1
|
Liu Y, Zheng T, Guo B, Tao Y, Jiang S, Cao M, Zheng X, Luo J. Reactive transport of different dissolved organic nitrogen components in an unconfined aquifer. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138259. [PMID: 40286668 DOI: 10.1016/j.jhazmat.2025.138259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Dissolved organic nitrogen (DON) is often an overlooked form of nitrogen that can leach from the soil into aquifers. The reactive transport and dispersion of DON in aquifers can contribute to regional nitrogen contamination. The current body of research has primarily focused on the vertical leaching process of DON through the vadose zone. However, these studies have largely ignored the broader reactive transport of DON within aquifers under the influence of groundwater flow. In this study, we investigate the reactive transport of DON under groundwater flow conditions. Utilizing molecular biological technologies, we aim to reveal DON's intrinsic role in the nitrogen cycle within aquifers. Our findings reveal that urea exhibits greater mobility compared to amino acids and proteins. The transport of amino acids and proteins reduces the NO3--N concentrations (44.6 % and 89.6 %) compared to the blank control, while urea leads to the accumulation of NO3--N in groundwater (10.1 %). Amino acid and protein columns show higher relative abundances of Pseudomonas (10.1 % and 7.3 %) and Thermomonas (3.9 % and 5.1 %) with denitrification functions, facilitating denitrification in groundwater. Conversely, the presence of urea increases the relative abundances of Nitrosomonadaceae and Nitrophilus (0.33 % and 0.67 %), posing a potential NO3--N contamination risk. Biotransformation has the greatest effect on protein transport (19.6 %), while adsorption mainly influences amino acid transport (12.4 %). The study provides fundamental insights into the reactive transport of different DON components in aquifers, which holds important implications for regional groundwater environment protection.
Collapse
Affiliation(s)
- Yang Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Yiheng Tao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | - Min Cao
- Qingdao Hydrological Center, Qingdao 266001, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Chen G, Huang X, Chen P, Gong X, Wang X, Liu S, Huang Z, Fang Q, Pan Q, Tan X. Polystyrene influence on Pb bioavailability and rhizosphere toxicity: Challenges for ramie (Boehmeria nivea L.) in soil phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176322. [PMID: 39299333 DOI: 10.1016/j.scitotenv.2024.176322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Microplastics (MPs) and heavy metals often coexist in soil, however their interactions and effects on the soil-plant system remain largely unclear. In this study, ramie (Boehmeria nivea L.) was exposed to soil contaminated with lead (Pb) and polystyrene (PS) of different sizes, dosages, and surface-charged functional groups. This design aimed to simulate the effects of MPs on phytoremediation. The experimental results revealed that PS exacerbated the damaging effects of Pb on ramie. Compared to the effect of Pb alone, PS-COOH had a greater influence on root vigor, leading to a 15.6 % reduction in the active absorption ratio. Laser scanning confocal microscope showed PS entered the roots. Adsorption/desorption experiments demonstrated that PS had a weaker adsorption capacity for Pb than soil but a greater desorption rate than soil when simulating rhizosphere secretion. Moreover, PS reduced soil pH and increased the reducible state of Pb by 6-12 %. After 100 days of phytoremediation, Pb content in the soil with PS-5 μm was 150 μg g-1 less than that in the soil without PS. These results demonstrated that PS improved Pb bioavailability and enhanced the efficiency of Pb uptake by ramie. The redundancy analysis demonstrated that PS mitigated the toxicity of Pb to rhizosphere microorganisms, potentially via its effects on metal chemical fractions, dehydrogenase activity (S-DHA), cation exchange capacity (CEC), and soil organic matter (SOM). This study indicates that the presence of PS could potentially enhance the phytoremediation efficiency of ramie in Pb-contaminated land by influencing soil microenvironmental properties. This study provides insights into the complex interactions of MPs with soil-plant-microbial systems during metal remediation, thereby enhancing our understanding of their environmental impacts.
Collapse
Affiliation(s)
- Gaobin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xinyi Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan Province, PR China
| | - Xiaomin Gong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Xin Wang
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Shaobo Liu
- School of Architecture and Art, Central South University, Changsha 410083, PR China
| | - Zhenhong Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qianzhen Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuqi Pan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
3
|
Wang L, Ren Z, Xu Z, Liu L, Chang R, Li Y. Promoting effect of ammonia oxidation on sulfur oxidation during composting: Nitrate as a bridge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 191:13-22. [PMID: 39504837 DOI: 10.1016/j.wasman.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Ammonia (NH3) and hydrogen sulfide (H2S) are the main odor components in the composting process. Controlling their emissions is very important to reduce environmental pollution and improve the quality of composting products. This study explored the effects of functional bacteria on nitrogen and sulfur metabolism in the composting process of food waste (FW) by adding ammonia-oxidizing bacteria (AOB, A treatment), sulfur-oxidizing bacteria (SOB, S treatment), and combined AOB and SOB (AS treatment), respectively. The key bacterial species involved in nitrogen and sulfur transformation were identified, and the intrinsic mechanisms by which ammonia oxidation drove sulfur oxidation during composting were deciphered. Compared with control treatment (CK), the combined addition of functional microorganisms increased the maximum of soxB gene abundance by 1.72 times, thus resulting in the increase in the SO42- content by 44.00 %. AS treatment decreased the cumulative H2S emission and total sulfur (TS) loss by 40.24 % and 34.69 %, respectively, meanwhile lowering NH3 emission. Correlation network analysis showed that the simultaneous addition of AOB and SOB enhanced the correlation between microorganisms and sulfur oxidation genes, and Acinetobacter, Aeribacillus, Brevibacterium and Ureibacillus might be involved in the ammonia oxidation-promoted sulfur oxidation process. In summary, the optimized inoculation strategy of AOB and SOB could drive biological transformation of nitrogen and sulfur by regulating microbial community, ultimately reducing odor emissions and improving sulfur conservation.
Collapse
Affiliation(s)
- Lingxiao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiping Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixin Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ruixue Chang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Zhou L, Xie Y, Wang X, Wang Z, Sa R, Li P, Yang X. Effect of microbial inoculation on nitrogen transformation, nitrogen functional genes, and bacterial community during cotton straw composting. BIORESOURCE TECHNOLOGY 2024; 403:130859. [PMID: 38777228 DOI: 10.1016/j.biortech.2024.130859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The effects of microbial agents on nitrogen (N) conversion during cotton straw composting remains unclear. In this study, inoculation increased the germination index and total nitrogen (TN) by 24-29 % and 7-10 g/kg, respectively. Inoculation enhanced the abundance of nifH, glnA, and amoA and reduced that of major denitrification genes (nirK, narG, and nirS). Inoculation not only produced high differences in the assembly process and strong community replacement but also weakened environmental constraints. Partial least squares path modelling demonstrated that enzyme activity and bacterial community were the main driving factors influencing TN. In addition, network analysis and the random forest model showed distinct changing patterns of bacterial communities after inoculation and identified keystone microorganisms in maintaining network complexity and synergy, as well as system function to promote nitrogen preservation. Findings provide a novel perspective on high-quality resource recovery of agricultural waste.
