1
|
Zhu T, Jing M, Zhang J, Li H, Zhou M, Li G. Efficacy of micro-nano bubble enhanced immobilized Chlorella vulgaris in the removal of typical antibiotics. RSC Adv 2025; 15:20268-20280. [PMID: 40524790 PMCID: PMC12168768 DOI: 10.1039/d5ra02082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 06/08/2025] [Indexed: 06/19/2025] Open
Abstract
Antibiotic pollution poses a global environmental challenge, with effective removal technologies for different antibiotic types still lacking. This study investigates an innovative micro-nano bubble (MNB)-augmented immobilized Chlorella vulgaris system for remediating groundwater contaminated with sulfadiazine (SD) and chloramphenicol (CAP) antibiotics. Key parameters, including initial concentration (5-30 mg L-1), algal bead density (0.25-4 beads per mL), aeration time (5-30 min), and coexisting ions, were evaluated. SEM and FT-IR analyses revealed removal mechanisms. Results showed MNBs significantly improved microalgal biomass and removal efficiency (SD: 79.97%; CAP: 93.92%). SD elimination primarily depends on initial concentration and aeration, while CAP removal shows stronger ionic environment dependence. FT-IR confirmed stronger interactions (electrostatic attraction, surface adsorption) between algae and CAP. The technology showed particular effectiveness for CAP, achieving over 90% removal through MNB-algae synergy, providing valuable insights for targeted antibiotic remediation strategies.
Collapse
Affiliation(s)
- Tao Zhu
- Henan College of Transportation Zhengzhou 450008 Henan China
| | - Mengyao Jing
- School of Water and Environment, Chang'an University Xi'an 710054 China
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University Xi'an 710054 China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University Xi'an 710054 China
| | - Jianping Zhang
- School of Water and Environment, Chang'an University Xi'an 710054 China
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University Xi'an 710054 China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University Xi'an 710054 China
| | - Hui Li
- Henan Transport Investment Group Co., Ltd Zhengzhou China
| | - Min Zhou
- Ocean University of China Qingdao 266100 Shandong China
- Henan Provincial Department of Transport Zhengzhou 45000 Henan China
| | - Guijuan Li
- School of Water and Environment, Chang'an University Xi'an 710054 China
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University Xi'an 710054 China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University Xi'an 710054 China
| |
Collapse
|
2
|
Gupta AD, Jaiswal VK, Chabhadiya K, Singh RS, Gupta MK, Singh H. A critical review on the properties and applications of bulk micro and nanobubbles for the degradation of organic pollutants in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179310. [PMID: 40188725 DOI: 10.1016/j.scitotenv.2025.179310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/19/2025] [Accepted: 03/30/2025] [Indexed: 04/23/2025]
Abstract
The presence of persistent organic pollutants in wastewater streams has presented significant challenges towards their removal. In the recent decade, bulk micro (1-100 μm) and nanobubble (50-150 nm) (MNB) technology has exhibited technological advancements via integration of MNB technology in degrading organic pollutants from wastewater streams. The present review critically analyses the physico-chemical properties such as stability, zeta potential, mass transfer rates, rising velocity and size distribution of MNBs. The paradigm shift from conventional wastewater treatment to more sustainable solution is initiated by the production of OH- ions and free radicals for the degradation of organic pollutants by the MNB technology. Applications of MNBs are also explored in various wastewater treatment processes such as floatation, membrane cleaning, adsorption, aeration, and advanced oxidation processes. Future researches highlighting the challenges in the development of efficient and robust MNB technology and its real-time applications have also been highlighted. It is anticipated that MNBs could be a sustainable and economic solution for wastewater treatment.
Collapse
Affiliation(s)
- Arijit Dutta Gupta
- Department of Chemical, Petroleum & Hydrogen Technology, NIMS University, Rajasthan, Jaipur 303121, India; Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Vivek Kumar Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Karan Chabhadiya
- Krakow School for Interdisciplinary PhD Studies, Polish Academy of Sciences, Krakow 31-342, Poland; Division of Biogenic Raw Material, Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Krakow 31-261, Poland
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - M K Gupta
- Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India
| | - Harinder Singh
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
3
|
Wang Q, Li Y, Chen N, Zhang X, Ma Y, Song Y. Impact of ibuprofen on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox system. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137192. [PMID: 39823876 DOI: 10.1016/j.jhazmat.2025.137192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Ibuprofen (IBU), a commonly used non-steroidal anti-inflammatory drug, is frequently detected in wastewater treatment systems, where it can interfere with nitrogen removal. This study investigated the effects of IBU on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox (SAD/A) system. Moreover, key parameters, such as nitrogen removal efficiency, microbial activity, community structure, and IBU degradation products, were carefully monitored. While IBU concentrations of up to 1 mg/L had negligible impacts on nitrogen removal efficiency due to the counteracting effects of slight inhibition on anammox and enhancement of sulfur autotrophic denitrification, a significant inhibition of ammonia removal occurred when the concentration increased to 10 mg/L. Quantum chemical analyses revealed that IBU underwent biotransformation through decarboxylation and hydroxylation pathways, leading to the formation of two biotransformation products with high ecological toxicity. This study is the first to elucidate the mechanisms by which IBU influences microbial communities and metabolic activities in SAD/A systems. In addition, it highlights the resilience of these systems in maintaining nitrogen removal efficiency under varying IBU concentrations, as well as the environmental risks posed by the biotransformation products of IBU.
Collapse
Affiliation(s)
- Qiong Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yuqi Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Na Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
4
|
Guan N, Wang Y, Hu J, Zhang L. Micro-Nano Bubbles: A New Field of Eco-Friendly Cleaning. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:480. [PMID: 40214526 PMCID: PMC11990430 DOI: 10.3390/nano15070480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
Due to increasing public awareness of environmental concerns and stricter cleaning process requirements, traditional cleaning technologies characterized by high pollution, excessive energy consumption, and substantial damage are insufficient to meet contemporary demands. There is an urgent need for efficient, low-damage, and environmentally friendly cleaning technologies. In recent years, the rapid advancement of micro-nano bubbles (MNBs), which exhibit unique physicochemical properties, have emerged as a promising solution for green cleaning applications. This review begins with an overview of the benefits of MNBs in cleaning processes, followed by an in-depth analysis of the factors influencing their cleaning effectiveness as well as the possible mechanisms involved. Additionally, the producing and application of MNBs across various cleaning scenarios are summarized. Finally, prospects for their development are discussed. Research and advancements in MNB preparation technologies are expected to boost their applicability and commercialization in a greater variety of cleaning contexts in the future.
Collapse
Affiliation(s)
- Nan Guan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (N.G.); (Y.W.)
- University of Chinese Academy and Sciences, Beijing 100049, China
| | - Yao Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (N.G.); (Y.W.)
- University of Chinese Academy and Sciences, Beijing 100049, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (N.G.); (Y.W.)
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
- Xiangfu Laboratory, Jiashan 314102, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (N.G.); (Y.W.)
