1
|
Hou Q, Ma K, Yu X. Interannual variations in grassland carbon fluxes and attribution of influencing factors in Qilian Mountains, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177786. [PMID: 39615182 DOI: 10.1016/j.scitotenv.2024.177786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Clarifying the driving factors of grassland carbon sequestration is essential for understanding its role in the regional carbon balance. However, there is a lack of studies on the upscaling of carbon flux in the Qilian Mountains (QLMs) and the driving factors of its interannual variation (IAV). Based on long-term eddy covariance observations in the QLMs, this study estimated the net ecosystem CO2 exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (ER) of the QLMs grassland using four machine learning methods (random forest regression (RF), extremely randomized tree regression (ETR), support vector regression (SVR), and extreme gradient boosting (XGBoost)) to obtain the optimal estimation model. Subsequently, the spatiotemporal variations of GPP, ER, and NEE in the QLMs grasslands were conducted in a comprehensive analysis. The factors influencing the IAV of carbon flux, the contribution of monthly NEE to NEE IAV, and the contribution of different grassland types of NEE to NEE IAV were explored. Our findings revealed that the accuracy and resolution of the grassland carbon flux estimated by the RF method in this study are higher than those of global products. The grassland exhibited a weak carbon sink from 2000 to 2022, with an average NEE of -26.46 ± 6.80 g Cm-2 yr-1, and it acted as a carbon sink from May to September. The spatial distribution pattern of carbon sequestration was "low in the northwest and high in the southeast". LAI was the key driving factors of IAV for GPP and ER, while NEE IAV was primarily influenced by precipitation and temperature. Climate and vegetation factors primarily regulated NEE IAV by affecting the GPP and ER of plants, and NEE IAV was primarily driven by GPP. Furthermore, NEE in alpine meadows and alpine steppes dominated the NEE IAV of the entire grassland, and summer NEE contributed the most to the NEE IAV. The results will help us to better understand the carbon cycling mechanism in grassland ecosystems and provide new data support and a theoretical foundation for regional carbon cycling research.
Collapse
Affiliation(s)
- Qingqing Hou
- College of Grassland Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education/Sino-U.S. Center for Grassland Ecosystem Sustainability/Pratacultural Engineering Laboratory of Gansu Province, 730070 Lanzhou, China
| | - Kaikai Ma
- College of Grassland Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education/Sino-U.S. Center for Grassland Ecosystem Sustainability/Pratacultural Engineering Laboratory of Gansu Province, 730070 Lanzhou, China
| | - Xiaojun Yu
- College of Grassland Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education/Sino-U.S. Center for Grassland Ecosystem Sustainability/Pratacultural Engineering Laboratory of Gansu Province, 730070 Lanzhou, China.
| |
Collapse
|
2
|
Cui Q, Wang Y, Wang P, Tan K, Feng G. Revealing the Ground Deformation and Its Mechanism in the Heihe River Basin by Interferometric Synthetic Aperture Radar and Optical Images. SENSORS (BASEL, SWITZERLAND) 2024; 24:4868. [PMID: 39123915 PMCID: PMC11314984 DOI: 10.3390/s24154868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
The Heihe River Basin (HRB), located on the northeast margin of the Qilian Mountains, is China's second largest inland river basin. It is a typical oasis-type agricultural area in northwest China's arid and semiarid areas. It is important to monitor and investigate the spatiotemporal distribution characteristics and mechanisms of surface deformation in HRB for the ecology of inland river basins. In recent years, research on HRB has mainly focused on hydrology, meteorology, geology, or biology. Few studies have conducted wide-area monitoring and mechanism analysis of the surface stability of HRB. In this study, an improved interferometric point target analysis InSAR (IPTA-InSAR) technique is used to process 101 Sentinel-1 SAR images from two adjacent track frames covering the HRB from 2019 to 2020. The wide-area deformation of the HRB is obtained first for this period. The results show that most of the surface around the HRB is relatively stable. There are six areas with an extensive deformation range and magnitude in the plain oasis area. The maximum deformation rate is more than 50 mm/year. The maximum seasonal subsidence and uplift along the satellites' line-of-sight (LOS) direction can be up to -70 mm and 60 mm, respectively. Moreover, we use the Google Earth Engine platform to process the multisource optical images and analyze the deformation areas. The remote sensing indicators of the deformation areas, such as the normalized difference vegetation index (NDVI), soil moisture (SMMI), and precipitation, are obtained during the InSAR monitoring period. We combine these integrated remote sensing results with soil type and precipitation to analyze the surface deformations of the HRB. The spatiotemporal relationships between soil moisture, vegetation cover, and surface deformation of the HRB are revealed. The results will provide data support and reference for the healthy and sustainable development of the inland river basin economic zone.