Collapse
Affiliation(s)
- Liuyan Zhou
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Yuqing Xie
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Xiaowu Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Zhifang Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Renna Sa
- Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Pengbing Li
- Comprehensive Testing Ground, Xinjiang Academy of Agricultural Sciences, Urumqi 830013, China.
| | - Xinping Yang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| |
Collapse
|
5
|
Bai B, Wang L, Guan F, Cui Y, Bao M, Gong S. Prediction models for bioavailability of Cu and Zn during composting: Insights into machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134392. [PMID: 38669932 DOI: 10.1016/j.jhazmat.2024.134392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Bioavailability assessment of heavy metals in compost products is crucial for evaluating associated environmental risks. However, existing experimental methods are time-consuming and inefficient. The machine learning (ML) method has demonstrated excellent performance in predicting heavy metal fractions. In this study, based on the conventional physicochemical properties of 260 compost samples, including compost time, temperature, electrical conductivity (EC), pH, organic matter (OM), total phosphorus (TP), total nitrogen, and total heavy metal contents, back propagation neural network, gradient boosting regression, and random forest (RF) models were used to predict the dynamic changes in bioavailable fractions of Cu and Zn during composting. All three models could be used for effective prediction of the variation trend in bioavailable fractions of Cu and Zn; the RF model showed the best prediction performance, with the prediction level higher than that reported in related studies. Although the key factors affecting changes among fractions were different, OM, EC, and TP were important for the accurate prediction of bioavailable fractions of Cu and Zn. This study provides simple and efficient ML models for predicting bioavailable fractions of Cu and Zn during composting, and offers a rapid evaluation method for the safe application of compost products.
Collapse
Affiliation(s)
- Bing Bai
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Fachun Guan
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yanru Cui
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Meiwen Bao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuxin Gong
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
6
|
Zhao H, Li S, Pu J, Wang H, Dou X. Effects of Bacillus-based inoculum on odor emissions co-regulation, nutrient element transformations and microbial community tropological structures during chicken manure and sawdust composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120328. [PMID: 38354615 DOI: 10.1016/j.jenvman.2024.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.
Collapse
Affiliation(s)
- Huaxuan Zhao
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Shangmin Li
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China.
| | - Junhua Pu
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Hongzhi Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| |
Collapse
|
7
|
Wang S, Long H, Hu X, Wang H, Wang Y, Guo J, Zheng X, Ye Y, Shao R, Yang Q. The co-inoculation of Trichoderma viridis and Bacillus subtilis improved the aerobic composting efficiency and degradation of lignocellulose. BIORESOURCE TECHNOLOGY 2024; 394:130285. [PMID: 38184087 DOI: 10.1016/j.biortech.2023.130285] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
The aim of this study was to reveal the mechanism by which co-inoculation with both Trichoderma viridis and Bacillus subtilis improved the efficiency of composting and degradation of lignocellulose in agricultural waste. The results showed that co-inoculation with Trichoderma and Bacillus increased abundance of Bacteroidota to promote the maturation 7 days in advance. Galbibacter may be a potential marker of co-inoculation composting efficiency compost. The compost became dark brown, odorless, and had a carbon to nitrogen ratio of 16.40 and a pH of 8.2. Moreover, Actinobacteriota and Firmicutes still dominated the degradation of lignocellulose following inoculation with Trichoderma or Bacillus 35 days after composting. Bacterial function prediction analysis showed that carbohydrate metabolism was the primary metabolic pathway. In conclusion, co-inoculation with Trichoderma and Bacillus shortened the composting cycle and accelerated the degradation of lignocellulose. These findings provide new strategies for the efficient use of agricultural waste to produce organic fertilizers.
Collapse
Affiliation(s)
- Shancong Wang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haochi Long
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinru Hu
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hao Wang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongchao Wang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiameng Guo
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianfu Zheng
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Youliang Ye
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruixin Shao
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Qinghua Yang
- Henan Engineering Research Center of Crop Chemical Control, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; College of Agronomy, State Key laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
8
|
Duan X, Zhai W, Li X, Wu S, Wang Y, Wang L, Basang W, Zhu Y, Gao Y. Preparation, purification, and biochemical of fat-degrading bacterial enzymes from pig carcass compost and its application. BMC Biotechnol 2023; 23:48. [PMID: 37924095 PMCID: PMC10625193 DOI: 10.1186/s12896-023-00818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND A lot of kitchen waste oil is produced every day worldwide, leading to serious environmental pollution. As one of the environmental protection methods, microorganisms are widely used treating of various wastes. Lipase, as one of the cleaning agents can effectively degrade kitchen waste oil. The composting process of pig carcasses produces many lipase producing microorganisms, rendering compost products an excellent source for isolating lipase producing microorganisms. To our knowledge, there are no reports isolating of lipase producing strains from the high temperature phase of pig carcass compost. METHODOLOGY Lipase producing strains were isolated using a triglyceride medium and identified by 16S rRNA gene sequencing. The optimal fermentation conditions for maximum lipase yield were gradually optimized by single-factor tests. The extracellular lipase was purified by ammonium sulfate precipitation and Sephadex G-75 gel isolation chromatography. Amino acid sequence analysis, structure prediction, and molecular docking of the purified protein were performed. The pure lipase's enzymatic properties and application potential were evaluated by characterizing its biochemical properties. RESULTS In this study, a lipase producing strain of Bacillus sp. ZF2 was isolated from pig carcass compost products, the optimal fermentation conditions of lipase: sucrose 3 g/L, ammonium sulfate 7 g/L, Mn2+ 1.0 mmol/L, initial pH 6, inoculum 5%, temperature 25 ℃, and fermentation time 48 h. After purification, the specific activity of the purified lipase reached 317.59 U/mg, a 9.78-fold improvement. Lipase had the highest similarity to the GH family 46 chitosanase and molecular docking showed that lipase binds to fat via two hydrogen bonds at Gln146 (A) and Glu203 (A). Under different conditions (temperature, metal ions, organic solvents, and surfactants), lipase can maintain enzymatic activity. Under different types of kitchen oils, lipase has low activity only for 'chicken oil', in treating other substrates, the enzyme activity can exceed 50%. CONCLUSIONS This study reveals the potential of lipase for waste oil removal, and future research will be devoted to the application of lipase.
