1
|
Cheng Z, Wang J, Liu X, Cao S. Accelerated sludge granulation of novel complete ammonium and nitrate removal via denitratation anammox over nitrite process at elevated loading rates. BIORESOURCE TECHNOLOGY 2025; 431:132610. [PMID: 40315933 DOI: 10.1016/j.biortech.2025.132610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The Complete Ammonium and Nitrate Removal via Denitratation Anammox Over Nitrite (CANDAN) process was evaluated for rapid sludge granulation in a lab-scale sequencing batch reactor. Over 119 days under increasing nitrogen loading rates (NLRs), the system finally achieved average 89.2 % total nitrogen removal at 1.93 kg N/m3/d NLR, with sludge particle sizes increasing from 215.6 μm to 924.5 μm. Higher NLRs significantly increased extracellular polymeric substances, especially hydrophobic proteins, enhancing sludge hydrophobicity and aggregation. Metagenomic analysis identified Candidatus Brocadia and Thauera as predominant and key microbial genera for nitrogen removal. Furthermore, the upregulation of carbon metabolism under heightened NLRs facilitated the synthesis of hydrophobic amino acids, promoting sludge granulation. These findings demonstrate NLR-driven granulation mechanisms, highlight optimizing NLR as key for accelerating granulation, providing insights to improve start-up and operational efficiency of CANDAN systems.
Collapse
Affiliation(s)
- Ziyi Cheng
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China
| | - Jinyan Wang
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China
| | - Xinping Liu
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, China.
| |
Collapse
|
2
|
Liu J, Liu Y, Zhang Z, Deng Y, Chen G. Characterisation of polysaccharide from anammox granular sludge and potential application in hydrogel preparation. WATER RESEARCH 2025; 282:123710. [PMID: 40345129 DOI: 10.1016/j.watres.2025.123710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Microorganisms capable of anaerobic ammonia oxidation (anammox), or the conversion of nitrite and ammonium to dinitrogen, tend to aggregate and form a granular sludge in anammox reactors. This anammox granular sludge is a potential source of polysaccharides due to its richly diverse microbial community and abundant polymers. In this study, anammox polysaccharide (APS) was extracted from anammox granular sludge, and its potential to form hydrogels with alginate was investigated. The yield of APS was 9.91 % ± 0.12 %. The three main monosaccharides in APS were glucose (60.63 % ± 3.45 %), glucuronic acid (13.81 % ± 0.31 %), and rhamnose (18.88 % ± 0.22 %). The antioxidant potential of APS was evaluated through three antioxidant assays, which revealed significant antioxidant benefits at APS concentrations between 100 and 500 mg/L. Furthermore, L929 mouse fibroblasts exhibited high survival rates (>85 %) under different APS concentrations (1-50 μg/mL), indicating the good biological compatibility of APS. A series of hydrogels were prepared by mixing alginate with APS in different ratios (10:0, 9:1, 8:2, 7:3, and 6:4). The swelling ability of the prepared hydrogels in simulated gastric fluid varied between 1.4 and 2.0. In contrast, the swelling ability increased significantly to 10.37 ± 0.01 in simulated intestinal fluid when the ratio of alginate to APS in the hydrogel was 8:2. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were also used to analyse the functional groups and specific chemical bonds in the hydrogels. Subsequent loading experiments using bovine serum albumin (BSA) demonstrated that an alginate:APS ratio of 8:2 exhibited the highest loading efficiency for BSA, reaching 80.59 % ± 1.46 %. As the quantity of APS was increased, the release of BSA into simulated gastric fluid was effectively inhibited, with an alginate:APS ratio of 6:4 resulting in the lowest release amount (0.023 % in dry state, 0.11 % in wet state). Overall, this study highlights the derivation of a valuable resource from anammox sludge and offers insights into its potential applications in drug delivery.