- University of Chinese Academy and Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| |
Collapse
|
5
|
Jing M, Zhang J, Li G, Zhang D, Liu F, Yang S. Micro-nano bubbles enhanced immobilized Chlorella vulgaris to remove ofloxacin from groundwater. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104458. [PMID: 39556887 DOI: 10.1016/j.jconhyd.2024.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
The phenomenon of antibiotic pollution has emerged as a significant global environmental concern. However, there is a lack of technical research on the effective removal of antibiotics based on the characteristics of the groundwater environment. This paper used micro-nano bubbles (MNBs) enhanced immobilized Chlorella technology to remove ofloxacin (OFLX) from groundwater. The study discussed the impact of initial antibiotic concentration (5-30 mg/mL), algae concentration (0.25-4 bead/mL), aeration time (5-30 min), and coexisting ions on the antibiotic removal rate and analyzed the removal mechanism by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results showed that MNBs increased Chlorella vulgaris biomass by 2.48 times and significantly improved OFLX removal efficiency. The removal rate of OFLX exhibited a significant positive correlation with the algal concentration and coexisting ions and a significant negative correlation with the aeration time and the initial concentration of antibiotics. Enhanced immobilization of Chlorella vulgaris by MNBs for OFLX removal may involve -NH, -OH, -C=O, -CH2, and -C-O-C groups. Degradation (including biodegradation and non-biodegradation) is the primary mechanism of antibiotic removal. Overall, intensive immobilization of Chlorella by MNBs promises to be a technically feasible method for removing antibiotics from groundwater.
Collapse
Affiliation(s)
- Mengyao Jing
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Jianping Zhang
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Guijuan Li
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Dan Zhang
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Fengjia Liu
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Shengke Yang
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China.
| |
Collapse
|
6
|
Huang X, Chen K, Zhang Z, Li C, Li P, Wang X, Lu J. Study on the hydrolysis characteristics of polymeric aluminum chloride forced by fine bubbles and its key factors affecting the efficiency and capacity of forcing hydrolysis. WATER RESEARCH 2024; 268:122757. [PMID: 39536640 DOI: 10.1016/j.watres.2024.122757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Enhanced coagulation is an important way to remove natural organic matter and reduce disinfection by-products in traditional water treatment processes, in which the micromolecular organic matter that is difficult to be removed during conventional coagulation can be enhanced more conveniently by modulating the dominant Al species in the traditional metal salt coagulants (e.g., polymeric aluminum chloride, PACl). Based on the forcing hydrolysis characteristics of fine bubbles due to the adsorption of hydroxide ions on their surfaces, this study verified the adaptability of the forced PACl hydrolysis by fine bubbles under different operating conditions objectively and comprehensively. The morphological changes of PACl before and after forced hydrolysis by fine bubbles were characterized figuratively, and the evolution of the dominant Al species before and after forced hydrolysis by fine bubbles was reasonably elaborated. The experimental results showed that fine bubbles had the effect of forcing the hydrolysis of PACl with different degrees of alkalinity and modulating the dominant Al species. It was innovatively found that the mass transfer efficiency of the fine bubbles determined their efficiency in forcing PACl hydrolysis (Pearson's r = -0.9423) and the concentration of fine bubbles affected their capacity to force PACl hydrolysis (Pearson's r = 0.8189). At pH = 7 and an air flow rate of 20 mL/min, the DOC concentration of micromolecular organics and the DOC removal efficiency of total organics could be reduced by 0.54 mg/L and enhanced by 12.6 %, respectively, after forced PACl hydrolysis by fine bubbles. While deepening the mechanism of forced PACl hydrolysis by fine bubbles, the above results preliminarily verified the relevance and feasibility of modulating the dominant Al species through forced PACl hydrolysis by fine bubbles to improve the coagulation efficiency, which provided theoretical and data support for the construction of a fine bubble-enhanced coagulation process for drinking water treatment plants.
Collapse
Affiliation(s)
- Xiaojiang Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kunyu Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Municipal and Environmental Engineering, Shandong University of Architecture, Jinan 250101, China
| | - Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| | - Chunbo Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ping Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China.
| |
Collapse
|
7
|
Hou T, Song H, Cui Z, He C, Liu L, Li P, Li G, Zhang Q, Zhang Z, Lei Z, Litti YV, Jiao Y. Nanobubble technology to enhance energy recovery from anaerobic digestion of organic solid wastes: Potential mechanisms and recent advancements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172885. [PMID: 38697546 DOI: 10.1016/j.scitotenv.2024.172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Nanobubble (NB) technology has gained popularity in the environmental field owing to its distinctive characteristics and ecological safety. More recently, the application of NB technology in anaerobic digestion (AD) systems has been proven to promote substrate degradation and boost the production of biogas (H2 and/or CH4). This review presents the recent advancements in the application of NB technology in AD systems. Meanwhile, it also sheds light on the underlying mechanisms of NB technology that contribute to the enhanced biogas production from AD of organic solid wastes. Specifically, the working principles of the NB generator are first summarized, and then the structure of the NB generator is optimized to accommodate the demand for NB characteristics in the AD system. Subsequently, it delves into a detailed discussion of how the addition of nanobubble water (NBW) affects AD performance and the different factors that NB can potentially contribute. As a simple and environmentally friendly additive, NBW was commonly used in the AD process to enhance the fluidity and mass transfer characteristics of digestate. Additionally, NB has the potential to enhance the functionality of different types of microbial enzymes that play crucial roles in the AD process. This includes boosting extracellular hydrolase activities, optimizing coenzyme F420, and improving cellulase function. Finally, it is proposed that NBW has development potential for the pretreatment of substrate and inoculum, with future development being directed towards this aim.
Collapse
Affiliation(s)
- Tingting Hou
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Song
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiqiang Cui
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengfei Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuri V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Youzhou Jiao
- Henan University of Engineering, Zhengzhou 451191, China.
| |
Collapse
|
8
|
Jiang Y, Ma D, Wang J, Xu Q, Fang J, Yue Z. Regulatory of salinity on assembly of activated sludge microbial communities and nitrogen transformation potential in industrial plants of the lower Yangtze River basin. ENVIRONMENTAL RESEARCH 2024; 251:118769. [PMID: 38518918 DOI: 10.1016/j.envres.2024.118769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This study aims to thoroughly investigate the impact mode of salinity carried by industrial wastewater on the anaerobic-anoxic-oxic (A2O) sludge in wastewater treatment plants (WWTPs). Through comprehensive investigation of the A2O stage activated sludge (AS) from 19 industrial WWTPs in the downstream area of the Yangtze River, China, A total of 38 samples of anaerobic sludge and oxic sludge were collected and analyzed. We found that salinity stress significantly inhibits the growth of the AS community, particularly evident in the anaerobic sludge community. Furthermore, the high-saline environment induces changes in the structure and functional patterns of the AS community, leading to intensive interactions and resource exchanges among microorganisms. Halophilic microorganisms may play a crucial role in this process, significantly impacting the overall community structure, especially in the oxic sludge community. Additionally, salinity stress not only suppresses the nitrogen transformation potential of the AS but also leads to the accumulation of nitrite, thereby increasing the emission potential of both NO and N2O, exacerbating the greenhouse effect of the A2O process in industrial WWTPs. The findings of this study provide necessary theoretical support for maintaining the long-term stable operation of the A2O sludge system in industrial WWTPs, reducing carbon footprint, and improving nitrogen removal efficiency.