Collapse
Affiliation(s)
- Xinran Duan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Zhai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xintian Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Sicheng Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, 850009, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, 850009, China
| | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
9
|
Chen X, Zhao Y, Yang L, Yang Y, Wang L, Wei Z, Song C. Identifying the specific pathways to improve nitrogen fixation of different straw biochar during chicken manure composting based on its impact on the microbial community. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:8-16. [PMID: 37531741 DOI: 10.1016/j.wasman.2023.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
The application of straw biochar to chicken manure composting mitigated nitrogen loss. However, the impact of biochar derived from different types of straw on nitrogen fixation in chicken manure composting is discrepant, and the specific pathways remain unclear. Therefore, this study aimed to clarify the specific pathways of maize straw biochar (M) and rice straw biochar (R) to improve nitrogen fixation during chicken manure composting. The nitrogen losses in control (no addition, CK), M, and R composting were 51.84 %, 33.47 %, and 38.24 %, respectively, suggesting that adding straw biochar effectively improved nitrogen fixation. Microbial community analysis suggested that inhibiting denitrification and NH4+-N transformation by microorganisms was the primary means of improving nitrogen fixation. Meanwhile, biochar addition reduced the number of bacteria participating in nitrogen transformation and strengthened the NO3--N and total organic nitrogen transformation processes, among which the effect of M composting was stronger. The stronger effect was attributed to the significant role of the core microorganisms in M composting in shifting the transformation processes of the nitrogen components (P < 0.05). Therefore, the function of different straw biochar was determined by its different impacts on the microbial community, highlighting the important role of microbial community variability.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liu Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunan Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
10
|
Liu Y, Deng B, Gu P, Pu Z, Xiao X, Rao C, Wen J. Fractional grey unequal-interval time-varying Lotka-Volterra model and its application for microbial communities in compost. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:351-362. [PMID: 37523946 DOI: 10.1016/j.wasman.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Aerobic compost is an effective method for the treatment of livestock manure, which is usually accompanied by complex interspecific competition. Describing these competitive relationships through mathematical models can help understand the interaction of microorganisms and analyze the effect of exogenous additive to regulate the composting process. The common model for analyzing competition problem is the Lotka-Volterra model. However, the fixed parameters of the Lotka-Volterra model are not suitable to reflect the dynamic variations of the competitive relationship when the environmental conditions change during composting process. Therefore, this paper establishes a novel fractional grey unequal-interval time-varying Lotka-Volterra model. Firstly, a fractional grey derivate operator is proposed on the basis of the unequal interval of composting data and historical dependence of microbial growth. Secondly, considering the influence of temperature, a time-varying parameter matrix is defined to reflect the variation of competitive relationship at different composting phases, and it is estimated by forgetting factor recursive least squares. Thirdly, the optimal coefficients are optimized by grey prediction evolution algorithm. Finally, the proposed model is employed to analyze the chicken manure composting experiment. The results show that the proposed model has lower error criteria and more accurate trend of fitting curve than the other five existing models. The parameter matrix describes the dynamical variation of microbial competitive relationship in two taxonomic levels and reveals that effect of the exogenous additive is principally reacted in the thermophilic phase and the competitive advantage is shifted from Bacteroidota to Firmicutes after treatment with the exogenous additive.
Collapse
Affiliation(s)
- Yichen Liu
- School of Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bing Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, 430208, PR China
| | - Peng Gu
- Hubei Academy of Scientific and Technical Information, Wuhan, 430071, PR China
| | - Zhenyu Pu
- Wuhan Academy of Agricultural Sciences, Wuhan, 430208, PR China
| | - Xinping Xiao
- School of Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Congjun Rao
- School of Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jianghui Wen
- School of Science, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
11
|
Matiz-Villamil A, Méndez-Carranza KJ, Pascagaza-Pulido AF, Rendón-Rendón T, Noriega-Noriega J, Pulido-Villamarín A. Trends in the management of organic swine farm waste by composting: A systematic review. Heliyon 2023; 9:e18208. [PMID: 37576302 PMCID: PMC10412907 DOI: 10.1016/j.heliyon.2023.e18208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Pig farming contributes to the economic development of nations and supplies human food demand; however, it generates a large amount of organic waste which, if not managed properly, becomes a risk to the environment and human and animal health. Considering the relevance of composting and its usefulness for the use of waste, this study aimed to determine the global trends in the management of composting manure, mortality and other organic waste produced on pig farms over the last five years (2017-2022). Systematic search involved four databases: ISI Web of Science, Scopus, Ebsco and Scielo. Of the total findings, 56 articles were included in the review, further classified into 14 categories for their respective analysis: co-substrates/additives, microbial communities, antibiotic resistance, heavy metals, polycyclic aromatic hydrocarbons, microbiological/parasitological quality, phytopathogens, nitrogen transformation, bioinoculants, comparison/combination with other waste management techniques, factors affecting composting, swine mortality and plant growth promotion/phytotoxicity. The review exemplified the importance of swine mortality composting as an alternative for organic matter management in pig farms, considering that the process also includes manure, vegetable waste and wood chips, among others. Controlled factors throughout the process are a requirement to obtain a stable product with physicochemical and microbiological quality that complies with national and international regulations and that will be useful and safe for application on crops, ensuring environmental, animal, and human health.
Collapse
Affiliation(s)
- Adriana Matiz-Villamil
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Kelly Johana Méndez-Carranza
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Andrés Felipe Pascagaza-Pulido
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Tatiana Rendón-Rendón
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Juliana Noriega-Noriega
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Adriana Pulido-Villamarín
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| |
Collapse
|
12
|
Martins GL, de Souza AJ, Mendes LW, Gontijo JB, Rodrigues MM, Coscione AR, Oliveira FC, Regitano JB. Physicochemical and bacterial changes during composting of vegetable and animal-derived agro-industrial wastes. BIORESOURCE TECHNOLOGY 2023; 376:128842. [PMID: 36898559 DOI: 10.1016/j.biortech.2023.128842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
This study investigates the impact of different agro-industrial organic wastes (i.e., sugarcane filter cake, poultry litter, and chicken manure) on the bacterial community and their relationship with physicochemical attributes during composting. Integrative analysis was performed by combining high-throughput sequencing and environmental data to decipher changes in the waste microbiome. The results revealed that animal-derived compost stabilized more carbon and mineralized a more organic nitrogen than vegetable-derived compost. Composting enhanced bacterial diversity and turned the bacterial community structure similar among all wastes, reducing Firmicutes abundance in animal-derived wastes. Potential biomarkers indicating compost maturation were Proteobacteria and Bacteroidota phyla, Chryseolinea genus and Rhizobiales order. The waste source influenced the final physicochemical attributes, whereas composting enhanced the complexity of the microbial community in the order of poultry litter > filter cake > chicken manure. Therefore, composted wastes, mainly the animal-derived ones, seem to present more sustainable attributes for agricultural use, despite their losses of C, N, and S.
Collapse
Affiliation(s)
- Guilherme Lucio Martins
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Adijailton José de Souza
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Júlia Brandão Gontijo
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Mayra Maniero Rodrigues
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Aline Renée Coscione
- Center of Soil and Agroenviromental Resources, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | | | - Jussara Borges Regitano
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil.
| |
Collapse
|
13
|
Liu X, Rong X, Yang J, Li H, Hu W, Yang Y, Jiang G, Xiao R, Deng X, Xie G, Luo G, Zhang J. Community succession of microbial populations related to CNPS biological transformations regulates product maturity during cow-manure-driven composting. BIORESOURCE TECHNOLOGY 2023; 369:128493. [PMID: 36526118 DOI: 10.1016/j.biortech.2022.128493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The main objective of present study was to understand the community succession of microbial populations related to carbon-nitrogen-phosphorus-sulfur (CNPS) biogeochemical cycles during cow-manure-driven composting and their correlation with product maturity. The abundance of microbial populations associated with C degradation, nitrification, cellular-P transport, inorganic-P dissolution, and organic-P mineralization decreased gradually with composting but increased at the maturation phase. The abundance of populations related to N-fixation, nitrate-reduction, and ammonification increased during the mesophilic stage and decreased during the thermophilic and maturation stages. The abundance of populations related to C fixation and denitrification increased with composting; however, the latter tended to decrease at the maturation stage. Populations related to organic-P mineralization were the key manipulators regulating compost maturity, followed by those related to denitrification and nitrification; those populations were mediated by inorganic N and available P content. This study highlighted the consequence of microbe-driven P mineralization in improving composting efficiency and product quality.