Collapse
Affiliation(s)
- Jie Liu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yang Liu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zi Zhang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Wastewater Treatment Laboratory, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangzhou, China.
| |
Collapse
|
3
|
Xu H, Wang X, Wang M, Wu J, Zhang B, Wang J, Zhang Q, Lin B, Chen S. Metatranscriptomics provides an in-depth perspective on the resistance and detoxification of anammox bacteria to dissolved oxygen in a pilot CANON process. WATER RESEARCH 2024; 268:122613. [PMID: 39413713 DOI: 10.1016/j.watres.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
In the completely autotrophic nitrogen removal over nitrite (CANON) process, the conflicting oxygen requirements of anammox and ammonium-oxidizing bacteria often lead to retardation in anammox activity. However, our study achieved stable nitrogen removal with a maximum capacity of 1096 g-N/m3/d in a 20 m3 CANON reactor under long-term intensive aeration. The anammox bacteria unusually distributed in the outer layer of the biofilm and demonstrated remarkable oxygen tolerance. Their activity only declined by 18.5 % under 2.0 mg/L of dissolved oxygen. When anammox bacteria encountered oxygen exposure, they adopted some strategies. Metatranscriptomics revealed that Candidatus Kuenenia, the dominant anammox species in our system, downregulated its gene expressions involved in carbon metabolism and oxidative phosphorylation. This may reduce electron leakage that combines with O2, thereby minimizing the generation of reactive oxygen species (ROS). By contrast, the secretion of extracellular proteins and conversion of O2·- were upregulated to eliminate ROS promptly. This behavior endowed Ca. Kuenenia with a unique oxygen detoxification pathway: O2·- were initially converted to H2O2 by superoxide dismutase SOD2 and superoxide reductase dfx (major role), followed by reduction to H2O via non-heme chloroperoxidase cpo (a newly recognized mechanism in the oxygen detoxification of anammox) and catalase katE. These results expanded the current knowledge of anammox alleviating oxidative stress.
Collapse
Affiliation(s)
- Huaihao Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Mingyuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Junbin Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Bo Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinsong Wang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands
| | - Qiuting Zhang
- Longyan Water Environment Development Co. Ltd., Longyan 364000, PR China
| | - Bingrong Lin
- Longyan Water Environment Development Co. Ltd., Longyan 364000, PR China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
4
|
Lin L, Song Y, Zhang Y, Luo Z, Li Q, Cao W, Li YY. Enhanced sludge granulation and stable performance of an anammox expanded granular sludge bed (EGSB) reactor through the utilization of hydroxyapatite (HAP) particles. BIORESOURCE TECHNOLOGY 2024; 406:131091. [PMID: 38986883 DOI: 10.1016/j.biortech.2024.131091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The reuse of hydroxyapatite particles (HAPs) as a granulation activator for anammox sludge was explored to address the remaining issues of time-consuming and unstable granular structure in anammox granulation. During the granulation, nitrogen removal capacity from 2.8 to 13.7 gN/L/d was obtained within 193 days, accompanied by an enhancement in bio-activity from 0.23 to 0.52 gN/gVSS/d. HAPs and anammox microorganisms coupled well to aggregate into granules for denser biomass, higher settleability, and stronger mechanical properties, which effectively improved the biomass retention capacity and structural strength of the sludge system. A skeleton structure formed by the HAPs was characterized during the transformation of the granules, playing a crucial role in strengthening the stability of the sludge. The intermediate processes of granulation were thus clarified to propose an evolutionary pathway for anammox-HAP granules. The pre-addition of HAPs is conducive to achieving faster anammox granulation and rapid process start-up for high-strength wastewater treatment.
Collapse
Affiliation(s)
- Lan Lin
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ying Song
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yanlong Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zibin Luo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qian Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenzhi Cao
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
5
|
Mao Y, Hu Z, Li H, Zheng H, Yang S, Yu W, Tang B, Yang H, He R, Guo W, Ye K, Yang A, Zhang S. Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123863. [PMID: 38565391 DOI: 10.1016/j.envpol.2024.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Microplastics (MPs) are emerging contaminants that are widely detected in drinking water and pose a potential risk to humans. Therefore, the MP removal from drinking water is a critical challenge. Recent studies have shown that MPs can be removed by coagulation. However, the coagulation removal of MPs from drinking water remains inadequately understood. Herein, the efficiency, mechanisms, and influencing factors of coagulation for removing MPs from drinking water are critically reviewed. First, the efficiency of MP removal by coagulation in drinking water treatment plants (DWTPs) and laboratories was comprehensively summarized, which indicated that coagulation plays an important role in MP removal from drinking water. The difference in removal effectiveness between the DWTPs and laboratory was mainly due to variations in treatment conditions and limitations of the detection techniques. Several dominant coagulation mechanisms for removing MPs and their research methods are thoroughly discussed. Charge neutralization is more relevant for small-sized MPs, whereas large-sized MPs are more dependent on adsorption bridging and sweeping. Furthermore, the factors influencing the efficiency of MP removal were jointly analyzed using meta-analysis and a random forest model. The meta-analysis was used to quantify the individual effects of each factor on coagulation removal efficiency by performing subgroup analysis. The random forest model quantified the relative importance of the influencing factors on removal efficiency, the results of which were ordered as follows: MPs shape > Coagulant type > Coagulant dosage > MPs concentration > MPs size > MPs type > pH. Finally, knowledge gaps and potential future directions are proposed. This review assists in the understanding of the coagulation removal of MPs, and provides novel insight into the challenges posed by MPs in drinking water.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China; Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zuoyuan Hu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huaili Zheng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Bingran Tang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hao Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Wenshu Guo
