1
|
Du Z, Bai S, Qian J, Zhan P, Hu F, Peng X. Iron-carbon enhanced constructed wetland microbial fuel cells for tetracycline wastewater treatment: Efficacy, power generation, and the role of iron-carbon. BIORESOURCE TECHNOLOGY 2025; 430:132578. [PMID: 40268101 DOI: 10.1016/j.biortech.2025.132578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Tetracycline (TC) antibiotics wastewater is a serious threat to human health and environment. In this study, four groups of laboratory-scale constructed wetlands (CWs) with different configurations were constructed to evaluate the removal efficiency of iron-carbon (Ic) coupled constructed wetland microbial fuel cells (CW-MFC) system for different pollutants removal and bioelectricity production. The results showed that the addition of Ic significantly promoted the removal of contaminants. The maximum removal rates of COD, TN, NH4+-N, and TP were 86.13 %, 81.60 %, 79.07 %, and 97.35 %, respectively. In particular, the removal rates of TC reached 100 %. 3D-EEM analysis further confirmed the role of Ic in promoting organic degradation. The Ic-CW-MFC system also showed superiority in power generation performance with peak power density of 7.90 mW/m2 (internal resistance is 10 Ω), 88.07 % higher than the traditional CW-MFC, while the internal resistance was 68.21 % lower. Therefore, when Ic is used as the substrate of CW-MFC system, its decontamination and electricity generation performance is the best. Analysis of RDA was used to elucidate the relationship of four CWs, dominant strains and environmental factors (pH, ORP and DO). The performance of traditional CWs decreased significantly after TC addition (5-20 mg/L), but Ic-CW-MFC could effectively alleviate the inhibition effect caused by high-concentration TC wastewater. The working mechanism of Ic-CW-MFC in TC wastewater was further analyzed through typical cycle experiment and characterization. The results showed that Ic-CW-MFC is an efficient and economical wastewater treatment technology, which has great potential application value in the treatment of wastewater containing TC.
Collapse
Affiliation(s)
- Zhiyuan Du
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
| | - Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China.
| | - Peng Zhan
- Jiangxi Water Resources Institute, Nanchang 330013, PR China
| | - Fengping Hu
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China.
| |
Collapse
|
2
|
Wang X, Li W, Yang S, He Z, Li Y, Wang Y, Li J. Iron-dependent autotrophic denitrification as a novel microbial driven and iron-mediated denitrification process: A critical review. ENVIRONMENTAL RESEARCH 2025; 273:120808. [PMID: 39920964 DOI: 10.1016/j.envres.2025.120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 02/10/2025]
Abstract
Based on previous research results, iron-dependent autotrophic denitrification (IDAD) was evaluated in an all-around way to provide a theoretical basis for further research. First, this review systematically and comprehensively summarizes the development of IDAD technology and describes the physiological properties of relevant functional microorganisms and their potential mechanisms from different perspectives. Second, the possible Fe-N pathways involved in the reaction of different iron-based materials are discussed in detail. Then, the theoretical advantages of the IDAD process and potential problems are described, and the corresponding control strategies are summarized. The influence of key factors on denitrification is discussed in terms of operational and water quality parameters. In addition, the application and research direction of this technology in engineering are summarized. Finally, the latest development trends and prospects for future applications are discussed to promote an in-depth understanding of IDAD and its practical application in sewage treatment.
Collapse
Affiliation(s)
- Xuechao Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Shirong Yang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Zihan He
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Yanyu Li
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Yae Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Jie Li
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| |
Collapse
|
3
|
Zheng X, Liu R, Li K, Sun J, Wang K, Shao Y, Hu Z, Zhu J, Pan Z, Nakhla G. Microalgae-bacteria symbiosis enhanced nitrogen removal from wastewater in an inversed fluidized bed bioreactor: performance and microflora. Front Microbiol 2025; 16:1591974. [PMID: 40356659 PMCID: PMC12066685 DOI: 10.3389/fmicb.2025.1591974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Conventional wastewater biological nitrogen removal (BNR) processes require a large amount of air and external organic carbon, causing a significant increase in operating costs and potential secondary pollution. Herein, this study investigated the nitrogen removal performance and the underlying mechanisms of a novel simultaneous nitrification and denitrification (SND) coupled with photoautotrophic assimilation system in an inversed fluidized bed bioreactor (IFBBR). Nitrogen removal was achieved through the synergistic interaction of microalgae and bacteria, with microalgae providing O2 for nitrification and microbial biomass decay supplying organic carbon for denitrification. The IFBBR was continuously operated for more than 240 days without aeration and external organic carbon, the total nitrogen (TN) removal efficiency reached over 95%. A novel C-N-O dynamic balance model was constructed, revealing that nitrification and denitrification were the primary pathways for nitrogen removal. The model further quantified the microbial contributions, showing that microalgae generated O2 at a rate of 81.82 mg/L·d, while microbial biomass decay released organic carbon at a rate of 148.66 mg/L·d. Microbial diversity analysis confirmed the majority presence of microalgae (Trebouxiophyceae), nitrifying bacteria (Gordonia and Nitrosomonas) and denitrifying bacteria (Ignavibacterium and Limnobacter). This study successfully achieved enhanced nitrogen removal without the need for aeration or external organic carbon. These advancements provide valuable insights into efficient wastewater nitrogen removal, offering significant benefits in terms of reduced energy consumption, lower operational costs, and decreased CO2 emissions.
