division, 3M Company, St. Paul, MN, USA
| | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
5
|
Dell'Anno F, Brunet C, van Zyl LJ, Trindade M, Golyshin PN, Dell'Anno A, Ianora A, Sansone C. Degradation of Hydrocarbons and Heavy Metal Reduction by Marine Bacteria in Highly Contaminated Sediments. Microorganisms 2020; 8:E1402. [PMID: 32933071 PMCID: PMC7564820 DOI: 10.3390/microorganisms8091402] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Investigations on the ability of bacteria to enhance removal of hydrocarbons and reduce heavy metal toxicity in sediments are necessary to design more effective bioremediation strategies. In this study, five bacterial strains, Halomonas sp. SZN1, Alcanivorax sp. SZN2, Pseudoalteromonas sp. SZN3, Epibacterium sp. SZN4, and Virgibacillus sp. SZN7, were isolated from polluted sediments from an abandoned industrial site in the Gulf of Naples, Mediterranean Sea, and tested for their bioremediation efficiency on sediment samples collected from the same site. These bacteria were added as consortia or as individual cultures into polluted sediments to assess biodegradation efficiency of polycyclic aromatic hydrocarbons and heavy metal immobilisation capacity. Our results indicate that these bacteria were able to remove polycyclic aromatic hydrocarbons, with a removal rate up to ca. 80% for dibenzo-anthracene. In addition, these bacteria reduced arsenic, lead, and cadmium mobility by promoting their partitioning into less mobile and bioavailable fractions. Microbial consortia generally showed higher performance toward pollutants as compared with pure isolates, suggesting potential synergistic interactions able to enhance bioremediation capacity. Overall, our findings suggest that highly polluted sediments select for bacteria efficient at reducing the toxicity of hazardous compounds, paving the way for scaled-up bioremediation trials.
Collapse
Affiliation(s)
- Filippo Dell'Anno
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy
| | - Leonardo Joaquim van Zyl
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Peter N Golyshin
- Centre for Environmental Biotechnology (CEB), School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Antonio Dell'Anno
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
6
|
Jang J, Forbes VE, Sadowsky MJ. Lack of evidence for the role of gut microbiota in PAH biodegradation by the polychaete Capitella teleta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138356. [PMID: 32302836 DOI: 10.1016/j.scitotenv.2020.138356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Capitella teleta is a marine sediment-feeding polychaete known to degrade various polycyclic aromatic hydrocarbons (PAHs) and reported to possess genes involved in PAH transformation, such as those in the P450 cytochrome superfamily. Previous research focusing on biodegradation of PAHs by C. teleta demonstrated that these worms are effective biodegraders, but overlooked the possible role of its gut microbiota in facilitating PAH metabolism. Recently, C. teleta's microbiome was characterized and found to contain several bacterial genera known to contain PAH-degrading members, including Acinetobacter, Thalassotalea, and Achromobacter. Despite this, however, no data have thus far been presented demonstrating the role of C. teleta's gut microbiota in PAH degradation. The present study was designed to more conclusively determine the presence of PAH-degrading bacteria in worm digestive tracts and to more clearly distinguish the relative roles of worm versus gut-microbial metabolism in the removal of PAH from sediment. To do this, we manipulated marine sediment microorganisms and worm gut microbiota by autoclaving and antibiotic treatment, respectively. Our results showed that no fluoranthene degradation occurred in microcosms in the absence of worms. More importantly, there was no significant difference in fluoranthene degradation between antibiotic-treated and non-treated worms. We also found no evidence of fluoranthene degradation using resting cells of gut microbes of C. teleta, and we were unable to isolate fluoranthene-degrading bacterial strains from enrichments of polychaete gut contents, despite multiple attempts. Gut microbiota in worms treated with antibiotics recovered, through bidirectional transfer, between worms and sediment after 2 weeks of microcosm incubation, and gut microbes appear to be required for the survival and growth of C. teleta. Our results build on previous studies suggesting that C. teleta itself is primarily responsible for the metabolism of fluoranthene in ingested sediment. We hypothesize that C. teleta's core microbiota, which includes members of Propionibacterium as the most abundant genus, likely aid worms in obtaining key nutrients (e.g., vitamins) from its sediment diet.
Collapse
Affiliation(s)
- Jeonghwan Jang
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
7
|
Ma J, Liu H, Zhang C, Ding K, Chen R, Liu S. Joint response of chemistry and functional microbial community to oxygenation of the reductive confined aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137587. [PMID: 32135291 DOI: 10.1016/j.scitotenv.2020.137587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Oxygen can enter into reductive aquifer through natural and artificial processes. However, the joint response of groundwater chemistry and functional microbial communities to oxygenation is not well understood due to the gap between taxonomic and functional microbial composition. Here, two wells named CZK15 and CZK22 at the second confined aquifer in Central China were in situ aerated, and the chemical parameters of groundwater and microbial communities in bio-trapping sand sediment were analysed during aeration. The microbial metabolic functions related to C, N, S, Fe transformation were predicted by Functional Annotation of Prokaryotic Taxa (FAPROTAX) approach and some key functional genes, such as phe, nah, narG, and soxB were verified by the real-time quantitative Polymerase Chain Reaction (qPCR) method. The biomass was promoted, microbial diversity fluctuated, and microbial composition changed remarkably with aeration mainly constrained by reduction-oxidation (redox) variation and SO42- concentration. Among functional microbes, aerobic chemoheterotrophs including aromatic compound degraders (also especially for relative abundance of phe and some nah gene) and methylotrophs are dramatically enriched interpreting dissolved oxygen (DO) consumption and total organic carbon (TOC) decomposing in sediment. Whilst fermenters and methanogen expectedly decreased during aeration. Denitrifying microbes and narG gene relative abundance increased corresponding to the NO3- increase after aeration, while microbes for N2 fixation, ammonification, and nitrification decreased relating to the source of NH4+. The sulfide oxidation causing increased SO42- was reflected by the blooming of sulfur-oxidizing microbes and soxB gene. Some sulfate reducers persisted in sediment after aeration due to sufficient SO42- as substrate. Fe(II) was mainly chemically oxidized as iron-oxidizing microbes were of low abundance and tended to decrease with aeration. The iron-reducing bacteria Geobacteraceae increased with aeration corresponding to the increased Fe(III) oxides formation. The findings of this study could have important implications in understanding the biogeochemical behaviours with cyclic redox conditions.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China.
| | - Chen Zhang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Kang Ding
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Rong Chen
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Shan Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| |
Collapse
|