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Aoguang Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shixin Zhang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
6
|
Lin L, Zhang Y, Li YY. Enhancing start-up strategies for anammox granular sludge systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166398. [PMID: 37604370 DOI: 10.1016/j.scitotenv.2023.166398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been developed as one of the optimal alternatives to the conventional biological nitrogen removal process because of its high nitrogen removal capacity and low energy consumption. However, the slow growth rate of anammox bacteria and its high sensitivity to environmental changes have resulted in fewer anammox sludge sources for process start-up and a lengthy start-up period. Given that anammox microorganisms tend to aggregate, granular-anammox sludge is a frequent byproduct of the anammox process. In this study, we review state-of-the-art strategies for promoting the formation of anammox granules and the start-up of the anammox process based on the literature of the past decade. These strategies are categorized as the transformation of alternative sludge, the addition of accelerators, the introduction of functional carriers, and the implementation of other physical methods. In addition, the formation mechanism of anammox granules, the operational performance of various strategies, and their promotion mechanisms are introduced. Finally, prospects are presented to indicate the gaps in contemporary research and the potential future research directions. This review functions as a summary guideline and theoretical reference for the cultivation of granular-anammox sludge, the start-up of the anammox process, and its practical application.
Collapse
Affiliation(s)
- Lan Lin
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
7
|
Feng K, Lou Y, Li Y, Lu B, Fang A, Xie G, Chen C, Xing D. Conductive carrier promotes synchronous biofilm formation and granulation of anammox bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130754. [PMID: 36638675 DOI: 10.1016/j.jhazmat.2023.130754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The extracellular electron transfer capability of some anaerobic ammonium oxidation (anammox) bacteria was confirmed in recent years. However, the effect of conductive carriers on the synchronous formation of anammox biofilm and granules is rarely reported. Anammox biofilm and granules with compact and stable structures accelerate the initiation and enhance the stability of the anammox process. In this study, we found that the conductive carbon fiber brush (CB) carrier promoted synchronous biofilm formation and granulation of anammox bacteria in the internal circulation immobilized blanket (ICIB) reactor. Compared with polyurethane sponge and zeolite carrier, the ICIB reactor packed with CB carrier can be operated under the highest total nitrogen loading rate of 6.53 kg-N/(m3·d) and maintain the effluents NH4+-N and NO2--N at less than 1 mM. The volatile suspended solids concentration in the ICIB reactor packed with conductive carrier increased from 5.17 ± 0.40 g/L of inoculum sludge to 24.24 ± 1.20 g/L of biofilm, and the average particle size of granules increased from 222.09 µm to 879.80 µm in 150 days. Fluorescence in situ hybridization analysis showed that anammox bacteria prevailed in the biofilm and granules. The analysis of extracellular polymeric substances indicated that protein and humic acid-like substances played an important role in the formation of anammox biofilm and granules. Microbiome analysis showed that the relative abundance of Candidatus Jettenia was increased from 0.18% to 38.15% in the biofilm from CB carrier during start-up stage. This study provides a strategy for rapid anammox biofilm and granules enrichment and carrier selection of anammox process.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yitian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anran Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Li H, Cai T, Gao Y, Dai Q, Liu X, Chen X, Lu X, Zhen G. Long-term performance, microbial evolution and spatial microstructural characteristics of anammox granules in an upflow blanket filter (UBF) treating high-strength nitrogen wastewater. BIORESOURCE TECHNOLOGY 2023; 367:128206. [PMID: 36323371 DOI: 10.1016/j.biortech.2022.128206] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Granule formation, microstructure and microbial spatial distribution are crucial to granule stability and nitrogen removal. Here, an upflow blanket filter (UBF) reactor with porous fixed cylinder carriers was fabricated and operated for 234 days to investigate overall performance and the formation mechanism of anammox granules. Results showed that the UBF performed the highest nitrogen removal efficiency of 93.19 ± 3.39% under nitrogen loading rate of 3.6 kg-N/m3/d and HRT of 2 h. The tryptophan-like proteins as the key component in EPS were vital for granules formation. Further 16 s rRNA analysis indicated that SBR1031 with a relative abundance of 40.5% played an important role in cell aggregation. Thus, anammox granules were developed successfully with a two-layered spatial structure where outer-layer was ammonia oxidizing bacteria and inner-core was anaerobic ammonia oxidizing bacteria. Together, introduction of porous fixed cylinder carriers is a valid method to avoid biomass loss and floatation.