Collapse
Affiliation(s)
- Qunpeng Cui
- School of Land Science and Technology, China University of Geosciences, Beijing 100083, China; (Q.C.); (P.W.); (K.T.)
| | - Yuedong Wang
- School of Land Science and Technology, China University of Geosciences, Beijing 100083, China; (Q.C.); (P.W.); (K.T.)
| | - Pengkun Wang
- School of Land Science and Technology, China University of Geosciences, Beijing 100083, China; (Q.C.); (P.W.); (K.T.)
| | - Ke Tan
- School of Land Science and Technology, China University of Geosciences, Beijing 100083, China; (Q.C.); (P.W.); (K.T.)
| | - Guangcai Feng
- School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
| |
Collapse
|
3
|
Ding Z, Wang Y, Ding J, Ren Z, Liao J. Dynamics of carbon and water vapor fluxes in three typical ecosystems of Heihe River Basin, Northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172611. [PMID: 38642764 DOI: 10.1016/j.scitotenv.2024.172611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Understanding the dynamics of carbon and water vapor fluxes in arid inland river basin ecosystems is essential for predicting and assessing the regional carbon-water budget amid climate change. However, studies aiming to unravel the mechanisms driving the variations and coupling process of regional carbon-water budget in a changing environment in arid regions are limited. Here, we used the eddy covariance technique to analyze the relationship between CO2 and H2O fluxes in three typical ecosystems across the upper, middle, and lower reaches of an arid inland river basin in Northwestern China. Our results showed that all ecosystems acted as carbon sinks, with the alpine swamp meadow, cropland, and desert shrubland sequestrating -300.2 ± 0.01, -644.8 ± 2.9, and - 203.7 ± 22.5 g C m-2 yr-1, respectively. Air temperature (Ta) primarily controlled daily gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE) in the irrigated cropland during the growing season, while soil temperature (Ts) and vapor pressure deficit (VPD) regulated these parameters in the alpine swamp meadow and desert shrubland. Additionally, Ta and net radiation (Rn) controlled daily evapotranspiration (ET) in cropland, while Ts and Rn regulated ET at other sites. Consequently, carbon and water vapor fluxes of all three ecosystems tended to be energy-limited during the growing season. The differential responses of carbon and water vapor fluxes in the upper, middle, and lower reaches of these ecosystems to biophysical factors determined their distinct coupling and variations in water use efficiency. Notably, the desert shrub ecosystem in the lower reach of the basin maintained a stable balance between carbon gain and water loss, indicating adaptation to aridity. This study provides valuable insights into the underlying mechanisms behind the changes in carbon and water vapor fluxes and water-use efficiency in arid river basin ecosystems.
