1
|
Mohamed M, Tagliabue M, Tiraferri A. Technical Feasibility of Extraction of Freshwater from Produced Water with Combined Forward Osmosis and Nanofiltration. MEMBRANES 2024; 14:107. [PMID: 38786941 PMCID: PMC11123107 DOI: 10.3390/membranes14050107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
This study assesses the technical feasibility of a forward-osmosis-based system for concentrating produced water and extracting freshwater. Forward osmosis was combined with nanofiltration, the latter system used to restore the initial osmotic pressure of the diluted draw solutions while concurrently obtaining the final freshwater product. Three draw solutions, namely, MgCl2, NaCl, and C3H5NaO2, were initially tested against a synthetic water mimicking a pretreated produced water effluent having an osmotic pressure equal to 16.3 bar. MgCl2 was thus selected for high-recovery experiments. Different combinations of draw solution osmotic pressure (30, 40, 60, 80, and 120) and draw-to-feed initial volume ratios (1, 1.6, and 2.2) were tested at the laboratory scale, achieving recovery rates between roughly 35% and 70% and water fluxes between 4 and 8 L m-2h-1. One-dimensional, system-wide simulations deploying the analytical FO water flux equation were utilized to validate the experiments, investigate co-current and counter-current configurations, and understand the system potential. The diluted draw solutions were then transferred to nanofiltration to regenerate their original osmotic pressure. There, the highest observed rejection was 96.6% with an average flux of 21 L m-2h-1, when running the system to achieve 100% relative recovery.
Collapse
Affiliation(s)
- Madina Mohamed
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy;
| | - Marco Tagliabue
- Eni S.p.A., Research and Development, Via F. Maritano, 26, 20097 San Donato M.se, Italy
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy;
| |
Collapse
|
2
|
Siagian UWR, Lustiyani L, Khoiruddin K, Ismadji S, Wenten IG, Adisasmito S. From waste to resource: Membrane technology for effective treatment and recovery of valuable elements from oilfield produced water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122717. [PMID: 37863251 DOI: 10.1016/j.envpol.2023.122717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
Oilfield produced water, a toxic and saline byproduct of the oil and gas industry, has become a global concern due to its adverse environmental and human health impacts. With large volumes of oilfiled produced water generated annually and predictions of even higher volumes in the near future, effective treatment and resource recovery are imperative. This review paper explores the potential of membrane technology, particularly integrated membrane systems, in treating and recovering valuable elements from oilfield produced water. The increasing attention to this topic is evident, but research on resource recovery still needs to be expanded. Membrane technology offers a promising solution due to its efficiency and minimal need for chemical additives or thermal inputs. However, challenges such as fouling, resistance to oil and organics, and economic viability must be addressed. By discussing oilfield produced water characteristics, treatment methods, practical applications, challenges, and prospects, this review underscores the transformative role of membrane technology in turning oilfield produced water into a valuable resource. Additionally, it emphasizes the importance of research in developing anti-fouling membranes, sustainable waste management techniques, and efficient cleaning protocols while considering economic implications and market dynamics for resource recovery.
Collapse
Affiliation(s)
- U W R Siagian
- Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - L Lustiyani
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - K Khoiruddin
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - S Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - I G Wenten
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - S Adisasmito
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.
| |
Collapse
|
3
|
Zhou S, Huang L, Wang G, Wang W, Zhao R, Sun X, Wang D. A review of the development in shale oil and gas wastewater desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162376. [PMID: 36828060 DOI: 10.1016/j.scitotenv.2023.162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The development of the shale oil and gas extraction industry has heightened concerns about shale oil and gas wastewater (SOGW). This review comprehensively summarizes, analyzes, and evaluates multiple issues in SOGW desalination. The detailed analysis of SOGW water quality and various disposal strategies with different water quality standards reveals the water quality characteristics and disposal status of SOGW, clarifying the necessity of desalination for the rational management of SOGW. Subsequently, potential and implemented technologies for SOGW desalination are reviewed, mainly including membrane-based, thermal-based, and adsorption-based desalination technologies, as well as bioelectrochemical desalination systems, and the research progress of these technologies in desalinating SOGW are highlighted. In addition, various pretreatment methods for SOGW desalination are comprehensively reviewed, and the synergistic effects on SOGW desalination that can be achieved by combining different desalination technologies are summarized. Renewable energy sources and waste heat are also discussed, which can be used to replace traditional fossil energy to drive SOGW desalination and reduce the negative impact of shale oil and gas exploitation on the environment. Moreover, real project cases for SOGW desalination are presented, and the full-scale or pilot-scale on-site treatment devices for SOGW desalination are summarized. In order to compare different desalination processes clearly, operational parameters and performance data of varying desalination processes, including feed salinity, water flux, salt removal rate, water recovery, energy consumption, and cost, are collected and analyzed, and the applicability of different desalination technologies in desalinating SOGW is qualitatively evaluated. Finally, the recovery of valuable inorganic resources in SOGW is discussed, which is a meaningful research direction for SOGW desalination. At present, the development of SOGW desalination has not reached a satisfactory level, and investing enough energy in SOGW desalination in the future is still necessary to achieve the optimal management of SOGW.
