1
|
Cheng C, Li X, Wu B, Liu B, Li L, Yu Y. Serum level of dioxin-like polychlorinated biphenyls and blood pressure in primary school children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118278. [PMID: 40373712 DOI: 10.1016/j.ecoenv.2025.118278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/17/2025]
Abstract
Exposure to dioxin-like polychlorinated biphenyls (DL-PCBs) has been linked to blood pressure changes in adult populations. However, limited research has explored the impact of DL-PCB exposure on BP in children, a vulnerable population undergoing critical developmental stages. This study aimed to investigate the association between exposure to DL-PCBs and blood pressure in primary school children. A cross-sectional study was conducted between 2023 and 2024 involving 5240 children aged 7-10 years. Serum levels of 12 DL-PCB congeners were assessed using Gas Chromatography-Mass Spectrometry (GC-MS). Statistical analysis included multivariable linear regression, stratified by sex, and mixture analysis using Bayesian Kernel Machine Regression (BKMR), generalized quantile g-computation (g-comp), and generalized weighted quantile sum regression (gWQS). In the linear regression analysis, several congeners (PCB77, PCB81, PCB118, PCB126, PCB167, PCB169) were significantly associated with increased systolic blood pressure (SBP), pulse pressure (PP), and mean arterial pressure (MAP) in the adjusted models. Specifically, PCB81, PCB126, PCB167, and PCB169 were associated with higher PP, and PCB77, PCB81, PCB118, PCB126, PCB167, and PCB169 were linked to higher MAP. The associations were generally stronger in boys. The mixture analyses confirmed the non-linear and interactive effects of DL-PCB exposure on BP indicators, with cumulative exposure showing a significant impact on both SBP and MAP ( for MAP: g-comp (β = 1.707, 95 % CI: 1.129, 2.285; p < 0.001) and gWQS (β = 1.195, 95 % CI: 0.555, 1.836; p < 0.001)). Overall, exposure to DL-PCBs was linked to elevated blood pressure in primary school children, especially for specific congeners, emphasizing potential cardiovascular risks and the need for further research on long-term effects.
Collapse
Affiliation(s)
- Chuangang Cheng
- Cardiothoracic Surgery Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiang Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baogang Wu
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bingnan Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Li Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yang Yu
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Hamzavi SF, Elahi Vahed I, Samadi Shams A, Nozari F, Gamzeh Latava B, Mardukhi S, Sabaghi B, Hosseini ZS, Masoumi Shahr-e Babak Z, Ahrari S, Keshavarzian A, Rahmanian M. Association between polychlorinated biphenyls and hypertension risk: a systematic review and meta-analysis. Front Cardiovasc Med 2025; 12:1529431. [PMID: 40313580 PMCID: PMC12043693 DOI: 10.3389/fcvm.2025.1529431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Background and Aim Hypertension (HTN) is a widespread global health challenge, and its increasing prevalence is attributed to individual and environmental risk factors. Persistent organic pollutants (POPs), especially polychlorinated biphenyls (PCBs), contribute to cardiovascular risk by accumulating in fatty tissues, which leads to oxidative stress and vascular inflammation. This review and meta-analysis aimed to investigate the association between PCB exposure and hypertension. Methods Adhering to the PRISMA 2020 guidelines, data sources such as PubMed, Scopus, Web of Science, and Google Scholar were systematically searched up to July 2024 to find observational studies on the link between PCBs and hypertension risk. Studies were reviewed and chosen according to established inclusion and exclusion criteria, focusing on observational studies examining PCB exposure and hypertension risk. Independent reviewers conducted data extraction, and the quality of studies was evaluated using the JBI critical appraisal tool. A meta-analysis with a random-effects model was conducted to determine combined odds ratios (ORs) for hypertension linked to total PCB exposure and specific PCB types. Results Of the 494 records identified, 21 studies met the inclusion criteria, comprising 5 cohort studies, 15 cross-sectional studies, and one case-control study, totaling 51,514 participants. Exposure to total PCBs correlated with an elevated risk of hypertension (OR = 1.78, 95% CI: 1.30-2.44). Dioxin-like PCBs were also associated with a heightened risk (OR = 1.54, 95% CI: 1.24-1.90), while non-dioxin-like PCBs were not significantly linked (OR = 1.16, 95% CI: 0.81-1.66). Among individual congeners, PCB-74, PCB-118, PCB-105, and PCB-153 were significantly related to higher hypertension risk. Conclusion These findings indicate a positive correlation between PCB exposure and hypertension, particularly with dioxin-like PCBs and certain PCB congeners. Additional research is necessary to clarify the mechanisms involved and to promote measures for reducing PCB exposure, particularly in high-risk populations. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024595223, PROSPERO (CRD42024595223).
Collapse
Affiliation(s)
- Seyedeh Fatemeh Hamzavi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Elahi Vahed
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fateme Nozari
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Baroukh Gamzeh Latava
- School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Saman Mardukhi
- Department of Occupational Health and Safety, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnoosh Sabaghi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zakieh Sadat Hosseini
- Department of Public Health, Faculty of Health and Paramedicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Sahar Ahrari
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Keshavarzian
- School of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Mohammad Rahmanian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ruggles A, Benakis C. Exposure to Environmental Toxins: Potential Implications for Stroke Risk via the Gut- and Lung-Brain Axis. Cells 2024; 13:803. [PMID: 38786027 PMCID: PMC11119296 DOI: 10.3390/cells13100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Recent evidence indicates that exposure to environmental toxins, both short-term and long-term, can increase the risk of developing neurological disorders, including neurodegenerative diseases (i.e., Alzheimer's disease and other dementias) and acute brain injury (i.e., stroke). For stroke, the latest systematic analysis revealed that exposure to ambient particulate matter is the second most frequent stroke risk after high blood pressure. However, preclinical and clinical stroke investigations on the deleterious consequences of environmental pollutants are scarce. This review examines recent evidence of how environmental toxins, absorbed along the digestive tract or inhaled through the lungs, affect the host cellular response. We particularly address the consequences of environmental toxins on the immune response and the microbiome at the gut and lung barrier sites. Additionally, this review highlights findings showing the potential contribution of environmental toxins to an increased risk of stroke. A better understanding of the biological mechanisms underlying exposure to environmental toxins has the potential to mitigate stroke risk and other neurological disorders.