Collapse
Affiliation(s)
- Zhiyong Ding
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Yuyang Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Jinzhi Ding
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhiguo Ren
- Heihe Remote Sensing Experimental Research Station, Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China
| | - Jie Liao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Zhang Y, Zhu G, Zhang K, Huang H, He L, Xu C, Chen H, Su Y, Zhang Y, Fan H, Wang B. Exploring the ecological meanings of temperature sensitivity of ecosystem respiration from different methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171403. [PMID: 38431173 DOI: 10.1016/j.scitotenv.2024.171403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Temperature sensitivity (Q10) of ecosystem respiration (Re) is a critical parameter for predicting global terrestrial carbon dynamics and its response to climate warming. However, the determination of Q10 has been controversial. In this study, we scrutinized the underpinnings of three mainstream methods to reveal their relationships in estimating Q10 for Re in the Heihe River Basin, northwest China. Specifically, these methods are Q10 estimated from the long-term method (Q10_long), short-term method (Q10_short), and the low-frequency (Q10_lf) and high-frequency (Q10_hf) signals decomposed by the singular spectrum analysis (SSA) method. We found that: 1) Q10_lf and Q10_long are affected by the confounding effects caused by non-temperature factors, and are 1.8 ± 0.3 and 1.7 ± 0.3, respectively. 2) The high-frequency signals of the SSA method and short-term method have consistent roles in removing the confounding effects. Both Q10_short and Q10_hf reflect the actual response of respiration to temperature. 3) Overall, Q10_long has a larger variability (1.7 ± 0.3) across different biomes, whereas Q10_short and Q10_hf show convergence (1.4 ± 0.2 and 1.3 ± 0.1, respectively). These results highlight the fact that Q10 can be overestimated by the long-term method, whereas the short-term method and high-frequency signals decomposed by the SSA method can obtain closer and convergent values after removing the confounding effects driven by non-temperature factors. Therefore, it is recommended to use the Q10 value estimated by the short-term method or high-frequency signals decomposed by the SSA method to predict carbon dynamics and its response to global warming in Earth system models.
Collapse
Affiliation(s)
- Yang Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Gaofeng Zhu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Kun Zhang
- School of Biological Sciences and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
| | - Heng Huang
- School of Ecology, Sun Yat-sen University, Shen Zhen 518107, China
| | - Liyang He
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Cong Xu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huiling Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yonghong Su
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yuzhong Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haochen Fan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Boyuan Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Wang K, Bi B, Zhu K, Wen M, Han F. Responses of soil dissolved organic carbon properties to the desertification of desert wetlands in the Mu Us Sandy Land. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120318. [PMID: 38387347 DOI: 10.1016/j.jenvman.2024.120318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
In desert wetlands, the decline in ground water table results in desertification, triggering soil carbon and nutrient loss. However, the impacts of desertification on soil dissolved organic carbon (DOC) properties which determine the turnover of soil carbon and nutrients are unclear. Here, the desertification gradient was represented by the distance from the wetland center (0∼240 m) traversing reed marshes, desert shrubs and bare sandy land in the Hongjian Nur Basin, north China. Soil DOC properties were determined by ultraviolet and fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). Results showed that soil DOC content decreased significantly from 107.23 mg kg-1 to 8.44 mg kg-1 by desertification (p < 0.05). However, the proportion of DOC to soil organic carbon (SOC) was gradually significantly increased. According to spectral parameters, microbial-derived DOC decreased from 0 to 120 m (reed marshes to desert shrubs) but increased from 120 to 240 m (desert shrubs to bare sandy lands), with a reverse hump-shaped distribution pattern. The molecular weight and aromaticity of DOC increased from 0 to 120 m but decreased from 120 to 240 m, with a hump-shaped distribution pattern. For the DOC composition, although the relative abundances of humic-acid components remained stable (p > 0.05), they were ultimately decreased by serious desertification and the amino acids became the dominant component. A similar change pattern was also found for humification index. Additionally, MBC and C:N were the two most important variables in determining the content and spectral properties, respectively. Together, these findings relationships between the soil DOC properties and desertification degree, especially the increase in DOC proportion and the decrease in humification degree, which may reduce soil C stabilization in the Hongjian Nur Basin.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Boyuan Bi
- Shannxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Kanghui Zhu
- Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi, China
| | - Miao Wen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China; Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Wang Y, Xiao J, Ma Y, Ding J, Chen X, Ding Z, Luo Y. Persistent and enhanced carbon sequestration capacity of alpine grasslands on Earth's Third Pole. SCIENCE ADVANCES 2023; 9:eade6875. [PMID: 37196073 DOI: 10.1126/sciadv.ade6875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
The carbon sequestration capacity of alpine grasslands, composed of alpine meadows and steppes, in the Tibetan Plateau has an essential role in regulating the regional carbon cycle. However, inadequate understanding of its spatiotemporal dynamics and regulatory mechanisms restricts our ability to determine potential climate change impacts. We assessed the spatial and temporal patterns and mechanisms of the net ecosystem exchange (NEE) of carbon dioxide in the Tibetan Plateau. The carbon sequestration of the alpine grasslands ranged from 26.39 to 79.19 Tg C year-1 and had an increasing rate of 1.14 Tg C year-1 between 1982 and 2018. While alpine meadows were relatively strong carbon sinks, the semiarid and arid alpine steppes were nearly carbon neutral. Alpine meadow areas experienced strong increases in carbon sequestration mainly because of increasing temperatures, while alpine steppe areas had weak increases mainly due to increasing precipitation. Carbon sequestration capacity of alpine grasslands on the plateau has undergone persistent enhancement under a warmer and wetter climate.