Collapse
Affiliation(s)
- Xin Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiangmin Rong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Junyan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Han Li
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Wang Hu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Yong Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Guoliang Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Rusheng Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xingxiang Deng
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Guixian Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| |
Collapse
|
14
|
Zhang B, Guo Z, Qu J, Zhang J, Liu J, Tao Y, Zhang Y, Sardar MF, Dai X, Liu H. Simultaneous reductions in antibiotic, antibiotic resistance genes and nitrogen loss during bioaugmentation tylosin fermentation dregs co-composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158069. [PMID: 35981593 DOI: 10.1016/j.scitotenv.2022.158069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Considering the main problems presented in the typical solid wastes antibiotic fermentation dregs (AFDs) composting that the residual antibiotics could result in the propagation of antibiotic resistance genes (ARGs), and the reduced value of agronomic production caused by the ammonia gas (NH3) emissions. This study established a bio-augmented tylosin fermentation dregs (TFDs) aerobic co-composting system to investigate the effects of a novel isolated high-efficiency strain Klebsiella sp. TN-1 inoculation on tylosin degradation, reduction in ammonia emissions, and ARG abundances during this process. Results showed that the application of strain Klebsiella sp. TN-1 extended the thermophilic stage and promoted compost maturity. Moreover, bio-enhanced co-composting with strain Klebsiella sp. TN-1 led to a totally degradation of tylosin, and removed most of ARGs, metal resistance genes (MRGs) and mobile genetic elements (MGEs), and also effectively reduce ammonia emission by 49.76 %.via increasing ammoxidation rates. Principal co-ordinates analysis further suggested that the strain Klebsiella sp. TN-1 had little influence on the bacterial community composition, while the changes of other physical and chemical properties during this process were the main reasons for the evolution of bacterial community and propagation of ARGs in the TFDs co-composting. This study suggests the potential of the bio-enhanced strain Klebsiella sp. TN-1 for antibiotic biodegradation and its application for nitrogen conservation in the AFDs co-composting process, which could decrease the risk of ARGs spreading and make compost products more secure.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhen Guo
- Management School, Harbin University of Commerce, Harbin 150028, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingdan Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Muhammad Fahad Sardar
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
15
|
Zhai W, Li X, Duan X, Gou C, Wang L, Gao Y. Development of a microbial protease for composting swine carcasses, optimization of its production and elucidation of its catalytic hydrolysis mechanism. BMC Biotechnol 2022; 22:36. [PMID: 36443757 PMCID: PMC9703648 DOI: 10.1186/s12896-022-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dead swine carcass composting is an excellent method for harmless treatment and resource utilization of swine carcass. However, poor biodegradation ability of traditional composting results in poor harmless treatment effect. Researches report that the biodegradation ability of composting can be improved by inoculation with enzyme-producing microorganisms or by inoculation with enzyme preparations. At present, the researches on improving the efficiency of dead swine carcass composting by inoculating enzyme-producing microorganisms have been reported. However, no work has been reported on the development of enzyme preparations for dead swine carcass composting. METHODOLOGY The protease-producing strain was isolated by casein medium, and was identified by 16 S rRNA gene sequencing. The optimal fermentation conditions for maximum protease production were gradually optimized by single factor test. The extracellular protease was purified by ammonium sulfate precipitation and Sephadex G-75 gel exclusion chromatography. The potential for composting applications of the purified protease was evaluated by characterization of its biochemical properties. And based on amino acid sequence analysis, molecular docking and inhibition test, the catalytic hydrolysis mechanism of the purified protease was elucidated. RESULTS In this study, a microbial protease was developed for swine carcass composting. A protease-producing strain DB1 was isolated from swine carcass compositing and identified as Serratia marcescen. Optimum fermentation conditions for maximum protease production were 5 g/L glucose, 5 g/L urea, 1.5 mmol/L Mg2+, initial pH-value 8, inoculation amount 5%, incubation temperature 30 °C and 60 h of fermentation time. The specific activity of purified protease reached 1982.77 U/mg, and molecular weight of the purified protease was 110 kDa. Optimum pH and temperature of the purified protease were 8 and 50 °C, respectively, and it had good stability at high temperature and in alkaline environments. The purified protease was a Ser/Glu/Asp triad serine protease which catalyzed substrate hydrolysis by Glu, Arg, Ser, Asp and Tyr active residues. CONCLUSIONS In general, the microbial protease developed in this study was suitable for industrial production and has the potential to enhance composting at thermophilic stage. Moreover, the catalytic hydrolysis mechanism of the protease was further analyzed in this study.