Collapse
Affiliation(s)
- Xin Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, Canada
| | - Ruoting Liu
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, Canada
| | - Kai Li
- Wenzhou Ecological and Environmental Monitoring Center of Zhejiang Province, Wenzhou, China
| | - Junhao Sun
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, Canada
| | - Kanming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Shao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, Ningbo, China
| | - Zhongce Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jesse Zhu
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, Canada
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - George Nakhla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
4
|
Xia Q, Qiu Q, Cheng J, Huang W, Yi X, Yang F, Huang W. Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances. BIORESOURCE TECHNOLOGY 2025; 419:132041. [PMID: 39765277 DOI: 10.1016/j.biortech.2025.132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined. This review is expected to give new insights into the development of economic and environmentally friendly iron-based wastewater treatment procedures.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Qingzhen Qiu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Jun Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
5
|
Franchi O, Araya A, Aguirre A, Guerrero K, Ortega-Martínez E, Toledo-Alarcón J, Campos JL. Unraveling nitrogen removal performance during increasing loading rates in simultaneous nitrification and autotrophic denitrification: A functional and ecological analysis approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178322. [PMID: 39756305 DOI: 10.1016/j.scitotenv.2024.178322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Nitrogen contamination of water sources poses significant environmental and health risks. The sulfur-driven simultaneous nitrification and autotrophic denitrification (SNAD) process offers a cost-effective solution, as it operates in a single reactor, requires no organic carbon addition, and produces minimal sludge. However, this process remains underexplored, with microbial population dynamics, their interactions, and their implications for process efficiency not yet fully understood. To address this gap, this study analyzed microbial populations in a 0.8 L fluidized bed reactor performing sulfur-driven SNAD under increasing nitrogen loading rates (NLR), ranging from 11 to 105 g N/m3 d. The process achieved 93.5 % total nitrogen and 95.1 % ammonium removal at a hydraulic residence time (HRT) of 1.8 days. However, when the HRT was reduced to 0.96 days, nitrate removal instability occurred, reducing the nitrate removal efficiency to 42 %. Although increasing the HRT improved performance, two additional instability events were observed in subsequent stages at HRTs of 1.2 and 1.03 days, where nitrate removal efficiencies dropped to 11 % and 39 %, respectively. Functional analysis showed that NLR negatively impacted the proportion of sulfur-oxidizing bacteria, which was correlated with high nitrate levels in the effluent, although ammonium oxidation remained stable. Ecological network analysis revealed positive interactions between ammonia-oxidizing and heterotrophic bacteria, supporting nitrification stability. However, it also uncovered negative interactions between heterotrophic bacteria and sulfur-oxidizing denitrifiers, such as Dyella and Thiobacillus, suggesting these negative interactions contributed to temporary nitrogen removal problems in the system. This study highlights the importance of functional microbial and ecological network analyses over traditional metataxonomic approaches in understanding SNAD processes.
Collapse
Affiliation(s)
- Oscar Franchi
- Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Chile.
| | - Antonia Araya
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| | - Alberto Aguirre
- Escuela de Ciencias Biológicas e Ingeniería, Universidad Yachay Tech, Urcuquí, Ecuador
| | - Karlo Guerrero
- Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Chile
| | - Eduardo Ortega-Martínez
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| | - Javiera Toledo-Alarcón
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| | - José Luis Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| |
Collapse
|
6
|
Li W, Chen X, Yang T, Zhu H, He Z, Zhao R, Chen Y. Sponge iron enriches autotrophic/aerobic denitrifying bacteria to enhance denitrification in sequencing batch reactor. BIORESOURCE TECHNOLOGY 2024; 407:131097. [PMID: 38986882 DOI: 10.1016/j.biortech.2024.131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Sponge iron (SFe) coupled with a sludge system has great potential for improving biological denitrification; however, the underlying mechanism is not yet fully understood. In this study, the denitrification performance and microbial characteristics of ordinary sludge and SFe-sludge systems were investigated. Overall, the SFe-sludge reactor had faster ammonium degradation rate (94.0 %) and less nitrate accumulation (1.5-53.3 times lower) than ordinary reactor during the complete operation cycle of sequencing batch reactors. The addition of SFe increased the activities of nitrate and nitrite reductases. The total relative abundance of autotrophic denitrifying bacteria (Acidovorax, Arenimonas, etc.) in the SFe-sludge system after 38 days of operation was found to be 10.6 % higher than that in the ordinary sludge reactor. The aerobic denitrifying bacteria (Dokdonella, Phaeodactylibacter, etc.) was 5.3 % higher than ordinary sludge. The SFe-sludge system improved denitrification by enriching autotrophic/aerobic denitrifying bacteria in low carbon-to-nitrogen ratio wastewater treatment.
Collapse
Affiliation(s)
- Wenxuan Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinjuan Chen
- Department of Architecture and Materials Technology, Xinjiang Industry Technical College, Urumqi 830021, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hongjuan Zhu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zihan He
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruifeng Zhao
- Jiuquan Iron & Steel (Group) Co., Ltd, Jiayuguan 735100, China
| | - Yongfan Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Wu P, Yang F, Lian J, Chen B, Wang Y, Meng G, Shen M, Wu H. Elucidating distinct roles of chemical reduction and autotrophic denitrification driven by three iron-based materials in nitrate removal from low carbon-to-nitrogen ratio wastewater. CHEMOSPHERE 2024; 361:142470. [PMID: 38810802 DOI: 10.1016/j.chemosphere.2024.142470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Effective nitrate removal is a key challenge when treating low carbon-to-nitrogen ratio wastewater. How to select an effective inorganic electron donor to improve the autotrophic denitrification of nitrate nitrogen has become an area of intense research. In this study, the nitrate removal mechanism of three iron-based materials in the presence and absence of microorganisms was investigated with Fe2+/Fe0 as an electron donor and nitrate as an electron acceptor, and the relationship between the iron materials and denitrifying microorganisms was explored. The results indicated that the nitrogen removal efficiency of each iron-based material coupled sludge systems was higher than that of iron-based material. Furthermore, compared with the sponge iron coupled sludge system (60.6%-70.4%) and magnetite coupled sludge (56.1%-65.3%), the pyrite coupled sludge system had the highest removal efficiency of TN, and the removal efficiency increased from 62.5% to 82.1% with time. The test results of scanning electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction indicated that iron-based materials promoted the attachment of microorganisms and the chemical reduction of nitrate in three iron-based material coupled sludge systems. Furthermore, the pyrite coupled sludge system had the highest nitrite reductase activity and can induce microorganisms to secrete more extracellular polymer substances. Combined with high-throughput sequencing and PICRUSt2 functional predictive analysis software, the total relative abundance of the dominant bacterial in pyrite coupled sludge system was the highest (72.06%) compared with the other iron-based material systems, and the abundance of Blastocatellaceae was relatively high. Overall, these results suggest that the pyrite coupled sludge system was more conducive to long-term stable nitrate removal.