Collapse
Affiliation(s)
- Yuyang Wang
- Land-Atmosphere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER) ,, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
| | - Yaoming Ma
- Land-Atmosphere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER) ,, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Observation and Research Station for Qomolongma Special Atmospheric Processes and Environmental Changes, Dingri 858200, China
- Kathmandu Center of Research and Education, Chinese Academy of Sciences, Beijing 100101, China
- College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China
| | - Jinzhi Ding
- Land-Atmosphere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER) ,, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuelong Chen
- Land-Atmosphere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER) ,, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiyong Ding
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Wang H, Liu Y, Wang Y, Yao Y, Wang C. Land cover change in global drylands: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160943. [PMID: 36526201 DOI: 10.1016/j.scitotenv.2022.160943] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
As a sensitive region, identifying land cover change in drylands is critical to understanding global environmental change. However, the current findings related to land cover change in drylands are not uniform due to differences in data and methods among studies. We compared and judged the spatial and temporal characteristics, driving forces, and ecological effects by identifying the main findings of land cover change in drylands at global and regional scales (especially in China) to strengthen the overall understanding of land cover change in drylands. Four main points were obtained. First, while most studies found that drylands were experiencing vegetation greening, some evidence showed decreases in vegetation and large increases in bare land due to inconsistencies in the datasets and the study phases. Second, the dominant factors affecting land cover change in drylands are precipitation, agricultural activities, and urban expansion. Third, the impact of land cover change on the water cycle, especially the impact of afforestation on water resources in drylands, is of great concern. Finally, drylands experience severe land degradation and require dataset matching (classification standards, resolution, etc.) to quantify the impact of human activities on land cover.
Collapse
Affiliation(s)
- Hui Wang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Yijia Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ying Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Chenxu Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Biro Turk KG, Alghannam AO, Zeineldin FI. Monitoring of hourly carbon dioxide concentration under different land use types in arid ecosystem. Open Life Sci 2022; 18:20220534. [PMID: 36660605 PMCID: PMC9816458 DOI: 10.1515/biol-2022-0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 01/01/2023] Open
Abstract
Air pollution is a major factor affecting human life and living quality in arid and semiarid regions. This study was conducted in the Al-Ahsa district in the Eastern part of Saudi Arabia to measure carbon dioxide (CO2) concentration over different land-use types. Initially, the study's land use/land cover (LULC) was classified using the spectral characteristics of Landsat-8 data. Then, sensors were placed in five sites of different LULC types to detect CO2, air temperature, and relative humidity. The Friedman test was used to compare CO2 concentration among the five sites. Five LULC types were identified over the study area: date palm, cropland, bare land, urban land, and water. The results indicated that CO2 concentration showed a maximum mean value of 577 ppm recorded from a site dominated by urban lands. During the peak time of human transportation, a maximum value of 659 ppm was detected. The CO2 concentration mean values detected for the other LULC types showed 535, 515, and 484 ppm for the bare land, cropland, and date palm, respectively. This study's sensors and procedures helped provide information over relatively small areas. However, modelling CO2 fluctuations with time for LULC changes might improve management and sustainability.
