1
|
Kracmarova-Farren M, Alexova E, Kodatova A, Mercl F, Szakova J, Tlustos P, Demnerova K, Stiborova H. Biochar-induced changes in soil microbial communities: a comparison of two feedstocks and pyrolysis temperatures. ENVIRONMENTAL MICROBIOME 2024; 19:87. [PMID: 39516989 PMCID: PMC11549753 DOI: 10.1186/s40793-024-00631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The application of a biochar in agronomical soil offers a dual benefit of improving soil quality and sustainable waste recycling. However, utilizing new organic waste sources requires exploring the biochar's production conditions and application parameters. Woodchips (W) and bone-meat residues (BM) after mechanical deboning from a poultry slaughterhouse were subjected to pyrolysis at 300 °C and 500 °C and applied to cambisol and luvisol soils at ratios of 2% and 5% (w/w). RESULTS Initially, the impact of these biochar amendments on soil prokaryotes was studied over the course of one year. The influence of biochar variants was further studied on prokaryotes and fungi living in the soil, rhizosphere, and roots of Triticum aestivum L., as well as on soil enzymatic activity. Feedstock type, pyrolysis temperature, application dose, and soil type all played significant roles in shaping both soil and endophytic microbial communities. BM treated at a lower pyrolysis temperature of 300 °C increased the relative abundance of Pseudomonadota while causing a substantial decrease in soil microbial diversity. Conversely, BM prepared at 500 °C favored the growth of microbes known for their involvement in various nutrient cycles. The W biochar, especially when pyrolysed at 500 °C, notably affected microbial communities, particularly in acidic cambisol compared to luvisol. In cambisol, biochar treatments had a significant impact on prokaryotic root endophytes of T. aestivum L. Additionally, variations in prokaryotic community structure of the rhizosphere depended on the increasing distance from the root system (2, 4, and 6 mm). The BM biochar enhanced the activity of acid phosphatase, whereas the W biochar increased the activity of enzymes involved in the carbon cycle (β-glucosidase, β-xylosidase, and β-N-acetylglucosaminidase). CONCLUSIONS These results collectively suggest, that under appropriate production conditions, biochar can exert a positive influence on soil microorganisms, with their response closely tied to the biochar feedstock composition. Such insights are crucial for optimizing biochar application in agricultural practices to enhance soil health.
Collapse
Affiliation(s)
- Martina Kracmarova-Farren
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Eliska Alexova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Anezka Kodatova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 21, Czech Republic
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, Prague 6, 166 28, Czech Republic.
| |
Collapse
|
2
|
Meng L, Chen Y, Tang L, Sun X, Huo H, He Y, Huang Y, Shao Q, Pan S, Li Z. Effects of temperature-related changes on charred bone in soil: From P release to microbial community. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100221. [PMID: 38292865 PMCID: PMC10825478 DOI: 10.1016/j.crmicr.2024.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Phosphorus (P) is one of the most common limited nutrients in terrestrial ecosystems. Animal bones, with abundant bioapatite, are considerable P sources in terrestrial ecosystems. Heating significantly promotes P release from bone bioapatite, which may alleviate P limitation in soil. This study aimed to explore P release from charred bone (CB) under heating at various temperatures (based on common natural heating). It showed that heating at ∼300 °C significantly increased the P release (up to ∼30 mg/kg) from CB compared with other heating temperatures. Then, the subsequent changes of available P and pH induced evident alternation of soil microbial community composition. For instance, CB heated at ∼300 °C caused elevation of phosphate-solubilizing fungi (PSF) abundance. This further stimulated P mobility in the soil. Meanwhile, the fungal community assembly process was shifted from stochastic to deterministic, whereas the bacterial community was relatively stable. This indicated that the bacterial community showed fewer sensitive responses to the CB addition. This study hence elucidated the significant contribution of heated bone materials on P supply. Moreover, functional fungi might assist CB treated by natural heating (e.g., fire) to construct P "Hot Spots".
