1
|
Silva DFD, de Souza EP, Porto ALF, Silva ABD, Simas Teixeira MF, Duarte Neto JMW, Converti A, Marques DDAV, Lima Duarte CDA. First report of collagenase production by Trichosporon sp. strain isolated from pollen of Amazonian bee ( Melipona seminigra seminigra). Prep Biochem Biotechnol 2022; 52:1069-1077. [PMID: 35130473 DOI: 10.1080/10826068.2022.2028637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Trichosporon yeasts are widely employed to produce lipids, lipases, and aspartic peptidases, but there are no previous studies on collagenase production. This work aimed to select the best collagenase producing Amazonian Trichosporon strains. Moreover, a 23-full factorial design (FFD) and a 22-central composite design combined with Response Surface Methodology were applied to optimize production and find the best conditions for hydrolysis of type I bovine collagen. Most of the studied strains had some collagenolytic activity, but the selected one achieved the highest value (44.02 U) and a biomass concentration of 2.31 g/L. The best collagenase production conditions were 160 rpm of agitation, pH 5.5 and a substrate concentration of 4.0 g/L. The former experimental design showed that substrate concentration was the only statistically significant factor on both biomass concentration and collagenase activity, while the latter showed simultaneous effects of substrate concentration and pH on collagenolytic activity, which peaked at pH 5.5-6.4 and substrate concentration of 3.0-3.4 g/L. An additional 2³-FFD was finally used to optimize the conditions collagen hydrolysis, and pH 6, 25 °C and a substrate concentration of 7.5 (g/L) ensured the highest hydrolysis degree. This study is the first that describes optimized conditions of collagenase production by Trichosporon strains.
Collapse
Affiliation(s)
- Douglas Ferreira da Silva
- Biotechnology and Therapeutic Innovation Laboratory, University of Pernambuco-UPE, Campus Garanhuns, Garanhuns, Brazil
| | - Emerson Pequeno de Souza
- Biotechnology and Therapeutic Innovation Laboratory, University of Pernambuco-UPE, Campus Garanhuns, Garanhuns, Brazil
| | - Ana Lúcia Figueiredo Porto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco-UFRPE, Recife, Brazil
| | | | | | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa, Italy
| | - Daniela de Araújo Viana Marques
- Laboratory of Biotechnology Applied to Infectious and Parasitic Diseases, Biological Science Institute, University of Pernambuco (UPE), Recife, Brazil
| | | |
Collapse
|
2
|
Figueiredo G, Gomes M, Covas C, Mendo S, Caetano T. The Unexplored Wealth of Microbial Secondary Metabolites: the Sphingobacteriaceae Case Study. MICROBIAL ECOLOGY 2022; 83:470-481. [PMID: 33987687 DOI: 10.1007/s00248-021-01762-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Research on secondary metabolites (SMs) has been mostly focused on Gram-positive bacteria, especially Actinobacteria. The association of genomics with robust bioinformatics tools revealed the neglected potential of Gram-negative bacteria as promising sources of new SMs. The family Sphingobacteriaceae belongs to the phylum Bacteroidetes having representatives in practically all environments including humans, rhizosphere, soils, wastewaters, among others. Some genera of this family have demonstrated great potential as plant growth promoters, bioremediators and producers of some value-added compounds such as carotenoids and antimicrobials. However, to date, Sphingobacteriaceae's SMs are still poorly characterized, and likewise, little is known about their chemistry. This study revealed that Sphingobacteriaceae pangenome encodes a total of 446 biosynthetic gene clusters (BGCs), which are distributed across 85 strains, highlighting the great potential of this bacterial family to produce SMs. Pedobacter, Mucilaginibacter and Sphingobacterium were the genera with the highest number of BGCs, especially those encoding the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), terpenes, polyketides and nonribosomal peptides (NRPs). In Mucilaginibacter and Sphingobacterium genera, M. lappiensis ATCC BAA-1855, Mucilaginibacter sp. OK098 (both with 11 BGCs) and Sphingobacterium sp. 21 (6 BGCs) are the strains with the highest number of BGCs. Most of the BGCs found in these two genera did not have significant hits with the MIBiG database. These results strongly suggest that the bioactivities and environmental functions of these compounds, especially RiPPs, PKs and NRPs, are still unknown. Among RiPPs, two genera encoded the production of class I and class III lanthipeptides. The last are associated with LanKC proteins bearing uncommon lyase domains, whose dehydration mechanism deserves further investigation. This study translated genomics into functional information that unveils the enormous potential of environmental Gram-negative bacteria to produce metabolites with unknown chemistries, bioactivities and, more importantly, unknown ecological roles.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Margarida Gomes