Collapse
Affiliation(s)
- Huan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Qicai Dai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xinyu Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xue Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N Zhongshan Rd, Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
9
|
Al-Hazmi HE, Hassan GK, Maktabifard M, Grubba D, Majtacz J, Mąkinia J. Integrating conventional nitrogen removal with anammox in wastewater treatment systems: Microbial metabolism, sustainability and challenges. ENVIRONMENTAL RESEARCH 2022; 215:114432. [PMID: 36167115 DOI: 10.1016/j.envres.2022.114432] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The various forms of nitrogen (N), including ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-), present in wastewaters can create critical biotic stress and can lead to hazardous phenomena that cause imbalances in biological diversity. Thus, biological nitrogen removal (BNR) from wastewaters is considered to be imperatively urgent. Therefore, anammox-based systems, i.e. partial nitrification and anaerobic ammonium oxidation (PN/anammox) and partial denitrification and anammox (PD/anammox) have been universally acknowledged to consider as alternatives, promising and cost-effective technologies for sustainable N removal from wastewaters compared to nitrification-denitrification processes. This review comprehensively presents and discusses the latest advances in BNR technologies, including traditional nitrification-denitrification and anammox-based systems. To a deep understanding of a better-controlled combining anammox with traditional processes, the microbial community diversity and metabolism, as well as, biomass morphological characteristics were clearly reviewed in the anammox-based systems. Explaining simultaneous microbial competition and control of crucial operation parameters in single-stage anammox-based processes in terms of optimization and economic benefits makes this contribution a different vision from available review papers. The most important sustainability indicators, including global warming potential (GWP), carbon footprint (CF) and energy behaviours were explored to evaluate the sustainability of BNR processes in wastewater treatment. Additionally, the challenges and solutions for BNR processes are extensively discussed. In summary, this review helps facilitate a critical understanding of N removal technologies. It is confirmed that sustainability and saving energy would be achieved by anammox-based systems, thereby could be encouraged future outcomes for a sustainable N removal economy.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt
| | - Mojtaba Maktabifard
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
10
|
Podmirseg SM, Gómez-Brandón M, Muik M, Stres B, Hell M, Pümpel T, Murthy S, Chandran K, Park H, Insam H, Wett B. Microbial response on the first full-scale DEMON® biomass transfer for mainstream deammonification. WATER RESEARCH 2022; 218:118517. [PMID: 35512538 DOI: 10.1016/j.watres.2022.118517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Sidestream partial nitritation and deammonification (pN/A) of high-strength ammonia wastewater is a well-established technology. Its expansion to the mainstream is, however mainly impeded by poor retention of anaerobic ammonia oxidizing bacteria (AnAOB), insufficient repression of nitrite oxidizing bacteria (NOB) and difficult control of soluble chemical oxygen demand and nitrite levels. At the municipal wastewater treatment plant in Strass (Austria) the microbial consortium was exhaustively monitored at full-scale over one and a half year with regular transfer of sidestream DEMON® biomass and further retention and enrichment of granular anammox biomass via hydrocyclone operation. Routine process parameters were surveyed and the response and evolution of the microbiota was followed by molecular tools, ex-situ activity tests and further, AnAOB quantification through particle tracking and heme measurement. After eight months of operation, the first anaerobic, simultaneous depletion of ammonia and nitrite was observed ex-situ, together with a direction to higher nitrite generation (68% of total NOx-N) as compared to nitrate under aerobic conditions. Our dissolved oxygen (DO) scheme allowed for transient anoxic conditions and had a strong influence on nitrite levels and the NOB community, where Nitrobacter eventually dominated Nitrospira. The establishment of a minor but stable AnAOB biomass was accompanied by the rise of Chloroflexi and distinct emergence of Chlorobi, a trend not seen in the sidestream system. Interestingly, the most pronounced switch in the microbial community and noticeable NOB repression occurred during unfavorable conditions, i.e. the cold winter season and high organic load. Further abatement of NOB was achieved through bioaugmentation of aerobic ammonia oxidizing bacteria (AerAOB) from the sidestream-DEMON® tank. Performance of the sidestream pN/A was not impaired by this operational scheme and the average volumetric nitrogen removal rate of the mainstream even doubled in the second half of the monitoring campaign. We conclude that a combination of both, regular sidestream-DEMON® biomass transfer and granular SRT increase via hydrocyclone operation was crucial for AnAOB establishment within the mainstream.