Collapse
Affiliation(s)
| | - Abdulrahman O. Alghannam
- Department of Agriculture Systems Engineering, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Hassa 31982, Saudi Arabia
| | | |
Collapse
|
9
|
Spatiotemporal Variability in Water-Use Efficiency in Tianshan Mountains (Xinjiang, China) and the Influencing Factors. SUSTAINABILITY 2022. [DOI: 10.3390/su14138191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water-use efficiency (WUE) is a crucial physiological index in carbon–water interactions and is defined as the ratio of vegetation productivity to water loss. The variation in climatic variables and drought have the most significant effects on WUE and evapotranspiration (ET). Nevertheless, how WUE varies with climate factors and drought processes in the Tianshan Mountains (TMS) is still poorly understood. In the present work, we analyzed the spatiotemporal variations in WUE, and investigated the correlations between WUE, climate factors, and drought, in the study area. The results showed that, in the TMS during 2000–2020, annual net primary productivity (NPP) ranged from 147.9 to 189.4 gC·m−2, annual ET was in the range of 212.5–285.8 mm, and annual WUE ranged from 0.66 to 0.78 gC·kg−1·H2O. Both NPP and ET exhibited an increasing trend with some fluctuation, whereas WUE showed the opposite tendency during the study period. The obtained results demonstrated that the decrease in WUE was primarily because of the increase in ET. There were obvious differences in WUE, under different land-use types, caused by NPP and ET. However, the interannual variation in WUE showed small fluctuations and the dynamic process of WUE in each land-use type showed good consistency. Temperature and wind speed had a positive influence on WUE in the middle and eastern regions of the TMS. Precipitation also played a mainly positive role in enhancing WUE, especially on the northern slope of the TMS. There was strong spatial heterogeneity of the correlation coefficient (0.68, p < 0.05) between WUE and the temperature vegetation drought index (TVDI). Moreover, the slopes of WUE and TVDI showed good consistency in terms of spatial distribution, suggesting that drought had a significant impact on ecosystem WUE. This work will enhance the understanding of WUE variation, and provide scientific evidence for water resource management and sustainable utilization in the study area.
Collapse
|
10
|
Pinus tabulaeformis Forests Have Higher Carbon Sequestration Potential Than Larix principis-rupprechtii Forests in a Dryland Mountain Ecosystem, Northwest China. FORESTS 2022. [DOI: 10.3390/f13050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carbon sinks in terrestrial ecosystems can be significantly increased by afforestation, which will slow global warming. However, it is still unclear how different plantations influence the carbon sink and how they respond to environmental factors, especially in drylands. In this study, eddy correlation method (EC) was used to measure carbon and water fluxes and environmental factors of two artificial forests (Larix principis-rupprechtii and Pinus tabulaeformis) in the dryland of Northwest China, and the responses of evapotranspiration (ET), net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO) to environmental factors were also assessed. Results showed that the L. principis-rupprechtii forest ecosystem had higher water use efficiency (WUE), light use efficiency (LUE), GPP, and RECO than the P. tabulaeformis forest ecosystem. However, the proportion of net ecosystem production (NEP) to GPP in the P. tabulaeformis forest ecosystem (62.89%) was higher than that in the L. principis-rupprechtii forest ecosystem (47.49%), indicating that the P. tabulaeformis forest ecosystem had the higher carbon sequestration efficiency. In addition, the CO2 and H2O fluxes in the L. principis-rupprechtii forest ecosystem were more sensitive to environmental factors, compared with the P. tabulaeformis forest ecosystem. Further, the RECO of the L. principis-rupprechtii forest ecosystem was more sensitive to temperature changes, which implies that the L. principis-rupprechtii forest ecosystem will release more CO2 than the P. tabulaeformis forest ecosystem with a warming climate. Therefore, the P. tabulaeformis forest ecosystem may have better carbon sequestration potential. These results are important for understanding the effects of climate change on the CO2 and H2O cycles in coniferous plantation ecosystems in drylands.