Collapse
Affiliation(s)
- Pei Wu
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China.
| | - Jianjun Lian
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Bo Chen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Yulai Wang
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Guanhua Meng
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Maocai Shen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
8
|
Wan Q, Li X, Wang F, Yang G, Ju K, Jing H, Li K, He P, Zhang X. Study on the transformation of nitrate nitrogen by manganese-catalyzed iron-carbon micro-electrolysis and microbial coupling. RSC Adv 2024; 14:10905-10919. [PMID: 38577425 PMCID: PMC10993045 DOI: 10.1039/d4ra00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Nitrate-nitrogen pertains to the nitrogen component of the overall nitrate present in a given sample in order to reduce nitrate nitrogen pollution in water, nitrate nitrogen removal methods based on iron-carbon micro-electrolysis have become a key research focus. The process and mechanism of nitrate nitrogen removal by microbial coupling was comprehensively explored in a novel iron-carbon micro-electrolysis (ICME) system. In order to establish the transformation pathway of nitrate nitrogen in water, the transformation paths of nitrate nitrogen in water before and after coupling microorganisms in three groups of continuous flow reaction devices, namely sponge iron (s-Fe0), sponge iron + biochar (s-Fe0/BC) and sponge iron + biochar + manganese sand (s-Fe0/BC/MS), were studied. The morphology and composition changes of sponge iron were analyzed by means of characterization, and the microbial population changes in the three groups were analyzed by high-throughput sequencing. Results showed that the nitrate conversion rate in the s-Fe0, s-Fe0/BC and s-Fe0/BC/MS systems reached 99.48%, 99.57% and 99.36%, respectively, with corresponding ammonia nitrogen generation, rates of 3.77%, 9.34% and 11.24% and nitrogen generation rates of 95.71%, 90.23% and 88.12%. Scanning electron microscopy imaging showed that in the s-Fe0/BC and s-Fe0/BC/MS systems the surface of sponge iron was highly corroded, with granular substances in the corrosion product clusters. X-ray photoelectron spectroscopy analysis found that the relative contents of Fe2O3 in the surface oxides of sponge iron after microbial coupling were 38.02% and 71.27% in the s-Fe0/BC and s-Fe0/BC/MS systems, while the relative Fe3O4 contents were 61.98% and 28.72%, respectively. Microbial high-throughput sequencing analysis revealed that the Chao and Ace index values in the s-Fe0 system were 871.89 and 880.78, while in the s-Fe0/BC system they were 1012.05 and 1017.29, and in the s-Fe0/BC/MS system were 1241.09 and 1198.29, respectively. The relative proportion of Thauera in the s-Fe0, s-Fe0/BC, and s-Fe0/BC/MS systems was 16.76%,14.25% and 10.01%, while the proportion of Acetoanaerobium was 15.36%, 13.27% and 11.11%, and the proportion of Chloroflexi was 0%, 1.11% and 2.18%, respectively. Furthermore, FAPROTAX function annotation found that the expression levels of chemoheterotrophs in the s-Fe0, s-Fe0/BC and s-Fe0/BC/MS systems were 43 316 OTU, 37 289 OTU and 34 205 OTU, while nitrate respiration expression levels were 16 230 OTU, 15 483 OTU and 9149 OTU, with nitrogen respiration expression levels of 16 328 OTU, 15 493 OTU and 9154 OTU, respectively. These findings suggest that nitrate is converted into nitrogen gas and ammonia nitrogen through the actions of the coupled system of sponge iron/biochar/manganese sand and microorganisms. The catalytic effect of MnO2 promotes the conversion of Fe2+ to Fe3+, generating more electrons, allowing denitrifying bacteria to reduce more nitrate nitrogen, effectively coupling the manganese-catalyzed ICME reaction and microbial denitrification. The micro-electrolysis system and the addition of manganese sand enhanced biodiversity within the s-Fe0/BC/MS system. The heterotrophic bacteria Thauera and Acetoanaerobium were the dominant microorganisms in all three systems, although the micro-electrolysis system with added manganese sand significantly reduced the proportion of facultative bacteria Thauera and Acetoanaerobium and promoted the growth of autotrophic Chloroflexi bacteria. The ecological functions of the three systems were mainly nitrate respiration and nitrogen respiration. By comparing the expression levels of nitrate respiration and nitrogen respiration in s-Fe0/BC and s-Fe0/BC/MS systems, it can be seen that the addition of manganese sand reduced microbial activity.
Collapse
Affiliation(s)
- Qiong Wan
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xiayin Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Feng Wang
- Shaanxi Water Group Water Ecology Comprehensive Development Co., Ltd 2206 Hongqi Road, Weiyang District Xi'an 710018 China
| | - Guohong Yang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Kai Ju
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Hongbin Jing
- Shaanxi Water Group Water Ecology Comprehensive Development Co., Ltd 2206 Hongqi Road, Weiyang District Xi'an 710018 China
| | - Kun Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Peng He
- Shaanxi Water Group Water Ecology Comprehensive Development Co., Ltd 2206 Hongqi Road, Weiyang District Xi'an 710018 China
| | - Xinyan Zhang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| |
Collapse
|
9
|
Guo B, Li G, Xu H, Fang Y, Gao Z, Zhao Y, Zhang J. Enhanced denitrification performance in iron-carbon wetlands through biomass addition: Impact on nitrate and ammonia transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169913. [PMID: 38185167 DOI: 10.1016/j.scitotenv.2024.169913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
This study investigated the influence of biomass addition on the denitrification performance of iron-carbon wetlands. During long-time operation, the effluent NO3--N concentration of CW-BFe was observed to be the lowest, registering at 0.418 ± 0.167 mg/L, outperforming that of CW-Fe, which recorded 1.467 ± 0.467 mg/L. However, the effluent NH4+-N for CW-BFe increased to 1.465 ± 0.121 mg/L, surpassing CW-Fe's 0.889 ± 0.224 mg/L. Within a typical cycle, when establishing first-order reaction kinetics based on NO3--N concentrations, the introduction of biomass was found to amplify the kinetic constants across various stages in the iron-carbon wetland, ranging between 2.4 and 5.4 times that of CW-Fe. A metagenomic analysis indicated that biomass augments the reduction of NO3--N and NO2--N nitrogen and significantly bolsters the dissimilation nitrate reduction to ammonia pathway. Conversely, it impedes the reduction of N2O, leading to a heightened proportion of 2.715 % in CW-BFe's nitrogen mass balance, a stark contrast to CW-Fe's 0.379 %.