Collapse
Affiliation(s)
- Yifan Jiang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Ding Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Qingsheng Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jintao Fang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui, 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
9
|
Pei L, Song Y, Chen G, Mu L, Yan B, Zhou T. Enhancement of methane production from anaerobic digestion of Erigeron canadensis via O 2-nanobubble water supplementation. CHEMOSPHERE 2024; 354:141732. [PMID: 38499072 DOI: 10.1016/j.chemosphere.2024.141732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/30/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Malignant invasive Erigeron canadensis, as a typical lignocellulosic biomass, is a formidable challenge for sustainable and efficient resource utilization, however nanobubble water (NBW) coupled with anaerobic digestion furnishes a prospective strategy with superior environmental and economic effectiveness. In this study, influence mechanism of various O2-NBW addition times on methanogenic performance of E. canadensis during anaerobic digestion were performed to achieve the optimal pollution-free energy conversion. Results showed that supplementation of O2-NBW in digestion system could significantly enhance the methane production by 10.70-16.17%, while the maximum cumulative methane production reached 343.18 mL g-1 VS in the case of one-time O2-NBW addition on day 0. Furthermore, addition of O2-NBW was conducive to an increase of 2-90% in the activities of dehydrogenase, α-glucosidase and coenzyme F420. Simultaneously, both facultative bacteria and methanogenic archaea were enriched as well, further indicating that O2-NBW might be responsible for facilitating hydrolytic acidification and methanogenesis. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) cluster analysis, provision of O2-NBW enhanced the metabolism of carbohydrate and amino acid, translation as well as membrane transport of bacteria and archaea. This study might offer the theoretical guidance and novel insights for efficient recovery of energy from lignocellulosic biomass on account of O2-NBW adhibition in anaerobic digestion system, progressing tenor of carbon-neutral vision.
Collapse
Affiliation(s)
- Legeng Pei
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Double Carbon Research Institute, Tianjin, 300350, China.
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China; Double Carbon Research Institute, Tianjin, 300350, China
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Teng Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
10
|
Xiao Y, Zhangzhong L, Tan S, Song P, Zheng W, Li Y. Effect of nanobubble concentrations on fouling control capacity in biogas slurry wastewater distribution systems. BIORESOURCE TECHNOLOGY 2024; 396:130455. [PMID: 38360221 DOI: 10.1016/j.biortech.2024.130455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Nanobubble (NB) represents a promising practice for mitigating fouling in biogas slurry distribution systems. However, its anti-fouling effectiveness and optimal use dosage are unknown. This study investigated the NB anti-fouling capacity at six concentrations (0 %-100 %, denoting the ratio of maximum NB-infused water; particle concentrations in 0 % and 100 % ratios were 1.08 × 107 and 1.19 × 109 particles mL-1, respectively). Results showed that NB effectively mitigated multiple fouling at 50 %-100 % ratios, whereas low NB concentration exacerbated fouling. NB functioned both as an activator and a bactericide for microorganisms, significantly promoting biofouling at 5 %-25 %, and inhibiting biofouling at 50 %-100 %. Owing to an enhanced biofilm biomineralization ability, low NB concentration aggravated precipitate fouling, whereas high NB doses effectively mitigated precipitates. Additionally, higher NB concentrations demonstrated superior control efficiency against particulate fouling. This study contributes insights into NB effectiveness in controlling various fouling types within wastewater distribution systems.
Collapse
Affiliation(s)
- Yang Xiao
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lili Zhangzhong
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Siyuan Tan
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China; Institute of Modern Agriculture on Yellow River Delta, Shandong Academy of Agricultural Sciences, Dongying 257000, China
| | - Wengang Zheng
- National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing 100097, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, Beijing 100083, China; Institute of Modern Agriculture on Yellow River Delta, Shandong Academy of Agricultural Sciences, Dongying 257000, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
11
|
Tran NLH, Lam TQ, Duong PVQ, Doan LH, Vu MP, Nguyen KHP, Nguyen KT. Review on the Significant Interactions between Ultrafine Gas Bubbles and Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:984-996. [PMID: 38153335 DOI: 10.1021/acs.langmuir.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Having sizes comparable with living cells and high abundance, ultrafine bubbles (UBs) are prone to inevitable interactions with different types of cells and facilitate alterations in physiological properties. The interactions of four typical cell types (e.g., bacterial, fungal, plant, and mammalian cells) with UBs have been studied over recent years. For bacterial cells, UBs have been utilized in creating the capillary force to tear down biofilms. The release of high amounts of heat, pressure, and free radicals during bubble rupture is also found to affect bacterial cell growth. Similarly, the bubble gas core identity plays an important role in the development of fungal cells. By the proposed mechanism of attachment of UBs on hydrophobin proteins in the fungal cell wall, oxygen and ozone gas-filled ultrafine bubbles can either promote or hinder the cell growth rate. On the other hand, reactive oxygen species (ROS) formation and mass transfer facilitation are two means of indirect interactions between UBs and plant cells. Likewise, the use of different gas cores in generating bubbles can produce different physical effects on these cells, for example, hydrogen gas for antioxidation against infections and oxygen for oxidation of toxic metal ions. For mammalian cells, the importance of investigating their interactions with UBs lies in the bubbles' action on cell viability as membrane poration for drug delivery can greatly affect cells' survival. UBs have been utilized and tested in forming the pores by different methods, ranging from bubble oscillation and microstream generation through acoustic cavitation to bubble implosion.
Collapse
Affiliation(s)
- Nguyen Le Hanh Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thien Quang Lam
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Phuong Vu Quynh Duong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Linh Hai Doan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Mai Phuong Vu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khang Huy Phuc Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khoi Tan Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
12
|
Lyu T, Wu Y, Zhang Y, Fan W, Wu S, Mortimer RJG, Pan G. Nanobubble aeration enhanced wastewater treatment and bioenergy generation in constructed wetlands coupled with microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165131. [PMID: 37364834 DOI: 10.1016/j.scitotenv.2023.165131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Artificial aeration is a widely used approach in wastewater treatment to enhance the removal of pollutants, however, traditional aeration techniques have been challenging due to the low oxygen transfer rate (OTR). Nanobubble aeration has emerged as a promising technology that utilise nano-scale bubbles to achieve higher OTRs owing to their large surface area and unique properties such as longevity and reactive oxygen species generation. This study, for the first time, investigated the feasibility of coupling nanobubble technology with constructed wetlands (CWs) for treating livestock wastewater. The results demonstrated that nanobubble-aerated CWs achieved significantly higher removal efficiencies of total organic carbon (TOC) and ammonia (NH4+-N), at 49 % and 65 %, respectively, compared to traditional aeration treatment (36 % and 48 %) and the control group (27 % and 22 %). The enhanced performance of the nanobubble-aerated CWs can be attributed to the nearly three times higher amount of nanobubbles (Ø < 1 μm) generated from the nanobubble pump (3.68 × 108 particles/mL) compared to the normal aeration pump. Moreover, the microbial fuel cells (MFCs) embedded in the nanobubble-aerated CWs harvested 5.5 times higher electricity energy (29 mW/m2) compared to the other groups. The results suggested that nanobubble technology has the potential to trigger the innovation of CWs by enhancing their capacity for water treatment and energy recovery. Further research needs are proposed to optimise the generation of nanobubbles, allowing them to be effectively coupled with different technologies for engineering implementation.