Collapse
Affiliation(s)
- Wei Zhai
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xintian Li
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xinran Duan
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Changlong Gou
- grid.411647.10000 0000 8547 6673College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000 Inner Mongolia China
| | - Lixia Wang
- grid.9227.e0000000119573309Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 Jilin Province China
| | - Yunhang Gao
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| |
Collapse
|
16
|
Zhang S, Zhong B, An X, Han Y, Xiao X, Zhang Q. Effect of moisture content on the evolution of bacterial communities and organic matter degradation during bioaugmented biogas residues composting. World J Microbiol Biotechnol 2022; 39:1. [PMID: 36344669 DOI: 10.1007/s11274-022-03454-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Composting is an excellent way to recycle biogas residues into a stable, non-toxic agricultural end product. In this study, the dynamic changes of physical-chemical parameters and bacterial community in three groups of bioaugmentation composting systems at different moisture contents (MC) of 50% (MC50), 60% (MC60) and 70% (MC70) were monitored. The differences of bacterial communities in composts with different initial MC were compared, and the interaction between biological and non-biological parameters was also explored. The results revealed that after 30 days of composting, the biogas residues compost in MC60 reached highest temperature of 64 °C, total Kjeldahl nitrogen (TKN) of 2%, seed germination index (GI) of 110%, and the longest thermophilic period duration of 5 days (55 °C). Additionally, the result of high-throughput sequencing showed that the diversity of bacterial communities in MC60 was the highest, and the abundance of Actinobacteria (16.93-52.63%), Firmicutes (8.71-56.75%), and Proteobacteria (16.88-46.95%) in all groups were the highest at phylum level. The LEfSe analysis indicated that the abundance of Ochrobactrum and Cellulomonadaceae in MC60 was significantly (p < 0.05) higher than with other treatments. Moreover, canonical correspondence analysis (CCA) indicated thermophilic period duration is significantly (p < 0.05) positively correlated with Paenibacillus. Besides, it was found the relative abundance of Nocardiopsis and Georgenia has a significant (p < 0.01) correlation with the fertilizer efficiency of compost. These results showed that controlling the initial moisture content at 60% can improve the maturity and fertilizer efficiency of compost, and enable the bacteria beneficial to composting to gain the advantage of proliferation.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yanyan Han
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Xiaoshuang Xiao
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
17
|
Hoang HG, Thuy BTP, Lin C, Vo DVN, Tran HT, Bahari MB, Le VG, Vu CT. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. CHEMOSPHERE 2022; 300:134514. [PMID: 35398076 DOI: 10.1016/j.chemosphere.2022.134514] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Composting is a promising technology to decompose organic waste into humus-like high-quality compost, which can be used as organic fertilizer. However, greenhouse gases (N2O, CO2, CH4) and odorous emissions (H2S, NH3) are major concerns as secondary pollutants, which may pose adverse environmental and health effects. During the composting process, nitrogen cycle plays an important role to the compost quality. This review aimed to (1) summarizes the nitrogen cycle of the composting, (2) examine the operational parameters, microbial activities, functions of enzymes and genes affecting the nitrogen cycle, and (3) discuss mitigation strategies for nitrogen loss. Operational parameters such as moisture, oxygen content, temperature, C/N ratio and pH play an essential role in the nitrogen cycle, and adjusting them is the most straightforward method to reduce nitrogen loss. Also, nitrification and denitrification are the most crucial processes of the nitrogen cycle, which strongly affect microbial community dynamics. The ammonia-oxidizing bacteria or archaea (AOB/AOA) and the nitrite-oxidizing bacteria (NOB), and heterotrophic and autotrophic denitrifiers play a vital role in nitrification and denitrification with the involvement of ammonia monooxygenase (amoA) gene, nitrate reductase genes (narG), and nitrous oxide reductase (nosZ). Furthermore, adding additives such as struvite salts (MgNH4PO4·6H2O), biochar, and zeolites (clinoptilolite), and microbial inoculation, namely Bacillus cereus (ammonium strain), Pseudomonas donghuensis (nitrite strain), and Bacillus licheniformis (nitrogen fixer) can help control nitrogen loss. This review summarized critical issues of the nitrogen cycle and nitrogen loss in order to help future composting research with regard to compost quality and air pollution/odor control.
Collapse
Affiliation(s)
- Hong Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai, 76100, Viet Nam
| | - Bui Thi Phuong Thuy
- Faculty of Basic Sciences, Van Lang University, 68/69 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 700000, Viet Nam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 81157, Taiwan
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Huu Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 81157, Taiwan.
| | - Mahadi B Bahari
- Faculty of Science, Universiti Technoloki Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Van Giang Le
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
18
|
Yu Z, Deng H, Qu H, Zhang B, Lei G, Chen J, Feng X, Wu D, Huang Y, Ji Z. Penicillium simplicissimum possessing high potential to develop decaffeinated Qingzhuan tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Liu Z, Wei Y, Li J, Ding GC. Integrating 16S rRNA amplicon metagenomics and selective culture for developing thermophilic bacterial inoculants to enhance manure composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:357-365. [PMID: 35436715 DOI: 10.1016/j.wasman.2022.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Composting is an important method for treating and recycling organic waste, and the use of microbial inoculants can increase the efficiency of composting. Herein, we illustrate an approach that integrate 16S rRNA amplicon metagenomics and selective culture of thermophilic bacteria for the development of inoculants to improve manure composting. The 16S rRNA amplicon sequencing analysis revealed that Firmicutes and Actinobacteria were dominant in the composting mixture, and that different microbial hubs succeeded during the thermophilic stage. All isolated thermophilic bacteria were affiliated with the order Bacillales, such as Geobacillus, Bacillus, and Aeribacillus. These isolated thermophilic bacteria were grouped into 11 phylotypes, which shared >99% sequence identity to 0.15% to 5.32% of 16S rRNA reads by the amplicon sequencing. Three of these phylotypes transiently enriched during the thermophilic stage. Six thermophilic bacteria were selected from the three phylotypes to obtain seven microbial inoculants. Five out of seven of the microbial inoculants enhanced the thermophilic stage of composting by 16.9% to 52.2%. Three-dimensional excitation emission matrix analysis further revealed that two inoculants (Thermoactinomyces intermedius and Ureibacillus thermophilus) stimulated humification. Additionally, the 16S rRNA amplicon sequencing analysis revealed that inoculation with thermophilic bacteria enhanced the succession of the microbial community during composting. In conclusion, 16S rRNA amplicon metagenomics is a useful tool for the development of microbial inoculants to enhance manure composting.
Collapse
Affiliation(s)
- Zixiu Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128, Jiangsu Province, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128, Jiangsu Province, China
| | - Guo-Chun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128, Jiangsu Province, China.
| |
Collapse
|
20
|
Zhang Y, Duan M, Zhou B, Wang Q, Zhang Z, Su L, Bai Q. Mechanism that allows manno-oligosaccharide to promote cellulose degradation by the bacterial community and the composting of cow manure with straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30265-30276. [PMID: 34997494 DOI: 10.1007/s11356-021-17797-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The new sugar source manno-oligosaccharide can regulate the structure of the microbial community. This study investigated the effects of adding manno-oligosaccharide at four different levels (0, 0.1%, 0.5%, and 1% w/w compost) to composting cow manure and straw on lignocellulose degradation and the bacterial community. Adding 0.5% manno-oligosaccharide had the greatest effects on accelerating the composting process, reducing its toxicity, and improving the stability of the product. After composting for 25 days, adding 0.5% manno-oligosaccharide decreased the hemicellulose, cellulose, and lignin contents to 2.25%, 11.25%, and 7.07%, respectively, compared with those under CK. Manno-oligosaccharide promoted the degradation of lignocellulose by increasing the abundances of Thermobifida, Streptomyces, and Luteimonas. In addition, manno-oligosaccharide inhibited pathogenic bacteria and increased the abundances of functional genes related to metabolism. Finally, adding 0.5% manno-oligosaccharide mainly affected the degradation of lignocellulose by enhancing the C/N ratio and the abundances of Streptomyces and the secretion system during composting according to redundancy analysis.
Collapse
Affiliation(s)
- Yuhua Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
- XianYang and Research Institute of Water Conservancy and Hydropower Planning and Design, XianYang, 712021, China
| | - Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Beibei Zhou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Quanjiu Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Zhenshi Zhang
- Northwest Engineering Corporation Limited Power China, Xi'an, 710065, China
| | - Lijun Su
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Qingjun Bai
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
21
|
Kang J, Yin Z, Pei F, Ye Z, Sun Y, Song G, Ge J. Driving factors of nitrogen conversion during chicken manure aerobic composting under penicillin G residue: Quorum sensing and its signaling molecules. BIORESOURCE TECHNOLOGY 2022; 345:126469. [PMID: 34864180 DOI: 10.1016/j.biortech.2021.126469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
This study explored effects of different concentrations of penicillin G on nitrogen conversion, bacterial community composition, and quorum sensing during chicken manure aerobic composting. After composting, adding penicillin G down-regulated the abundance of 71 genera and up-regulated the abundance of 103 genera. These bacterial genera were mainly Firmicutes and Proteobacteria. 16S rRNA gene sequencing was employed for function prediction, and the results showed that the addition of penicillin G increased nitrification, reduced denitrification. The autoinducer-1 (AI-1), autoinducer-3 (AI-3) and Phr signal molecules further participated in the nitrogen cycle by regulating the population behavior among multiple bacterial genera. In addition, SEM analysis showed that the quorum sensing system negatively regulated the abundance of genus related to the nitrogen conversion during chicken manure aerobic composting. This is a new theoretical analysis of the research on the treatment of hazardous materials.