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Claúdia Covas
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sónia Mendo
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tânia Caetano
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Huergo LF, Conzentino M, Gonçalves MV, Gernet MV, Reis RA, Pedrosa FO, Baura VA, Pires A, Gerhardt ECM, Tuleski TR, Balsanelli E, Guizelini D, Souza EM, Chandra G, Cruz LM. The microbiome of a shell mound: ancient anthropogenic waste as a source of Streptomyces degrading recalcitrant polysaccharides. World J Microbiol Biotechnol 2021; 37:210. [PMID: 34719741 DOI: 10.1007/s11274-021-03174-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Metagenome amplicon DNA sequencing and traditional cell culture techniques are helping to uncover the diversity and the biotechnological potential of prokaryotes in different habitats around the world. It has also had a profound impact on microbial taxonomy in the last decades. Here we used metagenome 16S rDNA amplicon sequencing to reveal the microbiome composition of different layers of an anthropogenic soil collected at a shell mound Sambaqui archeological site. The Samabaqui soil microbiome is mainly composed by phyla Acidobacteria, Rokubacteria, Proteobacteria and Thaumarchaeota. Using culture-dependent analysis we obtained few Streptomyces isolates from the Sambaqui soil. One of the isolates, named Streptomyces sp. S3, was able to grow in minimal medium containing recalcitrant polysaccharides including chitin, xylan, carboxymethylcellulose or microcrystalline cellulose as sole carbon sources. The activities of enzymes degrading these compounds were confirmed in cell free supernatants. The genome sequence revealed not only an arsenal of genes related to polysaccharides degradation but also biosynthetic gene clusters which may be involved in the production of biotechnologically interesting secondary metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Valter A Baura
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Araceli Pires
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | | | - Thalita R Tuleski
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Dieval Guizelini
- Programa de Pós-graduação em Bioinformática, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Leonardo M Cruz
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| |
Collapse
|
4
|
Souza FFC, Mathai PP, Pauliquevis T, Balsanelli E, Pedrosa FO, Souza EM, Baura VA, Monteiro RA, Cruz LM, Souza RAF, Andreae MO, Barbosa CGG, de Angelis IH, Sánchez-Parra B, Pӧhlker C, Weber B, Ruff E, Reis RA, Godoi RHM, Sadowsky MJ, Huergo LF. Influence of seasonality on the aerosol microbiome of the Amazon rainforest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144092. [PMID: 33341626 DOI: 10.1016/j.scitotenv.2020.144092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The Amazon rainforest is the world's largest tropical forest, and this biome may be a significant contributor to primary biological aerosol (PBA) emissions on a global scale. These aerosols also play a pivotal role in modulating ecosystem dynamics, dispersing biological material over geographic barriers and influencing climate through radiation absorption, light scattering, or acting as cloud condensation nuclei. Despite their importance, there are limited studies investigating the effect of environmental variables on the bioaerosol composition in the Amazon rainforest. Here we present a 16S rRNA gene-based amplicon sequencing approach to investigate the bacterial microbiome in aerosols of the Amazon rainforest during distinct seasons and at different heights above the ground. Our data revealed that seasonal changes in temperature, relative humidity, and precipitation are the primary drivers of compositional changes in the Amazon rainforest aerosol microbiome. Interestingly, no significant differences were observed in the bacterial community composition of aerosols collected at ground and canopy levels. The core airborne bacterial families present in Amazon aerosol were Enterobacteriaceae, Beijerinckiaceae, Polyangiaceae, Bacillaceae and Ktedonobacteraceae. By correlating the bacterial taxa identified in the aerosol with literature data, we speculate that the phyllosphere may be one possible source of airborne bacteria in the Amazon rainforest. Results of this study indicate that the aerosol microbiota of the Amazon Rainforest are fairly diverse and principally impacted by seasonal changes in temperature and humidity.