Collapse
Affiliation(s)
- Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Bedfordshire MK43 0AL, UK
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210000, China
| | - Yang Zhang
- Shenzhen Guanghuiyuan Environment Water Co., Ltd., Shenzhen 518038, China
| | - Wei Fan
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Robert J G Mortimer
- School of Humanities, York St John University, Lord Mayor's Walk, York YO31 7EX, UK
| | - Gang Pan
- School of Humanities, York St John University, Lord Mayor's Walk, York YO31 7EX, UK.
| |
Collapse
|
13
|
Jia M, Farid MU, Kharraz JA, Kumar NM, Chopra SS, Jang A, Chew J, Khanal SK, Chen G, An AK. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference. WATER RESEARCH 2023; 245:120613. [PMID: 37738940 DOI: 10.1016/j.watres.2023.120613] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale. As such, there lacks a rigorous review that authenticates NBs' potential beyond the bench scale. This review aims to provide a comprehensive and up-to-date analysis of the recent progress in NB research in the field of water and wastewater treatment at different scales, along with identifying and discussing the challenges and prospects of the technology. Herein, we systematically analyze (1) the fundamental properties of NBs and their relevancy to water treatment processes, (2) recent advances in NB applications for various treatment processes beyond the lab scale, including over 20 pilot and full-scale case studies, (3) a preliminary economic consideration of NB-integrated treatment processes (the case of NB-flotation), and (4) existing controversies in NBs research and the outlook for future research. This review is organized with the aim to provide readers with a step-by-step understanding of the subject matter while highlighting key insights as well as knowledge gaps requiring research to advance the use of NBs in the wastewater treatment industry.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Nallapaneni Manoj Kumar
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Circular Supplies, HICCER - Hariterde International Council of Circular Economy Research, Palakkad, Kerala 678631, India
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - John Chew
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
14
|
Han H, Sun Y, Zhang W, Zhang Z, Yuan T. The Effect of Nanobubble Water Containing Cordyceps Extract and Withaferin A on Free Fatty Acid-Induced Lipid Accumulation in HepG2 Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2265. [PMID: 37570582 PMCID: PMC10421312 DOI: 10.3390/nano13152265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Cordyceps extract and withaferin A (Wi-A) are natural compounds that have therapeutic effects on non-alcoholic fatty liver disease (NAFLD). However, their efficacy is limited and a long treatment duration is usually required. To enhance their efficiency, the synergistic effects of nanobubble water (NBW) derived from nitrogen, hydrogen, and oxygen gases were investigated. Results showed that the physical properties of all three NBWs, including nanobubble density (108 particles/mL) and zeta potential (below -22 mV), were stable during 48 h of storage. Hydrogen and nitrogen NBWs did not reduce, but instead promoted, free fatty acid-induced lipid accumulation in HepG2 cells. In contrast, oxygen NBW synergistically enhanced the effects of cordyceps extract and Wi-A. The lipid content decreased by 29% and 33% in the oxygen NBW + cordyceps extract and oxygen NBW + Wi-A groups, respectively, compared to reductions of 22% and 16% by aqueous extracts without NB. This study found that NBW may enhance the lipid-reducing effects of natural compounds, such as cordyceps extract and withaferin A, in hepatic cells. Further studies in animal experiments are needed to determine whether NBW has a potential application in NAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Tian Yuan
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan; (H.H.); (Y.S.); (W.Z.); (Z.Z.)
| |
Collapse
|
15
|
Song H, Hou T, Jiao Y, Liu L, Pan X, Li G, Zhang Q, Zeng Y, Cui Z, Li P, Awasthi MK, He C. Supplementation of CO 2-nanobubble water to enhance the methane production from anaerobic digestion of corn straw. CHEMOSPHERE 2023; 313:137613. [PMID: 36549508 DOI: 10.1016/j.chemosphere.2022.137613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Nanobubble water (NBW) could improve methane production from anaerobic digestion (AD) of corn straw without secondary contamination. In this study, the effect of carbon dioxide nanobubble water (CO2-NBW) volumes (0%, 25%, 50%, 75%, 100%) on methane production from corn straw was investigated. The results showed that addition of CO2-NBW could improve methane production and promote substrate degradation in AD process. The highest cumulative methane production of 132.16 mL g-1VSadded was obtained in the 100% CO2-NBW added reactor, which was 17% higher than that in the control group. Additionally, the addition of CO2-NBW could mitigate the sharp decrease in pH by acting as a buffer. CO2-NBW could also enhance microorganism activity throughout the AD process. The electron transport system (ETS) activity was increased by 23%, while the β-glucosidase, dehydrogenase (DHA), and coenzyme F420 activities were increased by 15%, 23%, and 11%, respectively, at optimum addition of CO2-NBW. Meanwhile, addition of CO2-NBW accelerated the production and consumption of reducing sugar and volatile fatty acids (VFAs), promoting the reduction rates of TS (Total solid) and VS (Volatile solid).
Collapse
Affiliation(s)
- Hao Song
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tingting Hou
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaohui Pan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Gang Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yu Zeng
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiqiang Cui
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengfei Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
16
|
Fate of Biofilm Activity in Cascade Aerating Trickling Filter for Wastewater Treatment: Comparison of Two Types of Indigenous Support Media. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Kakiuchi K, Kozuka T, Mase N, Miyasaka T, Harii N, Takeoka S. Do Ultrafine Bubbles Work as Oxygen Carriers? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1354-1363. [PMID: 36649623 DOI: 10.1021/acs.langmuir.2c01209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fine bubbles (FBs) are bubbles with sizes less than 100 μm and are divided into ultrafine bubbles (UFBs, < 1 μm) and microbubbles (MBs, 1-100 μm) depending on their size. Although FB aeration is known as a more efficient way than macrobubble aeration to increase the oxygen level in unoxygenated water, few reports have demonstrated whether dispersed UFBs work as oxygen carriers or not. Furthermore, oxygen supersaturation is one of the attractive characteristics of FB dispersion, but the reason is yet to be revealed. In this study, we evaluated the relationship between the FBs, especially UFB concentration, and oxygen content in several situations to reveal the two questions. The FB concentration and oxygen content were examined using particle analyzers and our developed oxygen measurement method, which can measure the oxygen content in FB dispersion, respectively. First, in the evaluations of the oxygen dispersion from UFBs with respect to the surrounding oxygen level, UFBs did become neither small nor diminish even in degassed water. Second, the changes in UFBs and oxygen content upon storage temperature and the existence of a lid during storage were evaluated, and there was no correlation between them. It means UFBs contribute little to the oxygen content in UFB dispersion. Furthermore, the oxygen content in the UFB dispersion decreased over time identically as that of the oxygen-supersaturated water with little UFBs. Third, we evaluated the relationship between FB concentration and oxygen content during FB generation by measuring them simultaneously. The results showed that dispersed MB and UFB concentrations did not account for the supersaturation of the FB dispersion. From the result, it was revealed that 100-200 nm of UFBs themselves did not work as oxygen carriers, and the oxygen supersaturation in FB dispersions was due to the supersaturated state of dissolved oxygen that was prepared during the FB generation process.