Collapse
Affiliation(s)
- Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ziliang Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
22
|
Effect of hydrothermal treatment on organic matter degradation, phytotoxicity, and microbial communities in model food waste composting. J Biosci Bioeng 2022; 133:382-389. [PMID: 35115228 DOI: 10.1016/j.jbiosc.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/17/2023]
Abstract
Hydrothermal treatment (HTT) as a pretreatment method for compost raw material has multiple benefits such as enhanced solubility of organic material, improved bioaugmentation, and reduced biohazard by killing harmful microorganisms. In this study, we pretreated food waste via HTT at 180 °C for 30 min to investigate its effect on food waste composting. HTT generated 8.98 mg/g-dry solid (g-ds) of 5-hydroxymethylfurfural and 4.32 mg/g-ds furfural. These furan compounds were completely decomposed in the early stage of composting, subsequently the organic matter in the food waste started to be degraded. The HTT-pretreated experiment demonstrated less organic matter degradation during composting as well as lower compost phytotoxicity compared to the non-HTT-pretreated experiment, where the conversion of carbon was 25.2% and the germination index value was 55%. HTT probably denatured part of the organic matter and making it more difficult to decompose, thereby preventing the rapid release of high concentrations of phytotoxic compounds such as organic acids and ammonium ions during composting. High-throughput microbial community analysis revealed that only Firmicutes appeared in the HTT-pretreated experiment, however, other bacterial groups also appeared in the non-HTT-pretreated experiment. This was possibly influenced by furan compounds and the changes of easily degradable organic matter to hardly degradable. Bacillus and Lysinibacillus were dominant in both composting experiments during vigorous organic matter degradation, suggesting that these bacterial groups were the main contributors to food waste composting. This study suggests that HTT is advantageous for the pretreatment of easily degradable food waste, as compost with less phytotoxicity was produced.
Collapse
|
23
|
Ma Q, Li Y, Xue J, Cheng D, Li Z. Effects of Turning Frequency on Ammonia Emission during the Composting of Chicken Manure and Soybean Straw. Molecules 2022; 27:472. [PMID: 35056787 PMCID: PMC8777752 DOI: 10.3390/molecules27020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/04/2023] Open
Abstract
Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42-18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.
Collapse
Affiliation(s)
- Qianqian Ma
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianming Xue
- SCION, Private Bag 29237, Christchurch 8440, New Zealand;
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
24
|
Chen Y, Li X, Li S, Xu Y. Effect of C/N ration on disposal of pig carcass by co-composting with swine manure: experiment at laboratory scale. ENVIRONMENTAL TECHNOLOGY 2021; 42:4415-4425. [PMID: 32324113 DOI: 10.1080/09593330.2020.1760358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Disposal of animal carcasses by co-composting with animal waste usually selected conventional carbon to nitrogen (C/N) ratio around 25:1, in which the compost is widely used throughout the world. In this study, the pig carcass tissue blocks were sampled for composting at a laboratory scale to evaluate the effect of C/N ratio on the pig carcass compost. The time of thermophilic phase between 60 °C - 70 °C at a lower C/N ratio of 20:1 was significantly longer than that at the conventional C/N ratio, and it was the only one with the temperature beyond 70 °C that lasted for 2 days. Germination index and T value (the final C/N ratio / the initial C/N ratio) of the treatment with a C/N ratio of 20:1 were 94.67% and 0.69, respectively, meeting the standards of animal carcass compost. The degradation rate was 75.67%, and no significant difference was obtained as compared to the conventional C/N ratio groups. Organic fertilizer produced from the treatment with a C/N ratio of 20:1 was selected to evaluate the fertility by pot experiment of Cayenne pepper compared with chemical fertilizer. The results showed that organic fertilizer from this treatment could significantly improve the growth of Cayenne pepper. Overall, the use of the lower C/N ratio of 20:1 in the disposal of pig carcass by co-composting with swine manure could achieve the similar degradation rate as well as the maturity and stability of organic fertilizer as compared with the traditional C/N ratio at lab scale.
Collapse
Affiliation(s)
- Yan Chen
- School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, People's Republic of China
| | - Shuying Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, People's Republic of China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, People's Republic of China
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, People's Republic of China
| |
Collapse
|
25
|
Harindintwali JD, Zhou J, Muhoza B, Wang F, Herzberger A, Yu X. Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112856. [PMID: 34051535 DOI: 10.1016/j.jenvman.2021.112856] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 05/19/2021] [Indexed: 05/22/2023]
Abstract
To meet the ever-growing human demands for food, fuel, and fiber, agricultural activities have dramatically altered the global carbon (C) and nitrogen (N) cycles. These biogeochemical cycles along with water, phosphorus, and sulfur cycles are fundamental features of life on Earth. Human alteration of the global N cycle has had both positive and negative outcomes. To efficiently feed a growing population, crop-livestock production systems have been developed, however, these systems also contribute significantly to environmental pollution and global climate change. Management of agricultural waste (AW) and the application of N fertilizers are central to the issues of greenhouse gas (GHG) emissions and nutrient runoff that contributes to the eutrophication of water bodies. If managed properly, AW can provide nutrients for plants and contribute to the conservation of soil health. In order to achieve the long-term conservation of agricultural production systems, it is important to promote the proper recycling of AW in agroecosystems and to minimize the reliance on chemical N fertilizers. Composting is one of the sustainable and effective approaches for recycling AW in agriculture. However, the conventional composting process is dilatory and produces compost with low N content compared to chemical N fertilizers. For this reason, comprehensive research is required to improve the composting process and the N content of the soil organic amendments. This work aims to explore the beneficial effects of the integrated application of biochar and specific C and N cycling microorganisms to the composting process and the quality of the composted products. In pursuit of replacing chemical N fertilizers with bio/organic fertilizers, we further discussed the power of the combined application of compost, biochar, and N-fixing bacteria in agricultural production systems. The knowledge of smart integration of AW and microorganisms in agriculture could solve the main agricultural and environmental problems associated with human-induced flows of C and N. Building upon the knowledge disseminated in review to further extensive research will pave the way for better management of agricultural production systems and sustainable C and N cycling in agriculture.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| | - Jianli Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Bertrand Muhoza
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, 150028, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Anna Herzberger