Collapse
|
11
|
Li H, Wang C, Zhang F, He Y, Shi P, Guo X, Wang J, Zhang L, Li Y, Cao G, Zhou H. Atmospheric water vapor and soil moisture jointly determine the spatiotemporal variations of CO 2 fluxes and evapotranspiration across the Qinghai-Tibetan Plateau grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148379. [PMID: 34412395 DOI: 10.1016/j.scitotenv.2021.148379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Alpine grasslands play important functions in mitigating climate change and regulating water resources. However, the spatiotemporal variability of their carbon and water budgets remains unquantified. Here, 47 site-year observations of CO2 and water vapor fluxes (ET) are analyzed at sites situated along a hydrothermal gradient across the Qinghai-Tibetan Plateau, including an alpine wetland (wettest), an alpine shrub (coldest), an alpine meadow, an alpine meadow-steppe, and an alpine steppe (driest and warmest). The results show that the benchmarks for annual net ecosystem exchange (NEE) are -79.3, -77.8, -66.7, 20.2, and 100.9 g C m-2 year-1 at the meadow, shrub, meadow-steppe, steppe, and wetland, respectively. The peak daily NEE normalized by peak leaf area index converges to 0.93 g C m-2 d-1 at the 5 sites. Except in the wetland (722.8 mm), the benchmarks of annual ET fluctuate from 511.0 mm in the steppe to 589.2 mm in the meadow. Boosted regression trees-based analysis suggests that the enhanced vegetation index (EVI) and net radiation (Rn) determine the variations of growing season monthly CO2 fluxes and ET, respectively, although the effect is to some extent site-specific. Inter-annual variability in NEE, ecosystem respiration (RES), and ET are tightly (R2 > 0.60) related to the inter-growing season NEE, RES, and ET, respectively. Both annual RES and annual NEE are significantly constrained by annual gross primary productivity (GPP), with 85% of the per-unit GPP contributing to RES (R2 = 0.84) and 15% to NEE (R2 = 0.12). Annual GPP significantly correlates with annual ET alone at the drier sites of the meadow-steppe and the steppe, suggesting the coupling of carbon and water is moisture-dependent in alpine grasslands. Over half of the inter-annual spatial variability in GPP, RES, NEE, and ET is explained by EVI, atmospheric water vapor, topsoil water content, and bulk surface resistance (rs), respectively. Because the spatial variations of EVI and rs are strongly regulated by atmospheric water vapor (R2 = 0.48) and topsoil water content (R2 = 0.54), respectively, we conclude that atmospheric water vapor and topsoil water content, rather than the expected air/soil temperatures, drive the spatiotemporal variations in CO2 fluxes and ET across temperature-limited grasslands. These findings are critical for improving predictions of the carbon sequestration and water holding capacity of alpine grasslands.
Collapse
Affiliation(s)
- Hongqin Li
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Chunyu Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fawei Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| | - Yongtao He
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Peili Shi
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Guo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Junbang Wang
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Leiming Zhang
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingnian Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| | - Guangmin Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| | - Huakun Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| |
Collapse
|
12
|
Reconstruction of the Daily MODIS Land Surface Temperature Product Using the Two-Step Improved Similar Pixels Method. REMOTE SENSING 2021. [DOI: 10.3390/rs13091671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The MODIS land surface temperature (LST) product is one of the most widely used data sources to study the climate and energy-water cycle at a global scale. However, the large number of invalid values caused by cloud cover limits the wide application of the MODIS LST. In this study, a two-step improved similar pixels (TISP) method was proposed for cloudy sky LST reconstruction. The TISP method was validated using a temperature-based method over various land cover types. The ground measurements were collected at fifteen stations from 2013 to 2018 during the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) field campaign in China. The estimated theoretical clear-sky temperature indicates that clouds cool the land surface during the daytime and warm it at nighttime. For bare land, the surface temperature shows a clear seasonal trend and very similar across stations, with a cooling amplitude of 4.14 K in the daytime and a warming amplitude of 3.99 K at nighttime, as a yearly average. The validation result showed that the reconstructed LST is highly consistent with in situ measurements and comparable with MODIS LST validation accuracy, with a mean bias of 0.15 K at night (−0.43 K in the day), mean RMSE of 2.91 K at night (4.41 K in the day), and mean R2 of 0.93 at night (0.90 in the day). The developed method maximizes the potential of obtaining quality MODIS LST retrievals, ancillary data, and in situ observations, and the results show high accuracy for most land cover types.