Collapse
Affiliation(s)
- Kenta Kakiuchi
- Faculty of Science and Engineering, Waseda University (TWIns), 162-8480Tokyo, Japan
| | - Tomoki Kozuka
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 432-8561Shizuoka, Japan
| | - Nobuyuki Mase
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 432-8561Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 432-8561Shizuoka, Japan
| | - Takehiro Miyasaka
- Department of Human Environmental Science, Shonan Institute of Technology, 251-8511Fujisawa, Kanagawa, Japan
| | - Norikazu Harii
- Department of Community and Family Medicine, Faculty of Medicine, University of Yamanashi, 409-3898Yamanashi, Japan
| | - Shinji Takeoka
- Faculty of Science and Engineering, Waseda University (TWIns), 162-8480Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, 169-8555Tokyo, Japan
| |
Collapse
|
18
|
Bai M, Liu Z, Zhan L, Liu Z, Fan Z. A comparative study of removal efficiency of organic contaminant in landfill leachate-contaminated groundwater under micro-nano-bubble and common bubble aeration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87534-87544. [PMID: 35821314 DOI: 10.1007/s11356-022-21805-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Landfill leachate-contaminated groundwater is widespread all over the world. In order to study the organic contaminant removal efficiency of landfill leachate-contaminated groundwater under oxygen micro-nano-bubble (MNB) aeration, a series of lab-scale experiments of oxygen MNB aeration as well as common bubble (CB) aeration were conducted. Firstly, the difference in mass transfer, microbial activity enhancement, and contaminant removal efficiency between MNB and CB aeration was estimated. Then, the composition variations of dissolved organic matter (DOM) in groundwater treated by MNB or CB aeration were characterized by ultraviolet-visible (UV-VIS) absorption spectrum and fluorescence excitation-emission matrix (EEM). The test results showed that the oxygen utilization efficiency and volumetric oxygen transfer coefficient of MNB aeration were 10 and 50 times that of oxygen CB aeration, respectively. On the 30th day after MNB aeration, the dehydrogenase activity (DHA) of groundwater increased by 101.25%. Compared with CB aeration, the chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD5), and ammonia nitrogen removal efficiency under MNB aeration increased by 29.72%, 13.43%, and 138.59%, respectively. With the biodegradation effect of MNB aeration, a large number of protein-like and soluble microbial by-product substances were degraded, and humic and fulvic acid-like substances were degraded to a certain level. Oxygen MNB aeration played a chemical oxidation effect while enhancing the biodegradation of groundwater, and it was an energy-efficient landfill leachate-contaminated groundwater treatment method.
Collapse
Affiliation(s)
- Mei Bai
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China
| | - Zhibin Liu
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China.
| | - Liangtong Zhan
- Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Zhejiang Province, Hangzhou, 310058, China
| | - Zhu Liu
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China
| | - Zhanhuang Fan
- Cecep Dadi (Hangzhou) Environmental Remediation Co., Ltd., Zhejiang Province, Hangzhou, 310020, China
| |
Collapse
|
19
|
Bai M, Liu Z, Zhan L, Yuan M, Yu H. Effect of pore size distribution and colloidal fines of porous media on the transport behavior of micro-nano-bubbles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
|
21
|
Zhou S, Liu M, Chen B, Sun L, Lu H. Microbubble- and nanobubble-aeration for upgrading conventional activated sludge process: A review. BIORESOURCE TECHNOLOGY 2022; 362:127826. [PMID: 36029987 DOI: 10.1016/j.biortech.2022.127826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The activated sludge process (ASP) is widely used for wastewater treatment, and the aeration efficiency is crucial to the operation of wastewater treatment plants. Recently, microbubble (MB)- and nanobubble (NB)-aeration has attracted much attention as there is growing evidence that it holds a great promise for upgrading the process efficiency of current ASP under conventional macro-bubble-aeration. However, a comprehensive review to elucidate the potential application of MB- and NB-aeration in ASP is still lacking. Therefore, this review will provide a systematic introduction to MB- and NB-aeration (including the unique properties and generation methods of MBs and NBs), and gain mechanistic insights on how MB- and NB-aeration improve gas-liquid mass transfer. The recent advances in MB- and NB-aeration applications to ASP and the resultant effects are also highlighted and discussed in-depth. The review concludes with a brief consideration of future research interests.
Collapse
Affiliation(s)
- Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Min Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Ben Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
22
|
Fu S, Lian S, Angelidaki I, Guo R. Micro-aeration: an attractive strategy to facilitate anaerobic digestion. Trends Biotechnol 2022; 41:714-726. [PMID: 36216713 DOI: 10.1016/j.tibtech.2022.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Micro-aeration can facilitate anaerobic digestion (AD) by regulating microbial communities and promoting the growth of facultative taxa, thereby increasing methane yield and stabilizing the AD process. Additionally, micro-aeration contributes to hydrogen sulfide stripping by oxidization to produce molecular sulfur or sulfuric acid. Although micro-aeration can positively affect AD, it must be strictly regulated to maintain an overall anaerobic environment that permits anaerobic microorganisms to thrive. Even so, obligate anaerobes, especially methanogens, could suffer from oxidative stress during micro-aeration. This review describes the applications of micro-aeration in AD and examines the cutting-edge advances in how methanogens survive under oxygen stress. Moreover, barriers and corresponding solutions are proposed to move micro-aeration technology closer to application at scale.
Collapse
|
23
|
Lv Z, Zhang H, Liang J, Zhao T, Xu Y, Lei Y. Microalgae removal technology for the cold source of nuclear power plant: A review. MARINE POLLUTION BULLETIN 2022; 183:114087. [PMID: 36084612 DOI: 10.1016/j.marpolbul.2022.114087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the past three decades, nuclear energy has gained much attention as carbon-free electricity. Due to the supply of cooling water in nuclear power plant, large amount of waste heat will increase the water temperature, promote the microalgae and cyanobacteria propagation and increase the chance of red tide. Excess phytoplankton of cool source will result in abnormal operation of cooling system, even core overheating and nuclear leakage. Consequently, it is very important to remove microalgae and cyanobacteria from cold source of nuclear power plants. This review summarizes the formation mechanism and monitoring methods of red tide, compares the advantages and disadvantages of traditional microalgae removal technology including physical, chemical and biological methods. Furthermore, the improved electrochemical method and micro-nano bubble method are introduced in detail. Their combination is considered to be a low-cost, efficient and environmentally-friendly technology to prevent and control red tides for cold source of nuclear power plant.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Hong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China.
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China.
| | - Tianyu Zhao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Yuena Xu
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Yinyuan Lei
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
24
|
Vidovic S, Paturi G, Gupta S, Fletcher GC. Lifestyle of Listeria monocytogenes and food safety: Emerging listericidal technologies in the food industry. Crit Rev Food Sci Nutr 2022; 64:1817-1835. [PMID: 36062812 DOI: 10.1080/10408398.2022.2119205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Listeria monocytogenes, a causative agent of listeriosis, is a major foodborne pathogen. Among pathogens, L. monocytogenes stands out for its unique ecological and physiological characteristics. This distinct lifestyle of L. monocytogenes has a significant impact on food safety and public health, mainly through the ability of this pathogen to multiply at refrigeration temperature and to persist in the food processing environment. Due to a combination of these characteristics and emerging trends in consumer preference for ready-to-eat and minimally processed food, there is a need to develop effective and sustainable approaches to control contamination of food products with L. monocytogenes. Implementation of an efficient and reliable control strategy for L. monocytogenes must first address the problem of cross-contamination. Besides the preventive control strategies, cross-contamination may be addressed with the introduction of emerging post packaging non-thermal or thermal hurdles that can ensure delivery of a listericidal step in a packed product without interfering with the organoleptic characteristics of a food product. This review aims to present the most relevant findings underlying the distinct lifestyle of L. monocytogenes and its impact on food safety. We also discuss emerging food decontamination technologies that can be used to better control L. monocytogenes.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Gunaranjan Paturi
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sravani Gupta
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Graham C Fletcher
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
25
|
Chen B, Zhou S, Zhang N, Liang H, Sun L, Zhao X, Guo J, Lu H. Micro and nano bubbles promoted biofilm formation with strengthen of COD and TN removal synchronously in a blackened and odorous water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155578. [PMID: 35525370 DOI: 10.1016/j.scitotenv.2022.155578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Blackening and odorization of rivers (BOR) distributed widely in urban cities with high density of human beings. Amounts of pollution control methods have been developed for treatment of these contaminated rivers. Among them, artificial aeration is an effective method for BOR treatment. As a novel developed aeration approach, Micro and nano bubbles (MNBs) takes advances of high specific surface area, high oxygen transfer, long retain time and interface effect. Thus, MNBs aeration was used in an anoxic-oxic (AO) process with traditional activated sludge methods to treat water of BOR in this study. A special designed reactor was made to allow both MNBs and macro bubbles aeration of which mode could be altered easily. The results revealed that MNBs improved removal of COD, NH4+-N and TN distinctly in water of BOR. MNBs provided high dissolved oxygen and promoted the transformation from floc sludge to biofilm. Significant difference between the microbial community of MNBs and macro bubbles sludges was revealed by 16S rRNA amplicon sequencing. Function predictions of MNBs and macro bubbles sludges indicated MNBs enhanced nitrification and aerobic ammonia oxidation without negative impact on denitrification. Moreover, biofilm formed bacteria were enriched by MNBs aeration. This study demonstrated MNBs would be a great potential for the combination of activated sludge and biofilm to treat BOR.