Collapse
Affiliation(s)
- Baolei Guo
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Guoqiang Li
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Hongbin Xu
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Yingke Fang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Zhao Gao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Yuxin Zhao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Jingyi Zhang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| |
Collapse
|
10
|
Jiang Y, Li C, Hou Z, Shi X, Zhang X, Gao Y, Deng SH. Pollutants removal and connections among sludge properties, metabolism potential and microbial characteristics in aerobic granular sequencing batch reactor for petrochemical wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118715. [PMID: 37562254 DOI: 10.1016/j.jenvman.2023.118715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Petrochemical wastewater contains inhibitory compounds such as aromatics that are toxic to microorganisms during biological treatment. The compact and layered structure and the high amount of extracellular polymeric substances (EPS) in aerobic granular sludge (AGS) can contribute to protecting microorganisms from the harsh environment. This study evaluated the changes in the granule properties, pollutants removal, microbial metabolic potential and molecular microbial characteristics of the AGS process for petrochemical wastewater treatment. Granules treating petrochemical wastewater had a higher SVI30/SVI5 value (0.94) than that treating synthetic wastewater. An increase in bioactivity and EPS secretion with higher bio-polymer composition, specifically the functional groups such as hydroxyl, alkoxy and amino in protein, was observed, which promoted biomass aggregation. The granules also had more than 2-fold higher specific oxygen utilization rate. The AGS-SBR process obtained an average COD removal of 93% during petrochemical wastewater treatment and an effluent bCOD of below 1 mg L-1. No obvious inhibition of nitrification and denitrification activity was observed in the processes attributed to the layered structure of AGS. The average effluent NH4+-N of 5.0 mg L-1 was obtained and TN removal efficiencies of over 80.0% was achieved. Molecular microbial analysis showed that abundant functional genera Stenotrophomonas and Pseudoxanthomonas contributed to the degradation of aromatics and other petroleum organic pollutants. They were enriched with the variation of group behavior while metabolisms of amino acids and carboxylic acids by the relevant functional genera (e.g., Cytophagia) were significantly inhibited. The enrichment of Flavobacterium and Thermomonas promoted nitrification and denitrification, respectively. This research revealed the rapid start-up, enhanced granule structural strength, high inhibition resistance and considerable performance of AGS-SBR for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Chaoyu Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhaozhi Hou
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yaohuan Gao
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Shi-Hai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
11
|
Hua W, Hu W, Chen Q, Fan C, Jiang S, Zhao M, Wang Z, Zheng X, Wu S, Zeng Q, Zhong C. Identification of microbial consortia for sustainable disposal of constructed wetland reed litter wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58019-58029. [PMID: 36973628 DOI: 10.1007/s11356-023-26649-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Reed is a typical emerged plant in constructed wetlands (CWs). Its litters were used as raw materials for preparing Fe-C ceramic-filler (Fe-C-CF). The physical and chemical properties of Fe-C-CF were studied under different conditions, including the mass ration of Fe to carbon (Fe/C ratio), sintering temperature, and time, to determine the optimum preparing conditions. Meanwhile, the denitrification performance and CO2 emission flux of the surface flow constructed wetland (SFCW) systems were investigated when using Fe-C-CF as the matrix. The optimum preparing conditions for Fe-C-CF were Fe/C ratio of 1:1, sintering temperature and time of 500 °C and 20 min, respectively. The SFCW system with Fe-C-CF obtained a higher total nitrogen (TN), nitrate nitrogen (NO3--N), and ammonia nitrogen (NH3-N) removal efficiencies than the control SFCW system without Fe-C-CF. Compared with the heterotrophic denitrification process, the SFCW system with Fe-C-CF decreased CO2 emission by 67.9 g m-2 per year. The results of microbial community analysis indicated that addition of Fe-C-CF increased the diversity and abundance of microbial communities in the SFCW systems. The dominant genus of the SFCW system with Fe-C-CF was Bacillus, while Uliginosibacterium was the dominant genus in the system without the filler.
Collapse
Affiliation(s)
- Wanting Hua
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Wenqian Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Qi Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Chunzhen Fan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Shunfeng Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Zhiquan Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Suqing Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China.
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China.
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Chunjie Zhong
- Wenzhou Drainage Co., Ltd, Wenzhou, Zhejiang, 325000, People's Republic of China
| |
Collapse
|
12
|
Peng Y, Gu X, Yan P, Sun S, Zhang M, Tang L, He S. Mixotrophic denitrification improvement in ecological floating bed: Interaction between iron scraps and plant biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160718. [PMID: 36481157 DOI: 10.1016/j.scitotenv.2022.160718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this study, an iron scrap (IS)-based ecological floating bed was constructed to couple with plant biomass (FeB-EFB) for treating low-polluted water, and the nitrogen removal performance and mechanism were explored. The results showed that the nitrogen could be effectively removed in FeB-EFB, and the nitrate removal efficiency was 29.14 ± 8.06% even at a low temperature (13.9 ± 2.2 °C). After the temperature rose to 20.0 ± 0.9 °C, the denitrification rate was increased by 0.63 ± 0.16-0.81 ± 0.27 g/(m2 d) due to the synergistic effect of ISs and plant biomass. Plant biomass could promote the ISs release efficiency, while ISs could facilitate plant biomass availability by promoting cellulose decomposition. High-throughput sequencing analysis revealed that the iron-oxidizing bacteria Pseudomonas were the dominant genus in FeB-EFB. Meanwhile, the existence of plant biomass could increase the abundance of iron-related bacteria and enrich heterotrophic and facultative denitrifying bacteria (e.g., Hydrogenophaga, Comamonas) as well, improving iron-mediated denitrification and heterotrophic denitrification simultaneously. Therefore, mixotrophic denitrification improvement played a major role in promoting nitrogen removal of FeB-EFB. These results indicated that coupling iron scraps with plant biomass may be an effective way to improve the nitrogen removal performance of EFB.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Li Tang
- Shanghai Gardens (Group) Co., Ltd., Shanghai 200335, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
13
|
Shi J, Liang Z, Dai X. Enhanced biological phosphorus and nitrogen removal by high-concentration powder carriers: extracellular polymeric substance, microbial communities, and metabolic pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4010-4022. [PMID: 35963965 DOI: 10.1007/s11356-022-22363-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, diatomite, activated carbon, and iron-carbon (Fe-C) were used as biological carriers for the integrated fixed-film activated sludge process. Biomass, pollutant removal efficiency, and extracellular polymer were tested, and the effect of nitrogen and phosphorus removal, enzyme activity, and microbial diversity were studied after the sludge retention time was changed. The mechanism of carrier enriching microorganism and promoting pollutant degradation was studied. The results showed that the addition of these three carriers contributed to the enrichment of nitrifying bacteria in the system, and the NH4+-N removal efficiency was above 98%. Diatomite and Fe-C could improve pollutant removal by increasing the activity of the electron transfer system. The abundance of denitrogenation-related reductases and the enzymes synthesizing poly-β-hydroxybutyrate was increased in activated carbon. The addition of Fe-C increased the abundance of denitrifying phosphate-accumulating organisms by approximately 25% and the removal efficiency of total phosphorus by 12.61-14.88% at the end of the long-term operation.