Collapse
|
13
|
Improving the Capability of the SCOPE Model for Simulating Solar-Induced Fluorescence and Gross Primary Production Using Data from OCO-2 and Flux Towers. REMOTE SENSING 2021. [DOI: 10.3390/rs13040794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solar-induced chlorophyll fluorescence (SIF) measured from space has shed light on the diagnosis of gross primary production (GPP) and has emerged as a promising way to quantify plant photosynthesis. The SCOPE model can explicitly simulate SIF and GPP, while the uncertainty in key model parameters can lead to significant uncertainty in simulations. Previous work has constrained uncertain parameters in the SCOPE model using coarse-resolution SIF observations from satellites, while few studies have used finer resolution SIF measured from the Orbiting Carbon Observatory-2 (OCO-2) to improve the model. Here, we identified the sensitive parameters to SIF and GPP estimation, and improved the performance of SCOPE in simulating SIF and GPP for temperate forests by constraining the physiological parameters relating to SIF and GPP by combining satellite-based SIF measurements (e.g., OCO-2) with flux tower GPP data. Our study showed that SIF had weak capability in constraining maximum carboxylation capacity (Vcmax), while GPP could constrain this parameter well. The OCO-2 SIF data constrained fluorescence quantum efficiency (fqe) well and improved the performance of SCOPE in SIF simulation. However, the use of the OCO-2 SIF alone cannot significantly improve the GPP simulation. The use of both satellite SIF and flux tower GPP data as constraints improved the performance of the model for simulating SIF and GPP simultaneously. This analysis is useful for improving the capability of the SCOPE model, understanding the relationships between GPP and SIF, and improving the estimation of both SIIF and GPP by incorporating satellite SIF products and flux tower data.
Collapse
|
14
|
Interannual Variations of Evapotranspiration and Water Use Efficiency over an Oasis Cropland in Arid Regions of North-Western China. WATER 2020. [DOI: 10.3390/w12051239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The efficient use of limited water resources and improving the water use efficiency (WUE) of arid agricultural systems is becoming one of the greatest challenges in agriculture production and global food security because of the shortage of water resources and increasing demand for food in the world. In this study, we attempted to investigate the interannual trends of evapotranspiration and WUE and the responses of biophysical factors and water utilization strategies over a main cropland ecosystem (i.e., seeded maize, Zea mays L.) in arid regions of North-Western China based on continuous eddy-covariance measurements. This paper showed that ecosystem WUE and canopy WUE of the maize ecosystem were 1.90 ± 0.17 g C kg−1 H2O and 2.44 ± 0.21 g C kg−1 H2O over the observation period, respectively, with a clear variation due to a change of irrigation practice. Traditional flood irrigation generally results in over-irrigation, providing more water than actual crop requirements. Unlike flood irrigation, which can infiltrate into deep soil layers, drip irrigation can only influence the shallow soil moisture, which can lead to decreases of soil moisture of approximately 27–32% and 36–42% compared with flood irrigation for shallow and deep layers, respectively. Additionally, drip irrigation decreases evapotranspiration by 13% and transpiration by 11–14%, leading to increases in ecosystem and canopy WUE of 9–14% and 11%, respectively, compared to the traditional irrigation practice. Therefore, the drip irrigation strategy is an effective method to reduce irrigation water use and increase crop WUE in arid regions. Our study provides guidance to water-saving cultivation systems and has implications for sustainable water resources management and agriculture development in water-limited regions.
Collapse
|