Collapse
Affiliation(s)
- Ben Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ning Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiyu Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Zhao
- Zhongshan Public Utilities Group Co., Ltd., Zhongshan 528403, China
| | - Jingyi Guo
- Zhongshan Public Utilities Group Co., Ltd., Zhongshan 528403, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
26
|
Liu M, Meng P, Chen G, Guan Y, Liu G. Correlation of structural extracellular polymeric substances in the mesh biofilms with solids retention time and biofilm hydraulic resistance in dynamic membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155000. [PMID: 35381253 DOI: 10.1016/j.scitotenv.2022.155000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Dynamic membrane bioreactor (DMBR), which mainly relied on the in-situ formed biofilms on support materials with large aperture (e.g., nylon mesh) to separate fine particles in wastewater, has attracted a lot of attentions due to low cost. The filtration performance of DMBR is mainly determined by the structure and hydraulic resistance of biofilms formed on the mesh. Therefore, understanding the correlation of operation conditions with mesh biofilm compositions and permeability are critically important for optimizing DMBR operation. In present study, how structural extracellular polymeric substances, including alginate-like extracellular polysaccharide (ALE) and amyloid-like protein (AP), in mesh biofilms correlate to solids retention time (SRT) and biofilm structures was explored in DMBRs. At 5d-SRT, compact and gel-like mesh biofilms were formed with a high specific filtration resistance (SFR) of 459 × 109 m/g, while at 40d-SRT porous mesh biofilms were developed with a low SFR of 24 × 109 m/g. Consequently, the 5d-SRT MBR experienced more rapid rise in transmembrane pressure. Further studies found that the 5d-SRT mesh biofilms had a higher AP content, which was positively correlated to biofilm hydraulic resistance. On the contrary, the 40d-SRT mesh biofilms contained a higher content of ALE, suggesting that ALE was negatively correlated to biofilm hydraulic resistance. Therefore, AP instead of ALE likely played a more important role in the formation of compact and gel-like mesh biofilms.
Collapse
Affiliation(s)
- Mai Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Peipei Meng
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guichang Chen
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ying Guan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
27
|
Yaparatne S, Doherty ZE, Magdaleno AL, Matula EE, MacRae JD, Garcia-Segura S, Apul OG. Effect of air nanobubbles on oxygen transfer, oxygen uptake, and diversity of aerobic microbial consortium in activated sludge reactors. BIORESOURCE TECHNOLOGY 2022; 351:127090. [PMID: 35358670 DOI: 10.1016/j.biortech.2022.127090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Nanobubbles have the potential to curtail the loss of oxygen during activated sludge aeration due to their extensive surface areas and lack of buoyance in solution. In this study, nanobubble aeration was explored as a novel approach to enhance aerobic activated sludge treatment and benchmarked against coarse bubble aeration at the lab scale. Nanobubble aerated activated sludge reactors achieved greater dissolved oxygen levels at faster rates. Higher soluble chemical oxygen demand removal by 10% was observed when compared to coarse bubble aeration with the same amount of air. The activated sludge produced compact sludge yielding easier waste sludge for subsequent sludge handling. The samples showed fewer filamentous bacteria with a lower relative abundance of floc forming Corynebacterium, Pseudomonas, and Zoogloea in the sludge. The microbiome of the nanobubble-treated activated sludge showed significant shifts in the abundance of community members at the genus level and significantly lower alpha and beta diversities.
Collapse
Affiliation(s)
- Sudheera Yaparatne
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Zachary E Doherty
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Andre L Magdaleno
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Emily E Matula
- NASA Johnson Space Center, Houston TX 77058, United States
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
28
|
Zhang Z, Chang N, Wang S, Lu J, Li K, Zheng C. Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152203. [PMID: 34890666 DOI: 10.1016/j.scitotenv.2021.152203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Traditional air or oxygen injection is an effective and economical mitigation strategy for sulfide control in pressure sewers, but it is not suitable for gravity sewers due to the low solubility of oxygen in water under normal atmospheric conditions. Herein, an air-nanobubble (ANB) injection method was proposed for sulfide mitigation in gravity sewers, and its sulfide control efficiency was evaluated by long-term laboratory gravity sewer reactors. The results showed that an average inhibition rate of 45.36% for sulfide was obtained when ANBs were implemented, which was 3.75 times higher than that of the traditional air injection method, revealing the effectiveness and feasibility of the ANB injection method. As suggested by microbial community analysis of sewer biofilms, the relative abundance of sulfate-reducing bacteria (SRB) decreased 40.57% while that of sulfur oxidizing bacteria (SOB) increased 215.27% in the presence of ANBs, indicating that sulfide mitigation by ANB injection included both the inhibition of sulfide production and the oxidation of dissolved sulfide. The specific cost consumption of ANB injection was 1.7 $/kg-S, which was only 6.85% of that of traditional air injection (24.8 $/kg-S), suggesting that the sustainable supply of oxygen based on ANB injection is not only environmentally but also economically beneficial for sulfide mitigation. The findings of this study may provide an efficient sulfide mitigation strategy for the management of corrosion and malodour issues in the poorly ventilated gravity sewers.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Na Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Sheping Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Xi'an Municipal Design and Research Institute, No.100 Zhuque Road, Xi'an 710068, People's Republic of China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, People's Republic of China; Key Laboratory of Environmental Engineering, Shaanxi Province, People's Republic of China.
| | - Kexin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Cailin Zheng
- Ankang Municipal Facilities Management, House and Urban Rural Development Department of Ankang, NO.1 Bingjiang Road, Ankang 725000, Shaanxi Province, People's Republic of China
| |
Collapse
|
29
|
Zhou Y, Bastida F, Liu Y, Liu Y, Xiao Y, Song P, Wang T, Li Y. Selenium fertigation with nanobubbles influences soil selenium residual and plant performance by modulation of bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127114. [PMID: 34537638 DOI: 10.1016/j.jhazmat.2021.127114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Although selenium (Se) is an essential microelement for humans and animals, it is a potentially toxic element due to its bioaccumulation potential. In this study, Se fertilizer was supplied in a greenhouse vegetable (cucumber) plantation using an innovative system consisting of nanobubbles (NB_Se) and compared to that under conventional conditions of fertigation (C_Se) with six doses. The results revealed that NB_Se significantly reduced soil Se accumulation (38%-144%) and increased cucumber Se content compared with the C_Se treatments at the same Se dose. NB_Se significantly lowered the soil bacterial diversity, with an initial increase and then decrease with the Se doses. Bacterial associations and potential keystone taxa also differed between the NB_Se and C_Se. The greater abundance of oxidizing bacteria (indicated by the function composition of bacterial community) and the improved soil redox environment created by NBs sustained more available Se for plants, leading to a reduction in soil Se residual and an increase in the plant Se content. Our results highlight the feasibility and efficiency of NB_Se and demonstrate the important implications of Se for the maintenance of soil health and sustainability.