Collapse
Affiliation(s)
- Simin Zhou
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Rui Zhao
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xiyu Sun
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Dongdong Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
4
|
Si X, Luo M, Li M, Ma Y, Huang Y, Pu J. Experimental Study on the Stability of a Novel Nanocomposite-Enhanced Viscoelastic Surfactant Solution as a Fracturing Fluid under Unconventional Reservoir Stimulation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:812. [PMID: 35269301 PMCID: PMC8912115 DOI: 10.3390/nano12050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023]
Abstract
Fe3O4@ZnO nanocomposites (NCs) were synthesized to improve the stability of the wormlike micelle (WLM) network structure of viscoelastic surfactant (VES) fracturing fluid and were characterized by Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Then, an NC-enhanced viscoelastic surfactant solution as a fracturing fluid (NC-VES) was prepared, and its properties, including settlement stability, interactions between NCs and WLMs, proppant-transporting performance and gel-breaking properties, were systematically studied. More importantly, the influences of the NC concentration, shear rate, temperature and pH level on the stability of NC-VES were systematically investigated. The experimental results show that the NC-VES with a suitable content of NCs (0.1 wt.%) shows superior stability at 95 °C or at a high shear rate. Meanwhile, the NC-VES has an acceptable wide pH stability range of 6-9. In addition, the NC-VES possesses good sand-carrying performance and gel-breaking properties, while the NCs can be easily separated and recycled by applying a magnetic field. The temperature-resistant, stable and environmentally friendly fracturing fluid opens an opportunity for the future hydraulic fracturing of unconventional reservoirs.
Collapse
Affiliation(s)
- Xiaodong Si
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| | - Mingliang Luo
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| | - Mingzhong Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| | - Yuben Ma
- Oilfield Production Department, China Oilfield Services Limited, Tianjin 300451, China;
| | - Yige Huang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| | - Jingyang Pu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.S.); (M.L.); (Y.H.); (J.P.)
- Key Laboratory of Unconventional Oil and Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China
| |
Collapse
|
5
|
|
6
|
Zhu L, Ding C, Zhu T, Wang Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2084-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Experimental Study on the Drag Reduction Performance of Clear Fracturing Fluid Using Wormlike Surfactant Micelles and Magnetic Nanoparticles under a Magnetic Field. NANOMATERIALS 2021; 11:nano11040885. [PMID: 33807149 PMCID: PMC8066060 DOI: 10.3390/nano11040885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/21/2022]
Abstract
This paper examines a new study on the synergistic effect of magnetic nanoparticles and wormlike micelles (WLMs) on drag reduction. Fe3O4 magnetic nanoparticles (FE-NPs) are utilized to improve the performance of viscoelastic surfactant (VES) solutions used as fracturing fluids. The chemical composition and micromorphology of the FE-NPs were analyzed with FT-IR and an electron microscope. The stability and interaction of the WLM-particle system were studied by zeta potential and cryo-TEM measurements. More importantly, the influences of the temperature, FE-NP concentration, magnetic field intensity, and direction on the drag reduction rate of WLMs were systematically investigated in a circuit pipe flow system with an electromagnetic unit. The experimental results show that a suitable content of magnetic nanoparticles can enhance the settlement stability and temperature resistance of WLMs. A magnetic field along the flow direction of the fracturing fluid can improve the drag reduction performance of the magnetic WLM system. However, under a magnetic field perpendicular to the direction of fluid flow, an additional flow resistance is generated by the vertical chaining behavior of FE-NPs, which is unfavorable for the drag reduction performance of magnetic VES fracturing fluids. This study may shed light on the mechanism of the synergistic drag reduction effects of magnetic nanoparticles and wormlike micelles.