Collapse
Affiliation(s)
- Lingzi Meng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
| | - Yunhui Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Hongxun Huo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuxin He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yinan Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Shao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shang Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- State Key Laboratory of Lake Science and Environment, Nanjing 210008, China
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan 430074, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Luo M, Li Z, Su M, Gadd GM, Yin Z, Benton MJ, Pan Y, Zheng D, Zhao T, Li Z, Chen Y. Fungal-induced fossil biomineralization. Curr Biol 2023:S0960-9822(23)00548-1. [PMID: 37230078 DOI: 10.1016/j.cub.2023.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Exceptional preservation of fossils has often been attributed to the actions of bacteria that aid in the preservation of soft tissues that normally decay rapidly. However, it is well known that fungi play a major role in organic matter decomposition, biogeochemical cycling of elements, and metal-mineral transformations in modern ecosystems. Although the fungal fossil record can be traced back over a billion years, there are only a few recorded examples of fungal roles in fossilization. In this research, we have carried out a detailed geobiological investigation on early Pleistocene hyena coprolites (fossilized dung) in an attempt to ascertain possible fungal involvement in their formation. Using an advanced microscopic and mineralogical approach, we found that numerous hydroxyapatite nanofibers (25-34 nm on average), interwoven to form spheroidal structures, constituted the matrix of the coprolites in addition to food remains. These structures were found to be extremely similar in texture and mineral composition to biominerals produced during laboratory culture of a common saprophytic and geoactive fungus, Aspergillus niger, in the presence of a solid source of calcium (Ca) and phosphorus (P). This observation, and our other data obtained, strongly suggests that fungal metabolism can provide a mechanism that can result in fossil biomineralization, and we hypothesize, therefore, that this may have contributed to the formation of well-preserved fossils (Lagerstätten) in the geological record. The characteristic polycrystalline nanofibers may also have served as a potential biosignature for fungal life in early Earth and extraterrestrial environments.
Collapse
Affiliation(s)
- Mao Luo
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory for Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, 18 Fuxue Road, Changping District, Beijing 102249, China.
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Yanhong Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, China
| | - Daran Zheng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Tao Zhao
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, Yunnan, China
| | - Zibo Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
| | - Yuxuan Chen
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
| |
Collapse
|
4
|
Li J, Bai R, Chen W, Ren C, Yang F, Tian X, Xiao X, Zhao F. Efficient lead immobilization by bio-beads containing Pseudomonas rhodesiae and bone char. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130772. [PMID: 36680905 DOI: 10.1016/j.jhazmat.2023.130772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 05/16/2023]
Abstract
Mineralization of lead ions (Pb2+) to pyromorphite using phosphorus-containing materials is an effective way to remediate lead (Pb) contamination. Bone char is rich in phosphorus, but its immobilization of Pb2+ is limited by poor phosphate release. To utilize the phosphorus in bone char and provide a suitable growth environment for phosphate-solubilizing bacteria, bone char and Pseudomonas rhodesiae HP-7 were encapsulated into bio-beads, and the immobilization performance and mechanism of Pb in solution and soil by bio-beads were investigated. The results showed that 137 mg/g of phosphorus was released from bone char in the presence of the HP-7 strain. Pb2+ removal efficiency reached 100 % with an initial Pb2+ concentration of 1 mM, bone char content of 6 g/L, and bio-bead dosage of 1 %. Most Pb2+ was immobilized on the surface of the bio-beads as Pb5(PO4)3Cl. The soil remediation experiments showed a 34 % reduction in the acid-soluble fraction of Pb. The bio-beads showed good stability in long-term (30 d) soil remediation. The present study shows that bone char can be turned into an efficient Pb immobilization material in the presence of phosphate-solubilizing bacteria. Thus, bio-beads are expected to be used in the remediation of Pb-contaminated environments.
Collapse
Affiliation(s)
- Junpeng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongyuan Ren
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofeng Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Meng L, Pan S, Zhou L, Santasup C, Su M, Tian D, Li Z. Evaluating the survival of Aspergillus niger in a highly polluted red soil with addition of Phosphogypsum and bioorganic fertilizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76446-76455. [PMID: 35670942 DOI: 10.1007/s11356-022-21243-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Phosphate-solubilizing fungi (PSF) can enhance P release from phosphate minerals to immobilize heavy metals. However, this promotion substantially depends on their survival in highly polluted soils. The aim of this study was to investigate the survival of PSF after addition of phosphogypsum (PG) and bioorganic fertilizer (BF) in the soil with coexistence of multiple heavy metals, e.g., Pb, As, Cd, Sb, etc. Addition of typical PSF (Aspergillus niger) did not promote the formation of pyromorphite (the most stable form of Pb), possibly due to the buffering effect of the soil (the secreted oxalic acid was neutralized) and limited P supply. Meanwhile, despite that A. niger has high tolerance to heavy metal stress, its survival was significantly declined due to the deficiency of available P. It was also shown that PG, as the major by-product in phoschemical industry, still has relatively high available P compared with common natural soils. PG addition dramatically increased available P (up to 93.87 mg/kg) and the subsequent fungal growth. However, sole PG did not promote the formation of pyromorphite, probably as the abundant Fe2+ and Mn2+ prevented the contact between PO43- and Pb2+ in the soil system. The enhanced soil respiration after addition of BF and PG confirmed the promoted microbial activity (elevated to 3465.58 μg C kg h-1). This study showed PG's potential as P source for both microbial growth and heavy metal remediation in soil system. A combination of PG, A. niger, and BF can hence achieve long-term bioremediation of heavy metals.
Collapse
Affiliation(s)
- Lingzi Meng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shang Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Limin Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Choochad Santasup
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Da Tian
- Research Centre of Phosphorus Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|