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Xiaobin Yu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| |
Collapse
|
26
|
Zhang B, Wang M, Qu J, Zhang Y, Liu H. Characterization and mechanism analysis of tylosin biodegradation and simultaneous ammonia nitrogen removal with strain Klebsiella pneumoniae TN-1. BIORESOURCE TECHNOLOGY 2021; 336:125342. [PMID: 34082338 DOI: 10.1016/j.biortech.2021.125342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
A novel bacterial strain that exhibited a high capacity for the simultaneous degradation and removal of tylosin and ammonia nitrogen, respectively, was isolated from tylosin fermentation dregs (TFDs) and identified as Klebsiella pneumoniae TN-1. The removal efficiencies of tylosin and ammonia nitrogen reached 95.31% and 83.26%, respectively, at initial concentrations of 300 mg/L for both. Three identified intermediates with less toxicity indicated that de-sugarization and hydrolysis were the proposed biodegradation pathways. The results also suggested that strain TN-1 could reduce nitrogen loss by transforming ammonium into nitrate nitrogen according to the transcriptional expression of nitrogen transformation-related genes and the activities of functional enzymes. Moreover, strain TN-1 effectively reduced ammonia volatilization by 65.20% and facilitated tylosin degradation, with a maximum removal efficiency of 57.35% in the simulated fermentation process of TFDs. This work provides an efficient bioaugmentation for simultaneous antibiotic degradation and nitrogen conservation during the composting process.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
27
|
Xiong J, Ma S, He X, Han L, Huang G. Nitrogen transformation and dynamic changes in related functional genes during functional-membrane covered aerobic composting. BIORESOURCE TECHNOLOGY 2021; 332:125087. [PMID: 33831791 DOI: 10.1016/j.biortech.2021.125087] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The effects of functional membrane covering (FMC) on nitrogen transformation and related functional genes during aerobic composting were investigated by performing a comparable experiment. The FMC increased the pile temperature, promoted compost maturity, and decreased nitrogen loss. The FMC reduced NH3 and N2O emissions by 7.34% and 26.27%, respectively. The water film and the micro-positive pressure environment under the membrane effectively prevented NH3 escaping. The FMC up-regulated the amoA gene copy number (promoting NH3/NH4+ oxidation). The reduction of N2O emission by the FMC was mainly related to denitrifying genes (nirK, nirS, and nosZ). The FMC down-regulated the nirK and nirS gene copy numbers, but up-regulated the nosZ gene copy number. Pearson correlation analysis indicated that the functional membrane characteristics and differences between the composting pile environments caused by the FMC significantly affected the nitrogen forms and the related functional genes. The FMC strongly decreased nitrogen emissions and therefore conserved nitrogen.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shuangshuang Ma
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
28
|
Zhao Y, Wang X, Yang J, Liu C, Wang S. A modified slow sand filtration system of epikarst spring water in karst mountainous areas, China. JOURNAL OF WATER AND HEALTH 2021; 19:229-241. [PMID: 33901020 DOI: 10.2166/wh.2021.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epikarst springs are commonly used for drinking water in karst mountainous areas, but they tend to bring health risks to residents because of their vulnerability. In this work, a modified slow sand filtration system (M-SSF) was established as a case study to purify and conserve the epikarst spring water. The outcomes indicate that the purification of M-SSF relies mainly on the adsorption and ion exchange of the filter medium (mixtures of heat-treated red clay and crushed limestone, MHRCCL) during the schmutzdecke juvenility, and on the schmutzdecke-formed food chain of pollutants → bacteria → protozoa after the schmutzdecke maturity. The closed water cellar lined with ceramic tiles could reduce the deterioration of epikarst spring water during storage. Via 16S rRNA sequencing, it was found that the high abundance of TM6_Dependentiae in purified epikarst spring water (PESW) suggested that the M-SSF system relies on the formation of a closed food chain to achieve effective water purification. The decrease of Pseudarcicella abundance in PESW indicated that M-SSF could effectively prevent the water quality from external influences represented by leeches. Besides, the 16S function prediction was used to qualitatively characterize microbial nitrogen metabolism, as well as organic matter degradation in water purification.
Collapse
Affiliation(s)
- Yuewen Zhao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, No. 268 North Zhonghua Street, Xinhua District, Shijiazhuang 050061, China E-mail: ; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, No. 92 East Zhongshan Road, Zhengding County, Shijiazhuang 050899, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan 430074, China
| | - Xiuyan Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, No. 268 North Zhonghua Street, Xinhua District, Shijiazhuang 050061, China E-mail: ; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, No. 92 East Zhongshan Road, Zhengding County, Shijiazhuang 050899, China
| | - Juan Yang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, No. 268 North Zhonghua Street, Xinhua District, Shijiazhuang 050061, China E-mail:
| | - Changli Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, No. 268 North Zhonghua Street, Xinhua District, Shijiazhuang 050061, China E-mail:
| | - Shuaiwei Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, No. 268 North Zhonghua Street, Xinhua District, Shijiazhuang 050061, China E-mail: ; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, No. 92 East Zhongshan Road, Zhengding County, Shijiazhuang 050899, China
| |
Collapse
|
29
|
Guidoni LLC, Martins GA, Guevara MF, Brandalise JN, Lucia T, Gerber MD, Corrêa LB, Corrêa ÉK. Full-Scale Composting of Different Mixtures with Meal from Dead Pigs: Process Monitoring, Compost Quality and Toxicity. WASTE AND BIOMASS VALORIZATION 2021; 12:5923-5935. [PMID: 33777261 PMCID: PMC7981597 DOI: 10.1007/s12649-021-01422-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/08/2021] [Indexed: 05/28/2023]
Abstract
ABSTRACT Abundant by-products of large swine industries, such as slaughterhouse sludge and carcasses, require adequate treatment to prevent negative effects of their direct disposal in the open environment. This study is aimed to evaluate the efficiency of composting using meal from dead pigs through physicochemical analyses and phytotoxic assays. Five treatments were tested, all including 50% sawdust: T1, with 50% slaughterhouse sludge (control); T2, with 20% slaughterhouse sludge and 30% meal from dead pigs; T3, with 10% slaughterhouse sludge and 40% meal from dead pigs; T4, with 20% organic stabilizing compost and 30% meal from dead pigs and T5, with 30% organic stabilizing compost and 20% meal from dead pigs. The phytotoxicity assays used lettuce, cucumber, celia, soybean, rice and wheat as bioindicators. Inclusion of meal from dead pigs was related to reduction in pH, C/N ratio, humidity and temperatures inside the pile, although thermophilic peaks lasted longer than 50 days and the final composts showed high content of nitrogen and phosphorous. The germination of bioindicators was reduced in all tested treatments, compared to the control. The composts from treatments that included meal from dead pigs presented acceptable nutrient content, which may indicate their use as organic fertilizers. However, after 4 months, all bioindicators in contact with such composts presented impaired germination. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12649-021-01422-0.