Collapse
Affiliation(s)
| | - Prince P Mathai
- Biotechnology Institute, University of Minnesota, St. Paul, MN, USA
| | | | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Fabio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Valter A Baura
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Rose A Monteiro
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Leonardo M Cruz
- Departamento de Bioquímica e Biologia Molecular, UFPR, Curitiba, PR, Brazil
| | - Rodrigo A F Souza
- Meteorology Department, State University of Amazonas - UEA, Manaus, AM, Brazil
| | - Meinrat O Andreae
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; Scripps Institution of Oceanography, University of San Diego, La Jolla, CA, USA
| | - Cybelli G G Barbosa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | | | - Christopher Pӧhlker
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Bettina Weber
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany; Institut für Biologie, University of Graz, Graz, Austria
| | - Emil Ruff
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, USA; J Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, USA
| | | | | | | | | |
Collapse
|
5
|
Stange M, Barrett RDH, Hendry AP. The importance of genomic variation for biodiversity, ecosystems and people. Nat Rev Genet 2020; 22:89-105. [PMID: 33067582 DOI: 10.1038/s41576-020-00288-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/09/2022]
Abstract
The 2019 United Nations Global assessment report on biodiversity and ecosystem services estimated that approximately 1 million species are at risk of extinction. This primarily human-driven loss of biodiversity has unprecedented negative consequences for ecosystems and people. Classic and emerging approaches in genetics and genomics have the potential to dramatically improve these outcomes. In particular, the study of interactions among genetic loci within and between species will play a critical role in understanding the adaptive potential of species and communities, and hence their direct and indirect effects on biodiversity, ecosystems and people. We explore these population and community genomic contexts in the hope of finding solutions for maintaining and improving ecosystem services and nature's contributions to people.
Collapse
Affiliation(s)
- Madlen Stange
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
6
|
Aalismail NA, Ngugi DK, Díaz-Rúa R, Alam I, Cusack M, Duarte CM. Functional metagenomic analysis of dust-associated microbiomes above the Red Sea. Sci Rep 2019; 9:13741. [PMID: 31551441 PMCID: PMC6760216 DOI: 10.1038/s41598-019-50194-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023] Open
Abstract
Atmospheric transport is a major vector for the long-range transport of microbial communities, maintaining connectivity among them and delivering functionally important microbes, such as pathogens. Though the taxonomic diversity of aeolian microorganisms is well characterized, the genomic functional traits underpinning their survival during atmospheric transport are poorly characterized. Here we use functional metagenomics of dust samples collected on the Global Dust Belt to initiate a Gene Catalogue of Aeolian Microbiome (GCAM) and explore microbial genetic traits enabling a successful aeolian lifestyle in Aeolian microbial communities. The GCAM reported here, derived from ten aeolian microbial metagenomes, includes a total of 2,370,956 non-redundant coding DNA sequences, corresponding to a yield of ~31 × 106 predicted genes per Tera base-pair of DNA sequenced for the aeolian samples sequenced. Two-thirds of the cataloged genes were assigned to bacteria, followed by eukaryotes (5.4%), archaea (1.1%), and viruses (0.69%). Genes encoding proteins involved in repairing UV-induced DNA damage and aerosolization of cells were ubiquitous across samples, and appear as fundamental requirements for the aeolian lifestyle, while genes coding for other important functions supporting the aeolian lifestyle (chemotaxis, aerotaxis, germination, thermal resistance, sporulation, and biofilm formation) varied among the communities sampled.
Collapse
Affiliation(s)
- Nojood A Aalismail
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| | - David K Ngugi
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Culture, Inhoffenstrasse 7B, B38124, Braunschweig, Germany
| | - Rubén Díaz-Rúa
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Michael Cusack
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|