Collapse
Affiliation(s)
- Sabine Marie Podmirseg
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; alpS GmbH, Grabenweg 68, 6020 Innsbruck, Austria.
| | - María Gómez-Brandón
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria; alpS GmbH, Grabenweg 68, 6020 Innsbruck, Austria; Grupo Ecoloxía Animal (GEA), Centro di Investigación Mariña (CIM), Universidade de Vigo, E-36310, Spain
| | - Markus Muik
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria.
| | - Blaz Stres
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Geodetic and Civil Engineering, Jamova 2, 1000 Ljubljana, Slovenia
| | - Martin Hell
- Achental-Inntal-Zillertal Water Board, Hausnummer 150, 6261 Strass i.Z., Austria.
| | - Thomas Pümpel
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria.
| | | | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, NY 10027, United States.
| | - Hongkeun Park
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, NY 10027, United States.
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria.
| | - Bernhard Wett
- ARAconsult GmbH, Unterbergerstraße 1, 6020 Innsbruck, Austria.
| |
Collapse
|
11
|
Yang D, Jiang C, Xu S, Gu L, Wang D, Zuo J, Wang H, Zhang S, Wang D, Zhang H, Zhuang X. Insight into nitrogen removal performance of anaerobic ammonia oxidation in two reactors: Comparison based on the aspects of extracellular polymeric substances and microbial community. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Characteristics of Chromophoric Dissolved Organic Matter (CDOM) Produced by Heterotrophic Bacteria Isolated from Aquaculture Systems. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heterotrophic bacteria (HB) play an important role in aquatic ecosystems as recyclers of dissolved organic matter (DOM). The objective of this study was to characterize the spectral characteristics of intracellular (IC), and extracellular (EC) compounds produced by 12 HB isolated from two aquaculture systems. Microorganisms belonging to the genera Bacillus, Paenibacillus, and Psychrobacillus were identified by analysis of the 16S ribosomal gene. Aliquots of bacterial culture were centrifugated every hour (1st to 7th) to obtain the EC compounds. The pellet was ultrasound-lysed to obtain the IC compounds. Excitation-emission matrices were used in combination with parallel factor analysis (PARAFAC) to characterize the fluorescent components of DOM (FDOM). PARAFAC indicated two protein-like components and two humic-like components in both cell spaces. At the IC, B. macquariensis showed a high fluorescence index (FI), probably associated with fulvic acid, quinones, or ketones. Psychrobacillus insolitus showed an inverse correlation between spectral slopes S275–295 and S350–400 in the EC and IC fractions, which may indicate differential release of low and high molecular weight molecules in these two fractions. The opposite occurred with B. licheniformis and P. alvei. The origin of FDOM in HB is an important finding of this work. The most significant amount of protein-like substances was produced at the IC level, with the humic- and fulvic-type at the EC. The main finding of this work is the evidence of differential production of humic-type or protein-type FDOM production by HB species from marine and freshwater aquaculture systems in their intracellular and extracellular fractions, as well different relative molecular weight. For aquaculture, these findings suggest that some bacterial species show promise in supplying essential amino acids to growing organisms, and others play a major role in nutrient exchange and the global carbon cycle.