Collapse
Affiliation(s)
- Lucas L. C. Guidoni
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Gabriel A. Martins
- Ciência e Tecnologia de Alimentos, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Miguel F. Guevara
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - João N. Brandalise
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Thomaz Lucia
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Michel D. Gerber
- Instituto Federal de Educação, Ciência e Tecnologia Sul-Rio-Grandense, Pelotas, RS Brazil
| | - Luciara B. Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Érico K. Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS Brazil
| |
Collapse
|
30
|
Qin R, Su C, Mo T, Liao L, Zhu F, Chen Y, Chen M. Effect of excess sludge and food waste feeding ratio on the nutrient fractions, and bacterial and fungal community during aerobic co-composting. BIORESOURCE TECHNOLOGY 2021; 320:124339. [PMID: 33161314 DOI: 10.1016/j.biortech.2020.124339] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The effect of excess sludge and food waste feeding ratio on the co-composting process was explored using 5% bagasse biochar as an additive and conditioner. Results showed that when the mass ratio was 1:1, nitrogen fixation ability was the strongest and ammonia nitrogen increment in the pile reached 2.31 mg/g. The increase in excess sludge content/food waste ratio during composting was conducive to the accumulation of H2O-P, BD-P, HCl-P, NaOH-P and NaOH85-P. When the ratio of excess sludge to food waste mass was 1:1, the relative abundance of Firmicutes was the largest in the compost, which corresponded to 72.77% at the phylum level. Food waste mass was more beneficial to the growth and reproduction of microorganisms and to the metabolic activities related to membrane transport. Considering the fungal content, Ascomycota and Basidiomycota were maximum, with relative abundance of 69.53% and 20.91%, respectively, at the mass ratio of 1:1.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Tianhao Mo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Liming Liao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Fenghua Zhu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yu Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
31
|
Chen Q, Wang J, Zhang H, Shi H, Liu G, Che J, Liu B. Microbial community and function in nitrogen transformation of ectopic fermentation bed system for pig manure composting. BIORESOURCE TECHNOLOGY 2021; 319:124155. [PMID: 33035862 DOI: 10.1016/j.biortech.2020.124155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
In this work, agricultural wastes were treated by composting in an ectopic fermentation bed system (EFBS) with a continuous nitrogen addition technique. With decreasing of NH4+-N concentration and increasing of NO3--N concentration were observed, and activities of protease, urease and nitrate reductase changed significantly during the fermentation process. To elucidate the key microbes and their function in nitrogen-transforming, microbial diversity and clusters of orthologous groups (COGs) in composting materials were evaluated using metagenomic technology. Comparing with ammonification, the COGs involved in nitrification and denitrification were predominant in the composts. The correlation heatmap revealed that Streptomyces predominant in ammonification was significantly affected by contents of N, NH4+-N and NO3--N. Meanwhile, ammonia-oxidizing archaea (AOA) had a positive relationship with moisture. The most abundant genera in denitrification had positive relationships with N and NO3--N. The results indicated that EFBS had functionally diverse microbes and COGs for NH3 removal.
Collapse
Affiliation(s)
- Qianqian Chen
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Jieping Wang
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China.
| | - Haifeng Zhang
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Huai Shi
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Guohong Liu
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Jianmei Che
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Bo Liu
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| |
Collapse
|
32
|
Yu J, Gu J, Wang X, Guo H, Wang J, Lei L, Dai X, Zhao W. Effects of inoculation with lignocellulose-degrading microorganisms on nitrogen conversion and denitrifying bacterial community during aerobic composting. BIORESOURCE TECHNOLOGY 2020; 313:123664. [PMID: 32590303 DOI: 10.1016/j.biortech.2020.123664] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The present study compared the effects of inoculation (WSD treatment) and non-inoculation (CK treatment) with lignocellulose-degrading microorganisms on nitrogen conversion, nitrogen functional genes, and the denitrifying bacterial community during aerobic composting, and their potential relations to NH3 and N2O emissions were also explored. Results showed that, WSD reduced the NH3 and N2O emissions by 25.9% and 34.98%, respectively, compared with CK. WSD also reduced the abundances of nitrifying (bacteria amoA) and denitrifying (nirS, nirK, and nosZ) genes during composting, which were significantly positively correlated with N2O emissions (P < 0.01). The most important nosZ denitrifying microorganisms belonged to Proteobacteria. Redundancy analysis showed that environmental factors could affect the succession of the denitrifying bacterial community during composting. Based on these results, structural equation modeling demonstrated that the reduction in N2O emissions under WSD was related to the lower accumulation of NO3--N utilized by denitrifying microorganisms during the compost maturation period.
Collapse
Affiliation(s)
- Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
33
|
Jiang J, Wang Y, Guo F, Zhang X, Dong W, Zhang X, Zhang X, Zhang C, Cheng K, Li Y, Zhu G. Composting pig manure and sawdust with urease inhibitor: succession of nitrogen functional genes and bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36160-36171. [PMID: 32556988 DOI: 10.1007/s11356-020-09696-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Understanding the relationship between nitrogen (N) cycle and N transformation-related functional genes is crucial to reduce N loss during composting process. Urease inhibitor (UI) is widely used to reduce N loss in agriculture. However, the effects of UI on N transformation and related N functional genes during composting have not been well investigated. The goal of this study was to investigate the effects of a urease inhibitor (UI) on N functional genes and bacterial community succession during pig manure composting. Results showed that the addition of UI decreased the ammonium N content during the thermophilic stage and notably increased the total N and nitrite N contents of the final compost. The UI significantly decreased the abundances of amoA, nirS, nirK, and nosZ during the initial composting stage, while the opposite trend was observed at the maturation stage. Bacterial community richness and diversity were increased after the UI amendment, but the relative abundance of the phyla Firmicutes and Proteobacteria significantly decreased compared with control during the thermophilic stage. Redundancy analysis indicated that the evaluated environmental factors and bacterial community showed a cumulative 94.7% contribution to the total variation in N functional genes. In summary, UI addition is a recommended method for N conservation during composting, but the added forms of UI, such as delayed addition, combined with adsorbing materials, or microorganism inoculant, should be further evaluated.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Fengqi Guo
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xiaofang Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Wei Dong
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xindan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Xin Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Chunyan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Ke Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, Henan, People's Republic of China.
| |
Collapse
|
34
|
Chen Z, Wu Y, Wen Q, Bao H, Fu Q. Insight into the effects of sulfamethoxazole and norfloxacin on nitrogen transformation functional genes during swine manure composting. BIORESOURCE TECHNOLOGY 2020; 297:122463. [PMID: 31786036 DOI: 10.1016/j.biortech.2019.122463] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The effects of sulfamethoxazole and norfloxacin on nitrogen functional genes were investigated in four composting treatments of swine manure: CK (no antibiotics), SMZ (spiked with 5 mg kg-1 dry weight (DW) sulfamethoxazole), NOR (spiked with 5 mg kg-1DW norfloxacin), and SN (spiked with 5 mg kg-1DW sulfamethoxazole and 5 mg kg-1DW norfloxacin). Antibiotics decreased relative abundance of bacterial amoA and nxrA, while increased nosZ/nirK. The decline in amoA/16S rRNA increased the total NH3 emission in SMZ and NOR from 1027.05 to 1144.39 and 1278.22 mg kg-1DW. The decrease of nxrA/16S rRNA enhanced the NO2--N content and N2O emission in SMZ in the initial composting. Additionally, the increase in nosZ/nirK probably was the main reason for the lower N2O emission in SN than other treatments in the cooling phase. The inhibition on nitrification process and increase in NH3 emission resulted from antibiotics is worthy of attention in the future.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|