Collapse
Affiliation(s)
- Juan Shi
- College of Environmental Science and Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zixuan Liang
- State Key Lab Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Lab Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
14
|
Zhu H, Li W, Chen X, Mu H, Hu K, Ren S, Peng Y, Zhao R, Wang Y. Effects of sponge iron dosage on nitrogen removal performance and microbial community structure in sequencing batch reactors. BIORESOURCE TECHNOLOGY 2023; 368:128307. [PMID: 36370944 DOI: 10.1016/j.biortech.2022.128307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The application of sponge iron (SI) carriers can improve the biochemical treatment performance of sequencing batch reactors (SBR) during wastewater treatment. This study used SBR reactors to explore the effects of SI dosage on the nitrogen removal performance and reactor stability and microbial community structure under low temperature and ultra-low load. In contrast to conventional SBR, the average removal rate of total nitrogen (TN) in the biological sponge iron system (BSIS) was increased by 5.38 % for 45 g/L, 18.93 % for 90 g/L, and 13.52 % for 135 g/L, respectively. The nitrogen removal performance and reactor stability showed the best performance under the SI dosage of 90 g/L. The addition of SI formed the anaerobic-anoxic-aerobic microenvironments, which facilitate the propagation of denitrifying bacteria (Saccharimonadales, Hydrogenophaga) and iron bacteria (Rhodoferax and Acinetobacter) in the BSIS. This study provides a new insight on the application of SI in the wastewater treatment.
Collapse
Affiliation(s)
- Hongjuan Zhu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xinjuan Chen
- Department of Architecture and Materials Technology, Xinjiang Industry Technical College, Urumqi 830021, China
| | - Hao Mu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kaiyao Hu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shuang Ren
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yuzhuo Peng
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruifeng Zhao
- Jiuquan Iron & Steel (Group) Co., Ltd, Jiayuguan 735100, China
| | - Yae Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
15
|
Zhu Y, Di Capua F, Li D, Li H. Enhancement and mechanisms of micron-pyrite driven autotrophic denitrification with different pretreatments for treating organic-limited waters. CHEMOSPHERE 2022; 308:136306. [PMID: 36067811 DOI: 10.1016/j.chemosphere.2022.136306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pyrite-driven autotrophic denitrification (PAD) represents a cheap and promising way for nitrogen removal from organic-limited wastewater, which has obtained increasing attention in recent years. However, the limited denitrification rate and unclear mechanism underlying the process have hindered the engineered application of PAD. This study aims to shed light on the impacts of different pretreatments (i.e., ultrasonication, acid-washing and calcination) on micron-pyrite surface characteristics, denitrification performance and biofilm formation during PAD in batch reactors. A series of solid-phase analyses revealed that all pretreatments could significantly promote biofilm attachment on pyrite granules, but impacted the proportion, distribution and chemical oxidation state of sulfur (S) and iron (Fe) at varying degrees. Batch tests showed that ultrasonication and acid-washing could enhance the total nitrogen reduction rate by 14% and 99%, and decrease the sulfate production rate by 51% and 42%, respectively, when compared with untreated pyrite. Microbial community analysis indicated that Thiobacillus and Rhodanobacter dominated in PAD systems. Two types of indirect mechanisms (i.e., contact and non-contact) for pyrite leaching may co-occur in PAD system, resulting in ferrous iron (Fe2+), thiosulfate (S2O32-) and sulfide (S2-) as the main electron donors for denitrification. A PAD mechanism model was proposed to describe the PAD electron transfer pathway with the aim to optimize the engineered application of PAD for nitrogen removal.
Collapse
Affiliation(s)
- Yingjie Zhu
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Francesco Di Capua
- Department of Civil Environmental Land Construction and Chemistry (DICATECh), Polytechnic University of Bari, 70125, Bari, Italy
| | - Duanxin Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Huaizheng Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
16
|
Liang Z, Han H, Yi J, Dai X. Modified integrated fixed-film activated sludge process: Advanced nitrogen removal for low-C/N domestic wastewater. CHEMOSPHERE 2022; 307:135827. [PMID: 35944692 DOI: 10.1016/j.chemosphere.2022.135827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/26/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Actual low-C/N domestic wastewater was treated using the high-concentration powder carrier bio-fluidized bed (HPB) process comparing diatomite and Fe-C as the carriers. The total nitrogen removal efficiencies were increased from 50.08% to 65.40% and 78.58%, respectively. The diatomite HPB process increased the relative abundance of autotrophic N-cycle bacteria to more than twofold and the sludge size. Therefore, the contributions for nitrogen removal by anammox and simultaneous nitrification-denitrification were increased. The Fe-C HPB process improved the nitrogen removal efficiency mainly by increasing the biodegradability and activities of electron transfer system and key enzymes. The key device (hydrocyclone separator) of the HPB process significantly improved the recovery efficiency of the carriers. It also improved the capacity of microbial aggregations for adsorbing pollutants. Furthermore, it reduced the relative abundance of filamentous bacteria. This study demonstrated the feasibility and mechanism of the HPB process for improving the nitrogen removal efficiency for low-C/N wastewater.
Collapse
Affiliation(s)
- Zixuan Liang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Hongbo Han
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Jing Yi
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Xiaohu Dai
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
17
|
Liu W, Li T, Wang J, Shen Y, Ji X, Yang D. A new concept of waste iron recycling for the enhancement of the anammox process. CHEMOSPHERE 2022; 307:136151. [PMID: 36028122 DOI: 10.1016/j.chemosphere.2022.136151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
As a by-product of industry, waste iron scraps (WIS) are low-cost and widely available, which was potential for the development of iron-assisted anammox. In this study, the feasibility of adding WIS to enhance the nitrogen removal of the anammox process (also called WIS-assisted anammox) was demonstrated. Results indicated that the WIS-assisted anammox reactors performed a 15-35% higher nitrogen removal efficiency than that of the control. Compared to the sludge from the control, the sludge from the WIS-assisted anammox reactors had a higher iron content (78-113 g kg-1 SS) and a better specific anammox activity (10.8-15.5 mg N g-1 VSS h-1). The enhanced growth of the anammox bacteria (related to Ca. Kuenenia stuttgartiensis with 99% similarity) in the WIS-assisted anammox reactors was also confirmed by high-throughput sequencing and qPCR. Furthermore, the functional genes predicted by PICRUSt2 revealed a higher level of hydroxylamine oxidoreductase (hao)-like proteins expression of the biomass from the WIS-assisted anammox reactors, implying that the hydroxylamine-related anammox pathway was promoted. Additionally, the observation of cytoplasmic nitrate reductase (narG), copper-containing nitrite reductase (nirK), and nitric oxide reductase (norB) suggested that the introduction of WIS might promote the denitrification ability. This was correlated to the lower ΔNO3-/ΔNH4+ ratio observed in these WIS-assisted anammox reactors. Overall, the WIS-assisted anammox offers a sustainable nitrogen removal process for wastewater treatment with waste iron recycling.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Tianhao Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianfang Wang
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
18
|
Pang S, Li N, Luo H, Luo X, Shen T, Yang Y, Jiang J. Autotrophic Fe-Driven Biological Nitrogen Removal Technologies for Sustainable Wastewater Treatment. Front Microbiol 2022; 13:895409. [PMID: 35572701 PMCID: PMC9100419 DOI: 10.3389/fmicb.2022.895409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fe-driven biological nitrogen removal (FeBNR) has become one of the main technologies in water pollution remediation due to its economy, safety and mild reaction conditions. This paper systematically summarizes abiotic and biotic reactions in the Fe and N cycles, including nitrate/nitrite-dependent anaerobic Fe(II) oxidation (NDAFO) and anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox). The biodiversity of iron-oxidizing microorganisms for nitrate/nitrite reduction and iron-reducing microorganisms for ammonium oxidation are reviewed. The effects of environmental factors, e.g., pH, redox potential, Fe species, extracellular electron shuttles and natural organic matter, on the FeBNR reaction rate are analyzed. Current application advances in natural and artificial wastewater treatment are introduced with some typical experimental and application cases. Autotrophic FeBNR can treat low-C/N wastewater and greatly benefit the sustainable development of environmentally friendly biotechnologies for advanced nitrogen control.