Collapse
|
13
|
Ran X, Zhou M, Wang T, Wang W, Kumari S, Wang Y. Multidisciplinary characterization of nitrogen-removal granular sludge: A review of advances and technologies. WATER RESEARCH 2022; 214:118214. [PMID: 35240472 DOI: 10.1016/j.watres.2022.118214] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-removal granular sludge (NRGS) is a promising technology in wastewater treatment, with advantages of efficient nitrogen removal, less footprint, lower sludge production and energy consumption, and is a way for wastewater treatment plants to achieve carbon-neutrality. Aerobic granular sludge (AGS) and anammox granular sludge (AnGS) are two typical NRGS technologies that have attracted extensive attention. Mounting evidence has shown strong associations between NRGS properties and the status of NRGS systems; however, a holistic view is still missing. The aim of this article is to provide an overview of NRGS with an emphasis on characterization. Specifically, the integrated nitrogen transformation pathways inside NRGS and the performance of NRGS treating various wastewaters are discussed. NRGS properties are categorized as physical-, chemical-, biological- and systematical ones, presenting current advances and corresponding characterization technologies. Finally, the future prospects for furthering the mechanistic understanding and engineering application of NRGS are proposed. Overall, the technological advancements in characterization have greatly contributed to understanding NRGS properties, which are potential factors for optimizing the performance and evaluating the working status of NRGS. This review will provide guidance in characterizing NRGS properties and boost the introduction of novel characterization technologies.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
14
|
Nitrogen Removal from Mature Landfill Leachate via Anammox Based Processes: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mature landfill leachate is a complex and highly polluted effluent with a large amount of ammonia nitrogen, toxic components and low biodegradability. Its COD/N and BOD5/COD ratios are low, which is not suitable for traditional nitrification and denitrification processes. Anaerobic ammonia oxidation (anammox) is an innovative biological denitrification process, relying on anammox bacteria to form stable biofilms or granules. It has been extensively used in nitrogen removal of mature landfill leachate due to its high efficiency, low cost and sludge yield. This paper reviewed recent advances of anammox based processes for mature landfill leachate treatment. The state of the art anammox process for mature landfill leachate is systematically described, mainly including partial nitrification–anammox, partial nitrification–anammox coupled denitrification. At the same time, the microbiological analysis of the process operation was given. Anaerobic ammonium oxidation (anammox) has the merit of saving the carbon source and aeration energy, while its practical application is mainly limited by an unstable influent condition, operational control and seasonal temperature variation. To improve process efficiency, it is suggested to develop some novel denitrification processes coupled with anammox to reduce the inhibition of anammox bacteria by mature landfill leachate, and to find cheap new carbon sources (methane, waste fruits) to improve the biological denitrification efficiency of the anammox system.
Collapse
|
15
|
Xu X, Du T, Guo D, Jiang X, Zeng M, Wu N, Wang C, Zhang Z. Deciphering and predicting anammox-based nitrogen removal process under oxytetracycline stress via kinetic modeling and machine learning based on big data analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148980. [PMID: 34274673 DOI: 10.1016/j.scitotenv.2021.148980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is an advanced nitrogen removal process that is widely used in the nitrogen removal of various antibiotic containing wastewaters due to its high efficiency and energy saving characteristics. However, as a widely used antibiotic, the inhibitory effect of oxytetracycline (OTC) on anammox is unclear. In this study, the effect of OTC on the anammox-based nitrogen removal process was revealed by kinetic model and machine learning models. Statistical analysis showed that anammox started to be inhibited when the OTC concentration reached 2 mg/L. The inhibition and recovery periods were simulated under OTC stress. During the inhibition period, the R2 fitted by Exp model was higher, and the simulated maximum nitrogen removal rate (NRR) was between 0.47 and 17.05 kg/(m3·d). During the recovery period, both Boltzmann and Gauss models fit well. In addition, the machine learning model of the artificial neural network predicted the NRR more accurately, indicating that the importance of environmental factors was lower than the effluent parameters. Spearman correlation analysis showed that the NRR was negatively correlated with OTC under both short-term and long-term OTC stress. Furthermore, the hydraulic retention time and water quality parameters played an important role in the short-term and long-term experiment, respectively. Finally, redundancy analysis demonstrated that the abundance of nitrogen functional genes, such as hydrazine dehydrogenase, nitrite/nitric oxide oxidoreductase and hydrazine synthase, was negatively correlated with the amount of OTC, while antibiotic resistance genes showed the opposite trend.