Collapse
Affiliation(s)
- Yunpeng Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Felipe Bastida
- CEBAS-CSIC, Department of Soil and Water Conservation, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Yanzheng Liu
- College of Mechanical and Electrical Engineering, Beijing Vocational College of Agriculture, 102208, China
| | - Yaxin Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Tianze Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Engineering Research Center for Agricultural Water-Saving and Water Resources, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
30
|
Hou T, Zhao J, Lei Z, Shimizu K, Zhang Z. Supplementation of KOH to improve salt tolerance of methanogenesis in the two-stage anaerobic digestion of food waste using pre-acclimated anaerobically digested sludge by air-nanobubble water. BIORESOURCE TECHNOLOGY 2022; 346:126360. [PMID: 34801723 DOI: 10.1016/j.biortech.2021.126360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Air-nanobubble water (NBW) was applied to pre-acclimate anaerobically digested sludge that was then used as the inoculum in the two-stage anaerobic digestion (AD) of high saline (20 g NaCl/L) food waste (FW) to optimize NBW application in the AD of high saline FW. K+ was simultaneously supplemented during the methanogenic stage to resist the inhibition of salt on methanogens. Results showed that after the second pre-acclimation cycle, the inoculum activity was increased 27% in the Air-NBW supplemented reactor in comparison to the deionized water (DW) supplemented one. In the first-stage AD, H2 yield was enhanced by 46% in the Air-NBW pre-acclimated sludge reactor compared with the DW pre-acclimated sludge reactor. Besides, supplementation of KOH in the methanogenic stage could enhance methane production by 17-25% in the DW reactors at initial pH 7.5, 8.0, and 9.0 when compared to the control reactor (using NaOH adjusted initial pH to 7.5), respectively.
Collapse
Affiliation(s)
- Tingting Hou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jiamin Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
31
|
Zhang ZH, Wang S, Cheng L, Ma H, Gao X, Brennan CS, Yan JK. Micro-nano-bubble technology and its applications in food industry: A critical review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shaomeng Wang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lina Cheng
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
32
|
Movahed SMA, Sarmah AK. Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147362. [PMID: 33957600 DOI: 10.1016/j.scitotenv.2021.147362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The present study has two primary goals, the first goal is to investigate a bibliometric analysis and assess the trends to evaluate the global scientific production of microbubbles and nanobubbles from 2000 to 2020. The aim is to elucidate the cornucopia of benefits the two technologies (micro and nanobubbles) can offer in environmental sciences and environmental amelioration such as wastewater treatment, seed germination, separation processes, etc. The second goal is to explicate the reason behind every chart and trend through environmental engineering perspectives, which can confer value to each analysis. The data was acquired from the Web of Science and was delineated by VOS viewer software and GraphPad Prism. Considering 1034 publications in the area of micro-and nanobubbles, this study was conducted on four major aspects, including publication growth trend, countries contribution assessment, categories, journals and productivity, and keywords co-occurrence network analysis. This article revealed a notable growth in microbubbles and nanobubbles-related publications and a general growth trend in published articles in a 20-year period. China had the most significant collaboration with other countries, followed by the USA and Japan. The most dominant categories for microbubbles were environmental sciences and environmental engineering comprising 22.5% of the total publications, while multidisciplinary subjects such as nanotechnology and nanosciences (8%) were among the dominant categories for nanobubbles. Keyword's analysis results showed that microbubbles had reached the apex since their discovery. Consequently, they are being used mostly in water/wastewater treatment or environmental improvement. On the other hand, nanobubbles are still in their infancy, and their pervasive use is yet to be fully materialized. Most of the publications are still striving to understand the nature of nanobubbles and their stability; however, a critical analysis showed that during the past two years, the trend of using nanobubbles as a cost-effective and environmentally friendly approach has already begun.
Collapse
Affiliation(s)
- Saman Moftakhari Anasori Movahed
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
33
|
Wu J, Zhang K, Cen C, Wu X, Mao R, Zheng Y. Role of bulk nanobubbles in removing organic pollutants in wastewater treatment. AMB Express 2021; 11:96. [PMID: 34184137 PMCID: PMC8239109 DOI: 10.1186/s13568-021-01254-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
The occurrence of a variety of organic pollutants has complicated wastewater treatment; thus, the search for sustainable and effective treatment technology has drawn significant attention. In recent years, bulk nanobubbles, which have extraordinary properties differing from those of microbubbles, including high stability and long residence times in water, large specific surface areas, high gas transfer efficiency and interface potential, and the capability to generate free radicals, have shown attractive technological advantages and promising application prospects for wastewater treatment. In this review, the basic characteristics of bulk nanobubbles are summarized in detail, and recent findings related to their implementation pathways and mechanisms in organic wastewater treatment are systematically discussed, which includes improving the air flotation process, increasing water aeration to promote aerobic biological technologies including biological activated carbon, activated sludge, and membrane bioreactors, and generating active free radicals that oxidise organic compounds. Finally, the current technological difficulties of bulk nanobubbles are analysed, and future focus areas for research on bulk nanobubble technology are also proposed.
Collapse
Affiliation(s)
- Jiajia Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China
| | - Cheng Cen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China
| | - Xiaogang Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China
| | - Ruyin Mao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China
| | - Yingying Zheng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
34
|
Xiao W, Xu G, Li G. Effect of nanobubble application on performance and structural characteristics of microbial aggregates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142725. [PMID: 33069472 DOI: 10.1016/j.scitotenv.2020.142725] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Herein an investigation on the performance and structural properties with aspects of stability, composition, functional group, and three-dimensional distribution were approached to evaluate the influence of nanobubble aeration to the two most common microbial aggregates, activated sludge and biofilm. This study found that applying nanobubble effectively provided extra oxygen for microbial aggregates and achieved a 10.58% improvement in total nitrogen removal. The structure of microbial aggregates was enhanced, where extracellular protein and polysaccharides respectively increased as maximum as 3.40 and 1.70 times in biofilm and activated sludge, accompanied by the development of activated sludge floc size and the thickness of biofilm. Further investigation on extracellular polymeric substance and surface of microbial aggregates showed the composition of functional substances of microbial aggregates were shifted by the application of nanobubble, especially the oxygen-sensitive ones. Confocal laser scanning microscopy imaging visualized that the nanobubble changed the morphology of biofilm to a more evenly one. However, an adaptive process was more needed for activated sludge rather than biofilm, it suggested application of NB optimized the distribution of functional microorganisms in-depth and the metabolism pathway of them by accelerating the structure development of microbial aggregates, especially for biofilm.