Collapse
Affiliation(s)
- Suyan Pang
- Key Laboratory of Songliao Aquatic Environment, School of Municipal and Environmental Engineering, Ministry of Education, Jilin Jianzhu University, Changchun, China
| | - Ning Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
- *Correspondence: Ning Li, ;
| | - Huan Luo
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Xiaonan Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Tong Shen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanan Yang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
19
|
Zhao Q, Peng Y, Li J, Gao R, Jia T, Deng L, Du R. Sustainable upgrading of biological municipal wastewater treatment based on anammox: From microbial understanding to engineering application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152468. [PMID: 34952066 DOI: 10.1016/j.scitotenv.2021.152468] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has drawn increasing attention as a promising option to energy-neutral wastewater treatment. While anammox process still faces challenges in the low-strength and organics-contained municipal wastewater due to its susceptibility and the technical gaps in substrate supply. Effective strategies for extensive implementation of anammox in municipal wastewater treatment plants (WWTPs) remain poorly summarized. In view of the significance and necessity of introducing anammox into mainstream treatment, the growing understanding not only at level of microbial interactions but also on view of upgrading municipal WWTPs with anammox-based processes need to be considered urgently. In this review, the critical view and comprehensive analysis were offered from the perspective of microbial interactions within partial nitrification- and partial denitrification-based anammox processes. To minimize the microbial competition and enhance the cooperation among anammox bacteria and other functional bacteria, targeted control strategies were systematically evaluated. Based on the comprehensive overview of recent advances, the combination of flexible regulation of input organic carbon with anaerobic/oxic/anoxic process and the integration of sludge fermentation with anoxic biofilms in anaerobic/anoxic/oxic process were proposed as promising solutions to upgrade municipal WWTPs with anammox technology. Furthermore, a new perspective of coupling anammox with denitrifying dephosphatation was proposed as a promising method for in-depth nutrients removal from carbon-limit municipal wastewater in this study. This review provides the critical and comprehensive viewpoints on anammox engineering in municipal wastewater and paves the way for the anammox-based upgrading of municipal WWTPs.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
20
|
Huang Y, Zhang H, Liu X, Ma B, Huang T. Iron-Activated Carbon Systems to Enhance Aboriginal Aerobic Denitrifying Bacterial Consortium for Improved Treatment of Micro-Polluted Reservoir Water: Performances, Mechanisms, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3407-3418. [PMID: 35239323 DOI: 10.1021/acs.est.1c05254] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although many source waterbodies face nitrogen pollution problems, the lack of organic electron donors causes difficulties when aerobic denitrifying bacteria are used to treat micro-polluted water. Different forms of iron with granular activated carbon (AC) as carriers were used to stimulate aboriginal microorganisms for the purification of micro-polluted source water. Compared with the iron-absent AC system, targeted pollutants were significantly removed (75.76% for nitrate nitrogen, 95.90% for total phosphorus, and 80.59% for chemical oxygen demand) in the sponge-iron-modified AC system, which indicated that iron promoted the physical and chemical removal of pollutants. In addition, high-throughput sequencing showed that bacterial distribution and interaction were changed by ion dosage, which was beneficial for pollutant transformation and reduction. Microbial functions, such as pollutant removal and expression of functional enzymes that were responsible for the transformation of nitrate nitrogen to ammonia, were highly efficient in iron-applied systems. This study provides an innovative strategy to strengthen in situ remediation of micro-pollution in waterbodies.
Collapse
Affiliation(s)
- Yuwei Huang
- Xi'an Weiyuan Environmental Protection and Technology Co., Ltd., Xi'an 710054, China
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
21
|
Zhou Y, Li X. Effect of addition sites on bioaugmentation of tea polyphenols-NZVI/PE composite packing: Nitrogen removal efficiency and service life. CHEMOSPHERE 2022; 290:133258. [PMID: 34914945 DOI: 10.1016/j.chemosphere.2021.133258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Although efficient improvement of the nitrogen removal from wastewater by adding iron was achieved in wastewater process, the influence mechanism of addition sites is unclear. The study was based on the A/O-MBR treating simulated domestic wastewater, and tea polyphenol-nano zero-valent iron/polyethylene packing (TP-NZVI/PE) was added into the anoxic tank, aerobic tank and membrane effluent end of the process, respectively. The effect of the different addition sites on the nitrogen removal performance of A/O-MBR was investigated. Combine with the corrosion rate of NZVI on the packing surface to optimize TP-NZVI/PE addition site. The enhancement mechanism of TP-NZVI/PE under different addition site was explored through the calculation of the materials balance (carbon, nitrogen, phosphorus). The results showed that the pollutant removal of A/O-MBR was significantly increased with the TP-NZVI/PE added. In particular, the TP-NZVI/PE was added into the aerobic tank, and the pollutant removal rate was increased 31.71% (TN) and 53.00% (total phosphorus), respectively. Meanwhile, the service life of TP-NZVI/PE in the aerobic tank was 66 days. The anti-oxidation and dispersion of NZVI was improved with the encapsulation of tea polyphenols and support of packing, and it also played a certain slow-release effect, so that the service life of NZVI was further prolonged in aerobic condition. Combined with the material balance analysis, the result showed that the environmental structure made diversity in the aerobic tank by added the TP-NZVI/PE, and the simultaneous nitrification and denitrification process was achieved. The dependence of the denitrification process on the carbon source was greatly reduced. Besides, it promoted the adsorption and chemical precipitation process of the system for phosphor pollutant and achieved the denitrifying phosphorus removal performance.
