1
|
Patnaik R, Kumar Bagchi S, Rawat I, Bux F. Nanotechnology for the enhancement of algal cultivation and bioprocessing: Bridging gaps and unlocking potential. BIORESOURCE TECHNOLOGY 2024; 406:131025. [PMID: 38914236 DOI: 10.1016/j.biortech.2024.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Algae cultivation and bioprocessing are important due to algae's potential to effectively tackle crucial environmental challenges like climate change, soil and water pollution, energy security, and food scarcity. To realize these benefits high algal biomass production and valuable compound extraction are necessary. Nanotechnology can significantly improve algal cultivation through enhanced nutrient uptake, catalysis, CO2 utilization, real-time monitoring, cost-effective harvesting, etc. Synthetic nanoparticles are extensively used due to ease of manufacturing and targeted application. Nonetheless, there is a growing interest in transitioning to environmentally friendly options like natural and 'green' nanoparticles which are produced from renewable/biological sources by using eco-friendly solvents. Presently, natural, and 'green' nanoparticles are predominantly utilized in algal harvesting, with limited application in other areas, the reasons for which remain unclear. This review aims to critically evaluate research on nanotechnology-based algae system enhancement, identify research gaps and propose solutions using natural and 'green' nanoparticles for a sustainable future.
Collapse
Affiliation(s)
- Reeza Patnaik
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Sourav Kumar Bagchi
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa.
| |
Collapse
|
2
|
Kanna Dasan Y, Lam MK, Chai YH, Lim JW, Ho YC, Tan IS, Lau SY, Show PL, Lee KT. Unlocking the potential of microalgae bio-factories for carbon dioxide mitigation: A comprehensive exploration of recent advances, key challenges, and energy-economic insights. BIORESOURCE TECHNOLOGY 2023; 380:129094. [PMID: 37100295 DOI: 10.1016/j.biortech.2023.129094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Microalgae are promising alternatives to mitigate atmospheric CO2 owing to their fast growth rates, resilience in the face of adversity and ability to produce a wide range of products, including food, feed supplements, chemicals, and biofuels. However, to fully harness the potential of microalgae-based carbon capture technology, further advancements are required to overcome the associated challenges and limitations, particularly with regards to enhancing CO2 solubility in the culture medium. This review provides an in-depth analysis of the biological carbon concentrating mechanism and highlights the current approaches, including species selection, optimization of hydrodynamics, and abiotic components, aimed at improving the efficacy of CO2 solubility and biofixation. Moreover, cutting-edge strategies such as gene mutation, bubble dynamics and nanotechnology are systematically outlined to elevate the CO2 biofixation capacity of microalgal cells. The review also evaluates the energy and economic feasibility of using microalgae for CO2 bio-mitigation, including challenges and prospects for future development.
Collapse
Affiliation(s)
- Yaleeni Kanna Dasan
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Yee Ho Chai
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Civil and Environmental Engineering Department, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Penang, Nibong Tebal 14300, Malaysia
| |
Collapse
|
3
|
Yan H, Liu X, Wang Z, Zhao P, Dang Y, Sun D. Enhancement of carbon sequestration via MIL-100(Fe)@PUS in bacterial-algal symbiosis treating municipal wastewater. BIORESOURCE TECHNOLOGY 2023; 380:129083. [PMID: 37100299 DOI: 10.1016/j.biortech.2023.129083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
Bacterial-algal symbiosis (BAS) is a promising carbon neutrality technology to treat municipal wastewater. However, there are still non-trivial CO2 emissions in BAS due to the slow diffusion and biosorption of CO2. Aiming to reduce CO2 emissions, the inoculation ratio of aerobic sludge to algae was further optimized at 4:1 on the base of favorable carbon conversion. MIL-100(Fe) served as CO2 adsorbents was immobilized on polyurethane sponge (PUS) to increase the interaction with microbes. When MIL-100(Fe)@PUS was added to BAS in the treatment of municipal wastewater, zero CO2 emission was achieved and the carbon sequestration efficiency was increased from 79.9% to 89.0%. Most genes related to metabolic function were derived from Proteobacteria and Chlorophyta. The mechanism of enhanced carbon sequestration in BAS could be attributed to both enrichment of algae (Chlorella and Micractinium) and increased abundance of functional genes related to PS I, PS II and Calvin cycle in photosynthesis.
Collapse
Affiliation(s)
- Hongkang Yan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Xinying Liu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Pengsha Zhao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Xu P, Li J, Qian J, Wang B, Liu J, Xu R, Chen P, Zhou W. Recent advances in CO 2 fixation by microalgae and its potential contribution to carbon neutrality. CHEMOSPHERE 2023; 319:137987. [PMID: 36720412 DOI: 10.1016/j.chemosphere.2023.137987] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Many countries and regions have set their schedules to achieve the carbon neutrality between 2030 and 2070. Microalgae are capable of efficiently fixing CO2 and simultaneously producing biomass for multiple applications, which is considered one of the most promising pathways for carbon capture and utilization. This work reviews the current research on microalgae CO2 fixation technologies and the challenges faced by the related industries and government agencies. The technoeconomic analysis indicates that cultivation is the major cost factor. Use of waste resources such as wastewater and flue gas can significantly reduce the costs and carbon footprints. The life cycle assessment has identified fossil-based electricity use as the major contributor to the global warming potential of microalgae-based CO2 fixation approach. Substantial efforts and investments are needed to identify and bridge the gaps among the microalgae strain development, cultivation conditions and systems, and use of renewable resources and energy.