Collapse
|
8
|
Chang H, Liu S, Tong T, He Q, Crittenden JC, Vidic RD, Liu B. On-Site Treatment of Shale Gas Flowback and Produced Water in Sichuan Basin by Fertilizer Drawn Forward Osmosis for Irrigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10926-10935. [PMID: 32693582 DOI: 10.1021/acs.est.0c03243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fertilizer drawn forward osmosis (FDFO) was proposed to extract fresh water from flowback and produced water (FPW) from shale gas extraction for irrigation, with fertilizer types and membrane orientations assessed. The draw solution (DS) with NH4H2PO4 displayed the best performance, while the DS with (NH4)2HPO4 resulted in the most severe membrane fouling. The DS with KCl and KNO3 led to substantial reverse solute fluxes. The FDFO operation where the active layer of the membrane was facing the feed solution outperformed that when the active layer was facing the DS. The diluted DS and diluted FPW samples were used for irrigation of Cherry radish and Chinese cabbage. Compared to deionized water, irrigation with the diluted DS (total dissolved solid (TDS) = 350 mg·L-1) promoted plant growth. In contrast, inhibited plant growth was observed when FPW with high salinity (TDS = 5000 mg·L-1) and low salinity (TDS = 1000 mg·L-1) was used for irrigation of long-term (8-week) plant cultures. Finally, upregulated genes were identified to illustrate the difference in plant growth. The results of this study provide a guide for efficient and safe use of FPW after FDFO treatment for agricultural application.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China
| | - Shi Liu
- Chuanqing Drilling Engineering Company Limited, Chinese National Petroleum Corporation, Chengdu 610081, PR China
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Qiping He
- Chuanqing Drilling Engineering Company Limited, Chinese National Petroleum Corporation, Chengdu 610081, PR China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China
| |
Collapse
|
9
|
Research on Forward Osmosis Membrane Technology Still Needs Improvement in Water Recovery and Wastewater Treatment. WATER 2019. [DOI: 10.3390/w12010107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forward osmosis (FO) has become an evolving membrane separation technology to recover water due to its strong retention capacity, sustainable membrane fouling, etc. Although a good deal of research has been extensively investigated in the past decades, major challenges still remain as follows: (1) the novel FO membrane material properties, which significantly influence the fouling of the FO membranes, the intolerance reverse solute flux (RSF), the high concentration polarization (CP), and the low permeate flux; (2) novel draw solution preparation and utilization; (3) salinity build-up in the FO system; (4) the successful implementation of the FO process. This work critically reviews the last five years’ literature in development of the novel FO membrane material, structure in modification, and preparation, including comparison and analysis on the traditional and novel draw solutes coupled with their effects on FO performance; application in wastewater treatment, especially hybrid system and integrated FO system; fouling mechanism; and cleaning strategy as discussed in the literature. The current barriers of the research results in each hotspot and the areas that can be improved are also analyzed in detail. The research hotspots in the research and development of the novel membrane materials in various countries and regions have been compared in recent years, and the work of variation in pop research hotspots in the past 10 years has been analyzed and the ideas that fill the blank gaps also have been proposed.
Collapse
|
10
|
Du C, Zhang X, Wu C. Chitosan‐modified graphene oxide as a modifier for improving the structure and performance of forward osmosis membranes. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chun‐Hui Du
- School of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou China
| | - Xin‐Yi Zhang
- School of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou China
| | - Chun‐Jin Wu
- School of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou China
| |
Collapse
|
11
|
Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation. WATER 2019. [DOI: 10.3390/w11071437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unconventional oil and gas extraction is on the rise across the United States and comprises an integral component in meeting the nation’s energy needs. The primary by-product of this industrious process is produced water, which is a challenging matrix to remediate because of its complex physical and chemical composition. Forward osmosis is a viable option to treat high-salinity produced water; however, fouling has been an issue. This study aimed to treat produced water before using forward osmosis as a remediation option. Trials consisted of a series of five experiments in order to evaluate the performance of the membrane. Samples were treated by centrifugation, activated carbon, filtration, ferric chloride, as well as coagulants and a polymer. It can be concluded that forward osmosis can be used to extract water from high-salinity oil field brines and produced water, and that pretreating the produced water decreased the tendency for fouling. The pretreatment with the overall best performance was activated carbon, which also yielded the lowest total organic carbon concentrations of 1.9 mg/L. During remediation trials using produced water pretreated with activated carbon as the feed solution, there was a 14% decrease in flux over the course of the 7 h trials. The membrane performance was restored after washing.
Collapse
|