Collapse
Affiliation(s)
- Yu Zhou
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China.
| |
Collapse
|
22
|
Shi Y, Liu T, Yu H, Quan X. Enhancing anoxic denitrification of low C/N ratio wastewater with novel ZVI composite carriers. J Environ Sci (China) 2022; 112:180-191. [PMID: 34955202 DOI: 10.1016/j.jes.2021.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 06/14/2023]
Abstract
External organic carbon sources are needed to provide electron donors for the denitrification of wastewater with a low COD/NO3--N (C/N) ratio, increasing the treatment cost. The economic strategy is to enhance the bioactivity and/or biodiversity of denitrifiers to efficiently utilize organic substances in wastewater. In this study, novel zero-valent iron (ZVI) composite carriers were prepared and implemented in a suspended carrier biofilm reactor to enhance the bioactivity and/or biodiversity of denitrifiers. At the influent C/N ratio of 4 (COD was 179.5 ± 5.0 mg/L and TN was 44.2 ± 0.8 mg/L), COD and TN removal efficiencies were 85.1% and 66.4%, respectively, in the reactors filled with 3 wt% ZVI composite carriers. In contrast, COD and TN removal efficiencies were 70.4% and 55.3%, respectively, in the reactor filled with conventional high-density polyethylene (HDPE) biofilm carriers. The biofilm formation on the 3 wt% ZVI composite carriers was optimized due to its higher roughness (surface square roughness increased from 76.0 nm to 93.8 nm) and favorable hydrophilicity (water contact angle dropped to 72.5° ± 1.4° from 94.3° ± 3.2°) compared with the HDPE biofilm carriers. In addition, heterotrophic denitrifiers, Thauera and Dechloromonas, were enriched, whereas autotrophic denitrifiers, Raoultella and Thiobacillus, exhibited high relative abundance in the biofilm of ZVI composite carriers. The coexistence of heterotrophic denitrifiers and autotrophic denitrifiers on the surface of ZVI composite carriers provided mixotrophic metabolism of denitrification (including heterotrophic and iron-based autotrophic), thereby ensuring effective denitrification for wastewater with a low C/N ratio without external organic carbon source addition.
Collapse
Affiliation(s)
- Yanping Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University ofTechnology, Dalian 116024, China
| | - Tao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University ofTechnology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University ofTechnology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University ofTechnology, Dalian 116024, China.
| |
Collapse
|
23
|
Zhang Y, Li Y, Wang J, Wang X, Liu Y, Wang S, Kong F. Interactions of chlorpyrifos degradation and Cd removal in iron-carbon-based constructed wetlands for treating synthetic farmland wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113559. [PMID: 34438309 DOI: 10.1016/j.jenvman.2021.113559] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Pesticide and heavy metal contaminants, such as chlorpyrifos (CP) and cadmium (Cd) in farmland drainage had caused the water pollution and attracted extensive concerns around the world. The incorporation of zeolite-based iron-carbon (ZB-IC) into constructed wetlands (CWs) was prepared to simultaneously remove chlorpyrifos (CP) and cadmium (Cd) in farmland drainage, and the interaction of CP degradation and Cd removal was investigated. Laboratory simulated experiments were carried out in this study, and the results presented that the removal efficiencies of CP and Cd by ZB-IC coupled CWs (ZB-IC-CW) were 99.55% and 98.59%, respectively, which were much higher than that of the zeolite-based (ZB) CWs (CP = 92.99%; Cd = 63.54%). The removal mechanism of CP and Cd by ZB-IC substrate was mainly attributed to electron transfer, which occurred from iron corrosion and hydrogen generation process. In addition, CP could act as carbon source to promote denitrification process. Microbial analysis revealed that the relative abundances of CP-resistant bacteria (Firmicutes, Clostridia and Acetobacterium), Cd-resistant bacteria (Bacteroidetes) and denitrifying bacteria (Proteobacteria and Patescibacteria) were dramatically increased due to the addition of ZB-IC. The higher czcA gene and opd gene in ZB-IC-CW demonstrated that the addition of CP played a positive role in Cd removal, while Cd showed slightly affect to CP removal.
Collapse
Affiliation(s)
- Yu Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Junru Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Yonglin Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China.
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Xu L, Ali A, Su J, Huang T, Wang Z, Yang Y. Denitrification potential of sodium alginate gel beads immobilized iron-carbon, Zoogloea sp. L2, and riboflavin: Performance optimization and mechanism. BIORESOURCE TECHNOLOGY 2021; 336:125326. [PMID: 34052544 DOI: 10.1016/j.biortech.2021.125326] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
A kind of gel beads loaded with iron-carbon powder (Fe-C), Zoogloea sp. L2, and riboflavin (VB2) were prepared through cross-linking of sodium alginate (SA) to establish an immobilized bioreactor. The optimal ratio of SA beads was adjusted by orthogonal experiment. The change of oxidation-reduction potential (ORP) and the concentration of Fe2+ and Fe3+ showed that the addition of VB2 as a redox mediator can promote denitrification. Under the optimal conditions (carbon to nitrogen (C/N) ratio = 2.0, pH = 7.0, and hydraulic retention time (HRT) = 8 h), the nitrate removal efficiency (NRE) of bioreactor reached 98.48% (1.99 mg L-1h-1). Furthermore, Fourier transform infrared spectrometer (FTIR), Fluorescence excitation-emission matrix (EEM), X-ray diffraction (XRD), and gas chromatography (GC) analysis revealed that the immobilization and denitrification of the immobilized bioreactor were excellent. High throughput sequencing also showed that Zoogloea played a vital role in nitrate removal.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tingling Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
25
|
Li X, Jia Y, Qin Y, Zhou M, Sun J. Iron-carbon microelectrolysis for wastewater remediation: Preparation, performance and interaction mechanisms. CHEMOSPHERE 2021; 278:130483. [PMID: 34126692 DOI: 10.1016/j.chemosphere.2021.130483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Rapid industrialization and urbanization have produced a lot of hazardous substances in water and wastewater, which has turned into a crucial issue to the environment and the public health. Recently, iron carbon microelectrolysis (IC-ME) has attracted extensive attention in environmental remediation due to its low costs and excellent performance. Nevertheless, there is still a lack of a more systematic review on IC-ME preparation methods, their performance, and the interaction mechanisms of IC-ME in the remediation of wastewater. Herein, this work summarizes the synthetic methods, application of IC-ME materials, and the mechanism of pollutant removal by IC-ME. A variety approaches have been applied to prepare IC-ME materials, and the preparation methods and conditions have a certain influence on the properties of IC-ME materials, thus affecting the performance of pollutant removal. The mechanisms of IC-ME for contaminants removal are very complex, including adsorption, coprecipitation, reduction, surface complexation, and oxidation. Moreover, research vacant fields and problems that existed in the application of IC-ME are proposed. At last, the problems to be addressed to adapt IC to future applications are introduced. This paper reviews and prospects IC-ME wastewater remediation technology, which provides a reference for further scientific research and engineering applications.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Yan Jia