Collapse
Affiliation(s)
- Peilun Xu
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Li
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Qian
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Bang Wang
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd., Nanchang, 330096, China
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN, 55108, USA.
| | - Wenguang Zhou
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Kumar S, Jia D, Kubar AA, Zou X, Huang Z, Rao M, Kuang C, Ye J, Chen C, Chu F, Cheng J. Butterfly Baffle-Enhanced Solution Mixing and Mass Transfer for Improved Microalgal Growth in Double-Column Photobioreactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Dongwei Jia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ameer Ali Kubar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xiangbo Zou
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Zhimin Huang
- Guangdong Yudean Zhanjiang Biomass Power Co., Ltd., Zhanjiang 524300, China
| | - Mumin Rao
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Cao Kuang
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Ji Ye
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Chuangting Chen
- Guangdong Energy Group Science and Technology Research Institute Co., Ltd., Guangzhou 510630, China
| | - Feifei Chu
- College of Standardization, China Jiliang University, Hangzhou 310018, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Li S, Li X, Ho SH. How to enhance carbon capture by evolution of microalgal photosynthesis? Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Khan S, Guan Q, Liu Q, Qin Z, Rasheed B, Liang X, Yang X. Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152279. [PMID: 34902423 DOI: 10.1016/j.scitotenv.2021.152279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Ever-increasing anthropogenic activities are radically deteriorating the environment by causing severe pollution. Thus, curtailing the environmental pollution and promotion of sustainable development, are the hot issues confronted by scientists in this modern era. Metal-organic frameworks (MOFs) have been highly recognized as emerging promising materials for environmental remediation due to their versatile structure and extraordinary properties. Among them, MILs (MIL = Matérial Institute of Lavoisier) are the series of MOFs mostly known for their incredible stability, unique tailorable pore structures, and astounding versatile environmental applications. Their exclusive physiochemical properties and multifunctionality make them proficient for a wide range of pollutants removal in the exposure of versatile harsh environments, compared to other MOFs. This piece of research summarizes the state-of-the-art of development of MILs on the broad spectrum, highlighting their specificities, such as synthesis techniques, modifications and applications for environmental remediation. However, MILs wonderful properties and extraordinary applications in multiple fields, their deployment on practical and commercial-scale pollutants remediation is hindered by insufficient scientific research on underlying mechanisms and relationships. Henceforth, this review not only signifies the emerging importance of MILs for environmental applications but also indicates the urgency to maximize the scientific research for exploitation of MOFs on a practical level and promotion of green technologies for environmental remediation.
Collapse
Affiliation(s)
- Sara Khan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qing Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qian Liu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zewan Qin
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Bilal Rasheed
- School of Science, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Xiaoxia Liang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xia Yang
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
8
|
Vargas-Estrada L, Longoria A, Okoye PU, Sebastian PJ. Energy and nutrients recovery from wastewater cultivated microalgae: Assessment of the impact of wastewater dilution on biogas yield. BIORESOURCE TECHNOLOGY 2021; 341:125755. [PMID: 34419883 DOI: 10.1016/j.biortech.2021.125755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, microalgae culture was integrated into wastewater treatment as tertiary treatment to recover nutrients such as nitrogen and phosphorous. Different wastewater dilutions were assessed to investigate the effect on microalgae biomass composition for further energy recovery in the form of biogas: photobioreactor (PBR)1: control; PBR2: 10% wastewater; PBR3 50% wastewater and PBR4: 100% wastewater. After 10 days of cultivation, PBR3 presented the highest biomass productivity, which was 47.37% higher than the control. All PBRs containing wastewater presented a 100% removal of phosphorous and up to 97.85% removal of ammonia nitrogen. Each microalgae biomass was harvested and dried for further biogas production, although no significant difference was observed, PBR4 presented a higher biogas accumulated production of 204.47 mL. These results suggest that it is suitable to integrate microalgae culture as a wastewater tertiary treatment as nutrients can be recovered in the form of biogas.
Collapse
Affiliation(s)
| | - Adriana Longoria
- CONACYT-Universidad National Autonoma de México, Temixco, Morelos C.P. 62580, México
| | - Patrick U Okoye
- Instituto de Energias Renovables-UNAM, Temixco, Morelos C.P. 62580, México
| | - P J Sebastian
- Instituto de Energias Renovables-UNAM, Temixco, Morelos C.P. 62580, México.
| |
Collapse
|
9
|
Sun DW, Huang L, Pu H, Ma J. Introducing reticular chemistry into agrochemistry. Chem Soc Rev 2020; 50:1070-1110. [PMID: 33236735 DOI: 10.1039/c9cs00829b] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For survival and quality of life, human society has sought more productive, precise, and sustainable agriculture. Agrochemistry, which solves farming issues in a chemical manner, is the core engine that drives the evolution of modern agriculture. To date, agrochemistry has utilized chemical technologies in the form of pesticides, fertilizers, veterinary drugs and various functional materials to meet fundamental demands from human society, while increasing the socio-ecological consequences due to inefficient use. Thus, more useful, precise, and designable scaffolding materials are required to support sustainable agrochemistry. Reticular chemistry, which weaves molecular units into frameworks, has been applied in many fields based on two cutting-edge porous framework materials, namely metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). With flexibility in composition, structure, and pore chemistry, MOFs and COFs have shown increasing functionalities associated with agrochemistry in the last decade, potentially introducing reticular chemistry as a highly accessible chemical toolbox into agrochemical technologies. In this critical review, we will demonstrate how reticular chemistry shapes the future of agrochemistry in the fields of farm sensing, agro-ecological preservation and reutilization, agrochemical formulations, smart indoor farming, agrobiotechnology, and beyond.
Collapse
Affiliation(s)
- Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|