Collapse
Affiliation(s)
- Xinxin Xu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Tingting Du
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Du Guo
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Xinye Jiang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Chang Wang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Zongpeng Zhang
- Fukai Diwo (Tianjin) Environmental Protection Technology Co., Ltd, 300457 Tianjin, China
| |
Collapse
|
16
|
Mai W, Chen J, Liu H, Liang J, Tang J, Wei Y. Advances in Studies on Microbiota Involved in Nitrogen Removal Processes and Their Applications in Wastewater Treatment. Front Microbiol 2021; 12:746293. [PMID: 34733260 PMCID: PMC8560000 DOI: 10.3389/fmicb.2021.746293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The discharge of excess nitrogenous pollutants in rivers or other water bodies often leads to serious ecological problems and results in the collapse of aquatic ecosystems. Nitrogenous pollutants are often derived from the inefficient treatment of industrial wastewater. The biological treatment of industrial wastewater for the removal of nitrogen pollution is a green and efficient strategy. In the initial stage of the nitrogen removal process, the nitrogenous pollutants are converted to ammonia. Traditionally, nitrification and denitrification processes have been used for nitrogen removal in industrial wastewater; while currently, more efficient processes, such as simultaneous nitrification-denitrification, partial nitrification-anammox, and partial denitrification-anammox processes, are used. The microorganisms participating in nitrogen pollutant removal processes are diverse, but information about them is limited. In this review, we summarize the microbiota participating in nitrogen removal processes, their pathways, and associated functional genes. We have also discussed the design of efficient industrial wastewater treatment processes for the removal of nitrogenous pollutants and the application of microbiome engineering technology and synthetic biology strategies in the modulation of the nitrogen removal process. This review thus provides insights that would help in improving the efficiency of nitrogen pollutant removal from industrial wastewater.
Collapse
Affiliation(s)
- Wenning Mai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jiamin Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.,Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Hai Liu
- Henan Public Security Bureau, Zhengzhou, China
| | - Jiawei Liang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinfeng Tang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Wang F, Xu S, Liu L, Wang S, Ji M. One-stage partial nitrification and anammox process in a sequencing batch biofilm reactor: Start-up, nitrogen removal performance and bacterial community dynamics in response to temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145529. [PMID: 33581528 DOI: 10.1016/j.scitotenv.2021.145529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
A one-stage partial nitrification and anammox (PN/A) process was started up and operated under varying temperatures in a lab-scale sequencing batch biofilm reactor. The start‑up phase took 110 days with an intermittent aeration strategy, and the removal efficiencies of ammonia‑nitrogen and total nitrogen were found to be 92.22% and 76.07%, respectively. The total nitrogen removal efficiency (NRE) increased by 9.49% when temperature decreased from 30 °C to 25 °C, but declined by 83.84% from 25 °C to 20 °C. The PN process was inhibited and subsequently limited the nitrogen removal performance at 20 °C. When temperature returned to 28 °C, the NRE recovered to 67.27%, but it was still lower than the value before the decrease in temperature (79.40%). Microbial community analysis showed that the predominant ammonia oxidation bacteria and anammox bacteria were Nitrosomonas and Candidatus Kuenenia, respectively. Nitrosomonas grew, while the relative abundance of Candidatus Kuenenia increased as temperature decreased and vice versa.
Collapse
Affiliation(s)
- Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Sihan Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyu Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; China Urban Construction Design & Research Institute Co., Ltd, Beijing 100120, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
18
|
Gil-Izquierdo A, Pedreño MA, Montoro-García S, Tárraga-Martínez M, Iglesias P, Ferreres F, Barceló D, Núñez-Delicado E, Gabaldón JA. A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143613. [PMID: 33218814 DOI: 10.1016/j.scitotenv.2020.143613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
The present study evaluates the removal capacity of microalgae photobioreactors of environmental pollutants present in wastewater from the dry riverbed El Albujón, as a way to minimize the eutrophication process of the Mar Menor. Particularly, the capacity of four autochthonous microalgae consortia collected from different locations of the salty lagoon to remove emerging contaminants (simazine, atrazine, terbuthylazine, adenosine and ibuprofen), nitrates, and phosphates, was evaluated. Among the four microalgae consortia, consortium 1 was the best in terms of biomass productivity (0.11 g L-1 d-1) and specific growth rate (0.14 d-1), providing 100% removal of emerging contaminants (simazine, atrazine, terbuthylazine, adenosine and ibuprofen), and a maximal reduction and consumption of macronutrients, especially nitrates and phosphates, reaching levels below 28 mg L-1, that is, a decrease of 89.90 and 99.70% of nitrates and phosphates, respectively. Therefore, this consortium (Monoraphidium sp., Desmodesmus subspicatus, Nannochloris sp.) could be selected as a green filter for successful large-scale applications. This study is the first one that combines the successful removal of herbicides, ibuprofen and adenosine as emerging contaminants, and nitrate removal.