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yang Qin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environ. Technol. for Complex Trans-Media Pollution, Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
26
|
Han X, Qu Y, Dong Y, Chen D, Liang D, Liu J, Zhang J, Ren N, Feng Y. Simultaneous electricity generation and eutrophic water treatment utilizing iron coagulation cell with nitrification and denitrification biocathodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146436. [PMID: 33838382 DOI: 10.1016/j.scitotenv.2021.146436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic nutrients released into water induce eutrophication and threaten aquatic life and human health. In this study, an Fe anode coagulation cell with nitrification and denitrification biocathodes was constructed for power generation and algae and nutrient removal. The nitrification and denitrification biocathodes achieved maximum power densities of 6.0 and 6.6 W/m3, respectively. The algae (99.2 ± 0.5%), phosphate (97.4 ± 0.6%), and ammonia (23.1 ± 0.2%) were removed by a spontaneous electrocoagulation process in the anode chamber. In the nitrification biocathode chamber, 95.3 ± 1.4% of the ammonia was oxidized within 6 h, and 88.2 ± 2.5% of the nitrate was removed in 10 h in the denitrification biocathode chamber. The microbial community analysis revealed that ammonia removal was attributed to nitrifying bacteria, including Acinetobacter sp., Phycisphaera sp., and Nitrosomonas sp., and the dominant denitrifying bacteria in the denitrifying biocathode chamber were Planococcus sp., Exiguobacterium sp., and Lysinibacillus sp. In this study, the combination of Fe anodes and biocathodes is shown to afford an efficient method for the simultaneous algae and nutrient removal and power generation.
Collapse
Affiliation(s)
- Xiaoyu Han
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Youpeng Qu
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin 150080, China.
| | - Yue Dong
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Dahong Chen
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - DanDan Liang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Junfeng Liu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jie Zhang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Nanqi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
27
|
Wang P, He Y, Ding J, Wang W, Sheng H, Wei Z, Huang M, Zhang H. Feasibility of iron scraps for enhancing nitrification of domestic wastewater at low temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26819-26827. [PMID: 33496954 DOI: 10.1007/s11356-021-12607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The development of an effective approach to improve low-temperature nitrification of domestic wastewater remains an important issue that needs to be urgently addressed. This study was intended to verify the feasibility of using iron scraps as an effective immobilization material to enhance nitrification activity in domestic wastewater-treatment systems at low temperatures. Iron scraps were tried and compared with one common immobilization material (PVA-SA embedded balls) in terms of low-temperature nitrification performances, anti-shock capacity, dynamics of microbial community, and economic costs. The results showed that compared with control, the average nitrification efficiency of iron scraps and PVA-SA embedded balls increased separately by 15.7% and 27.6% at low temperatures. Among these groups, the iron scrap-based group demonstrated the best anti-shock capacity and the smallest fluctuation (lower than 10%) with the shortening of HRT (hydraulic retention time) or the increase of inlet ammonium level. Nitrosomonas was found to be the dominant bacterial genera for these two immobilization materials. The increased costs of iron scraps and PVA-SA embedded balls were about ¥0.03 and ¥0.78 per ton of treated domestic wastewater. Taken together, iron scraps have some significant advantages including low costs, easy availability, and good anti-shock capacity, which make them a promising candidate for enhanced nitrification of domestic wastewater at low temperatures.
Collapse
Affiliation(s)
- Pengcheng Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yan He
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| | - Jiaqi Ding
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wenhao Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Hao Sheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zheng Wei
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Houqiang Zhang
- Shanghai Chengtou Wastewater Treatment Co. Ltd., Shanghai, 201203, China
| |
Collapse
|
28
|
Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J. Improvement of Alcaligenes sp.TB performance by Fe-Pd/multi-walled carbon nanotubes: Enriched denitrification pathways and accelerated electron transport. BIORESOURCE TECHNOLOGY 2021; 327:124785. [PMID: 33582520 DOI: 10.1016/j.biortech.2021.124785] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Aiming at the accumulation of NO2--N and N2O during denitrification process, this work focused to improve the denitrification performance by Pd-Fe embedded multi-walled carbon nanotubes (MWCNTs). The main conclusions were as follows: 30 mg/L Pd-Fe/MWCNTs have shown an excellent promotion on denitrification (completely TN removal at 36 h). Meanwhile, enzyme activity results indicated that the generation of NO2--N, NH4+-N by Pd-Fe/MWCNTs led the occur of short-cut denitrification by increasing 203.9% the nitrite reductase activity. Furthermore, electrochemical results and index correlation analysis confirmed that the electron exchange capacity (1.401 mmol eg-1) of Pd-Fe/MWCNTs was positively related to nitrite reductase activity, indicating its crucial role in electron transport activity (0.46 μg O2/(protein·min) at 24 h) during denitrification process by Pd-Fe/MWCNTs played a role of chemical reductant and redox mediator.
Collapse
Affiliation(s)
- Zeyu Wang
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Tianjiao Guo
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| |
Collapse
|
29
|
Guo H, Han S, Lee DJ. Genomic studies on natural and engineered aquatic denitrifying eco-systems: A research update. BIORESOURCE TECHNOLOGY 2021; 326:124740. [PMID: 33497924 DOI: 10.1016/j.biortech.2021.124740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Excess nitrogenous compounds in municipal or industrial wastewaters can stimulate growth of denitrifying bacteria, in return, to convert potentially hazardous nitrate to inorganic nitrogen gas. To explore the community structure, distributions and succession of functional strains, and their interactions with other microbial communities, contemporary studies were performed based on detailed genomic analysis. This mini-review updated contemporary genomic studies on denitrifying genes in natural and engineered aquatic systems, with the constructed wetlands being the demonstrative system for the latter. Prospects for the employment of genomic studies on denitrifying systems for process design, optimization and development of novel denitrifying processes were discussed.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Song Han
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan; College of Engineering, Tunghai University, Taichung 40070, Taiwan.
| |
Collapse
|