Collapse
Affiliation(s)
- Wanting Xiao
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; College of Resources and Environment, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Guibai Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
35
|
Long-Term Stability of Different Kinds of Gas Nanobubbles in Deionized and Salt Water. MATERIALS 2021; 14:ma14071808. [PMID: 33917489 PMCID: PMC8038778 DOI: 10.3390/ma14071808] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/12/2023]
Abstract
Nanobubbles have many potential applications depending on their types. The long-term stability of different gas nanobubbles is necessary to be studied considering their applications. In the present study, five kinds of nanobubbles (N2, O2, Ar + 8%H2, air and CO2) in deionized water and a salt aqueous solution were prepared by the hydrodynamic cavitation method. The mean size and zeta potential of the nanobubbles were measured by a light scattering system, while the pH and Eh of the nanobubble suspensions were measured as a function of time. The nanobubble stability was predicted and discussed by the total potential energies between two bubbles by the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The nanobubbles, except CO2, in deionized water showed a long-term stability for 60 days, while they were not stable in the 1 mM (milli mol/L) salt aqueous solution. During the 60 days, the bubble size gradually increased and decreased in deionized water. This size change was discussed by the Ostwald ripening effect coupled with the bubble interaction evaluated by the extended DLVO theory. On the other hand, CO2 nanobubbles in deionized water were not stable and disappeared after 5 days, while the CO2 nanobubbles in 1 mM of NaCl and CaCl2 aqueous solution became stable for 2 weeks. The floating and disappearing phenomena of nanobubbles were estimated and discussed by calculating the relationship between the terminal velocity of the floating bubble and bubble size.
Collapse
|
36
|
Fan Y, Yang X, Lei Z, Adachi Y, Kobayashi M, Zhang Z, Shimizu K. Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation. BIORESOURCE TECHNOLOGY 2021; 326:124782. [PMID: 33535153 DOI: 10.1016/j.biortech.2021.124782] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Nano-bubble water (NBW) has been proven to be effective in promoting organics utilization and CH4 production during anaerobic digestion (AD) process, suggesting its potential in improving the stability of the AD process and thereby alleviating acidic inhibition. In this work, the effect of NBW on digestion stability and CH4 production was investigated to evaluate the ability of NBW on AD recovery from acidic inhibition. Results showed that NBW supplementation increased the total alkalinity (TA) and partial alkalinity (PA), and reduced the ratio of VFA/TA, thus maintained the stability of the AD process. Generation/consumption of VFAs was also enhanced with NBW supplementation under acidic inhibition with pH values of 5.5, 6.0 and 6.5. The cumulative CH4 production was 246-257 mL/g-VS in NBW groups, which was 12.1-17.2% higher than the control. Moreover, with NBW supplementation, the maximum CH4 production rate was raised according to the modeling results.
Collapse
Affiliation(s)
- Yujie Fan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoyoshi Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
37
|
Xiao W, Xu G, Li G. Role of shear stress in biological aerated filter with nanobubble aeration: Performance, biofilm structure and microbial community. BIORESOURCE TECHNOLOGY 2021; 325:124714. [PMID: 33485083 DOI: 10.1016/j.biortech.2021.124714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
This study comprehensively investigated the role of shear stress in a biological aerated filter under nanobubble aeration with the operation of an internal reflux and mechanical bubbling, where nanobubbles provide an opportunity to separately assess the effect of the hydraulic shear stress and aeration on the properties of the biofilms. Shear stress optimized the oxygen distribution, which improved the dissolved oxygen of the effluent three- and four-fold through reflux and mechanical bubbling, respectively. Proper shear stress enhanced the spatial development of the biofilms and promoted the activity and stability of nanobubble-aerated biofilms, achieving a sufficient contaminant removal efficiency that meets the local standard. Shear stress and aeration individually regulated the functional pathways and improved the development of the biofilm structure and the performance. The results indicate that nanobubble is a promising aeration technology when accompanied by a shearing strategy.
Collapse
Affiliation(s)
- Wanting Xiao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; College of Resources and Environment, University of Chinese Academy of Science (UCAS), Beijing 100049, China.
| | - Guibai Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
38
|
Zheng X, Zhang J, Li M, Zhuang LL. Optimization of the pollutant removal in partially unsaturated constructed wetland by adding microfiber and solid carbon source based on oxygen and carbon regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141919. [PMID: 32898802 DOI: 10.1016/j.scitotenv.2020.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The partially unsaturated constructed wetland was demonstrated to be able to enhance the oxygen supplement for the microbial nitrification. However, the fast gravity flow of wastewater on the smooth surface of substrate in unsaturated zone led to a short contact time between wastewater and biofilm on the surface of substrate for the microbial pollutant oxidation process. While, the strengthened oxygen supplement also consumed organic carbon, intensifying the shortage of electron donator for the denitrification process. To further enhance the efficiency of both nitrification and denitrification processes, two strategies were conducted as follows: (1) adding microfiber in unsaturated zone to extend the hydraulic retention time (HRT) and improve the oxygenating efficiency; (2) adding slow-release carbon source (Poly butylenes succinate, PBS) as electron donor in saturated zone for denitrification. Results showed that the ammonia oxidation efficiency reached up to 97.0% in the microfiber-enhanced constructed wetland. Additionally, adding microfiber provided more sites for microbes and increased the total number of microbes in unsaturated zone. The addition of PBS in the saturated zone obviously improved the denitrification efficiency with the total nitrogen (TN) removal rate raising from 20.6 ± 4.0% to 90.4 ± 2.7%, which excellently solved the problem of poor denitrification efficiency caused by low ratio of carbon to nitrogen (C/N). In conclusion, the association of microfiber and PBS in partially unsaturated constructed wetland finally accomplished the thorough nitrogen removal.
Collapse
Affiliation(s)
- Xinhui Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| | - Mengting Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
39
|
Liu W, Jia H, Jiang X, Wu Y, Wang J. The new insight about electrode interface behaviour via in situ ultrasound three-dimensional representation monitoring based on a bio-electrochemical system. Bioelectrochemistry 2020; 136:107599. [PMID: 32711364 DOI: 10.1016/j.bioelechem.2020.107599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 12/26/2022]
Abstract
Behaviour of the electrode interface is a determining factor that affects the performance of a bio-electrochemical system (BES). Examples include the formation of an electroactive biofilm, electrode degradation and renewal. However, underlying mechanisms are unclear, and traditional approaches make it difficult to achieve in situ monitoring. In this study, a novel technology using ultrasound three-dimensional representation (UTDR) was used to track in situ electrode interface behaviour based on the correspondence between acoustic and electrical signals. A series of wavelet analyses showed that the formation of an electroactive biofilm is a lengthy process with multiple physiological steps, and biofilm thickness increased by approximately 600 μm after 40 days of operation. At the same time, directional migration of Ca2+, Mg2+ confirmed acceleration of the salting out on the cathode, which forms a compacted structure with the biological layer. Furthermore, UTDR combined with electrochemical methods allowed for comprehensive evaluation of AC impact, and indicated that AC (1 Hz, 20 V) could effectively desquamate the contaminating solids and restore power density to 93.4% of initial. These results show that UTDR is a sensitive and effective method for revealing microscopic changes on the electrode surface, which gives it potential wide applicability to interfacial processes.
Collapse
Affiliation(s)
- Wenbin Liu
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tianjin TianGong University, Tianjin 300387, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Hui Jia
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tianjin TianGong University, Tianjin 300387, China
| | - Xin Jiang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tianjin TianGong University, Tianjin 300387, China
| | - Yun Wu
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tianjin TianGong University, Tianjin 300387, China
| | - Jie Wang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin TianGong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tianjin TianGong University, Tianjin 300387, China.
| |
Collapse
|