Collapse
Affiliation(s)
- A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, E-30100 Espinardo, Spain
| | - M A Pedreño
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - S Montoro-García
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain
| | - M Tárraga-Martínez
- Buggypower S.L, Miguel Hernández, 16, San Pedro del Pinatar, E-307040 Murcia, Spain
| | - P Iglesias
- Buggypower S.L, Miguel Hernández, 16, San Pedro del Pinatar, E-307040 Murcia, Spain
| | - F Ferreres
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - E Núñez-Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain
| | - J A Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe E-30107, Spain.
| |
Collapse
|
19
|
Wang W, Xue H, Wang H, Ma J, Wu M, Wang Y. High adhesion ability of anammox granular microbes directly revealed by QCM-D technique. ENVIRONMENTAL RESEARCH 2021; 194:110646. [PMID: 33359458 DOI: 10.1016/j.envres.2020.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/22/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Anammox bacteria are widely found to grow in bioaggregates form, but the reason for their high aggregation ability remains elusive. In this study, four kinds of sludge, i.e., anammox granules, anaerobic granules, aerobic granules, and partial nitrification flocs, were studied and compared to investigate their differences in adherence properties. We directly explored the adherence properties of sludge samples before and after extracellular polymeric substances (EPS) extraction, using quartz-crystal microbalance technique with dissipation monitoring technique. Results showed that EPS indeed stimulated the adherence properties of all sludge samples. The most striking feature here is that anammox consortia had the highest adhesion rate and mass, and formed the most compact layer on the gold-coated sensor surfaces both before and after EPS extraction among the four sludge samples, indicating their inherent high adhesion ability. The composition and spectral characteristics of EPS samples were also investigated, and it reveals that the relatively high extracellular proteins/polysaccharides ratio of anammox granules (3.2 ± 0.4) rather than total EPS concentration had contributed to their high adhesion ability. The findings are helpful for understanding the adherence properties of anammox bacteria, and will serve as a guide for further researches to exploring the aggregation process of anammox bacteria.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Min Wu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
20
|
Ma J, Yang M, Shi C, He C, Yuan Q, Li K, Gong H, Wang K. Insight into the benefits of anammox bacteria living as aggregates. BIORESOURCE TECHNOLOGY 2020; 318:124103. [PMID: 32942094 DOI: 10.1016/j.biortech.2020.124103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
This work tried understanding aggregation preference of anammox bacteria from benefit-driven perspective. Aggregated anammox sludge (AGS) gained benefits in specific anammox activity (SAA) (increased by 40.47 ± 12.64%) and in toxicity resistance (enhanced by 65.41%) than scattered anammox sludge (SCS), which were verified by kinetics. The increased heme c content by 35.67 ± 5.77% and enhanced relative abundance of anammox bacteria by 9.29% supported the benefits in biological activity and improved EPS content by 1097.59 ± 43.06% (622.16 ± 61.73% for protein (PN), 2403.47 ± 162.75% for humic acid (HA) and 1145.34 ± 97.33% for polysaccharide (PS)) justified the benefits in toxicity resistance. The diverse microbial communities and organized spatial structures owned by AGS promoted interactions between species, as the intrinsic justification for obtaining the benefits. We expect our findings to provide theoretical guidance for promotions and applications of the anammox process with excellent nitrogen removal capacity and stability.
Collapse
Affiliation(s)
- Jinyuan Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Meijuan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Chuan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Conghui He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kun Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
21
|
Wang W, Wang H, Jiang Z, Wang Y. Visual evidence for anammox granules expanding their size by aggregation of anammox micro-granules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141052. [PMID: 32738693 DOI: 10.1016/j.scitotenv.2020.141052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Granular sludge is superior in sustainable wastewater treatment; however, no consensus has achieved in its formation mechanism. In this study, we provide visual and experimental evidences to reveal how the large anammox granules formed. Micro-observation of anammox granules illustrated that some special anammox granules were clearly composed of numerous micro-granules, which enveloped by transparent extracellular polymeric substances (EPS). Static culture experiment proved that anammox granules were easy to aggregate and form a larger entirety within approximately 14 days when there were no severe external disturbances (mainly hydraulic shear force). Stratified EPS extraction and selective enzymatic digestion tests further elucidated that tightly-bound EPS and extracellular proteins were the most vital constituents in maintaining the structure of anammox granules, and the minimal size of anammox micro-granules that aggregated to form large anammox granules was approximately 100-150 μm in the reactor studied herein. Our findings highlight that anammox granules could expand their size and form larger granules by the aggregation of anammox micro-granules, representing a natural but significant granule formation and enlargement mechanism. Understanding the enlargement mechanism could consummate the granulation process and help to culture large size anammox granules.
Collapse
Affiliation(s)
- Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|