Collapse
Affiliation(s)
| | - Corinne Benakis
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, 81337 Munich, Germany;
| |
Collapse
|
4
|
Shan Q, Liu J, Qu F, Chen A, He W. Polychlorinated biphenyls exposure and type 2 diabetes: Molecular mechanism that causes insulin resistance and islet damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2466-2476. [PMID: 38305644 DOI: 10.1002/tox.24094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants that have been associated with type 2 diabetes (T2DM) in cohort studies. This review aims to comprehensively assess the molecular mechanisms of PCBs-induced T2DM. Recent progress has been made in the research of PCBs in liver tissue, adipose tissue, and other tissues. By influencing the function of nuclear receptors, such as the aryl hydrocarbon receptor (AhR), pregnancy X receptor (PXR), and peroxisome proliferator activated receptor γ (PPARγ), as well as the inflammatory response, PCBs disrupt the balance of hepatic glucose and lipid metabolism. This is associated with insulin resistance (IR) in the target organ of insulin. Through androgen receptor (AR), estrogen receptor α/β (ERα/β), and pancreato-duodenal-homeobox gene-1 (PDX-1), PCBs affect the secretion of insulin and increase blood glucose. Thus, this review is a discussion on the relationship between PCBs exposure and the pathogenesis of T2DM. It is hoped to provide basic concepts for diabetes research and disease treatment.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jingyu Liu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Wenxing He
- College of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
5
|
Krauskopf J, Eggermont K, Caiment F, Verfaillie C, de Kok TM. Molecular insights into PCB neurotoxicity: Comparing transcriptomic responses across dopaminergic neurons, population blood cells, and Parkinson's disease pathology. ENVIRONMENT INTERNATIONAL 2024; 186:108642. [PMID: 38608384 DOI: 10.1016/j.envint.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder influenced by genetic factors and environmental exposures. Polychlorinated biphenyls (PCBs), a group of synthetic organic compounds, have been identified as potential environmental risk factors for neurodegenerative diseases, including PD. We explored PCB-induced neurotoxicity mechanisms using iPSC-derived dopaminergic neurons and assessed their transcriptomic responses to varying PCB concentrations (0.01 μM, 0.5 μM, and 10 μM). Specifically, we focused on PCB-180, a congener known for its accumulation in human brains. The exposure durations were 24 h and 74 h, allowing us to capture both short-term and more prolonged effects on gene expression patterns. We observed that PCB exposure led to the suppression of oxidative phosphorylation, synaptic function, and neurotransmitter release, implicating these pathways in PCB-induced neurotoxicity. In our comparative analysis, we noted similarities in PCB-induced changes with other PD-related compounds like MPP+ and rotenone. Our findings also aligned with gene expression changes in human blood derived from a population exposed to PCBs, highlighting broader inflammatory responses. Additionally, molecular patterns seen in iPSC-derived neurons were confirmed in postmortem PD brain tissues, validating our in vitro results. In conclusion, our study offers novel insights into the multifaceted impacts of PCB-induced perturbations on various cellular contexts relevant to PD. The use of iPSC-derived dopaminergic neurons allowed us to decipher intricate transcriptomic alterations, bridging the gap between in vitro and in vivo findings. This work underscores the potential role of PCB exposure in neurodegenerative diseases like PD, emphasizing the need to consider both systemic and cell specific effects.
Collapse
Affiliation(s)
- Julian Krauskopf
- Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands. %
| | - Kristel Eggermont
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Florian Caiment
- Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Theo M de Kok
- Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; MHeNS, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
6
|
Donato F, Rota M, Ceretti E, Viola GCV, Marullo M, Zani D, Amoresano A, Fontanarosa C, Spinelli M, Lorenzetti S, Montano L. Polychlorinated Biphenyls and Semen Quality in Healthy Young Men Living in a Contaminated Area. TOXICS 2023; 12:6. [PMID: 38276719 PMCID: PMC10820147 DOI: 10.3390/toxics12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and endocrine disruptors that have been implicated in potential damage to human semen. However, the studies conducted so far provide contrasting results. Our study aimed to investigate the associations between PCB serum and semen levels and semen quality in high school and university students living in a highly PCB-polluted area of Italy. Subjects with a normal body mass index who did not make daily use of tobacco, alcohol, drugs, or medication were selected. All participants provided a fasting blood and a semen sample. Gas chromatography-mass spectrometry was used to determine the concentrations of 26 PCB congeners. The concentrations of PCB functional groups and total PCBs were also computed. A total of 143 subjects (median age 20, range 18-22 years) were enrolled. The median total PCB concentrations were 3.85 ng/mL (range 3.43-4.56 ng/mL) and 0.29 ng/mL (range 0.26-0.32 ng/mL) in serum and semen, respectively. The analysis of the associations between sperm PCB concentration and semen parameters showed (a) negative associations between some PCB congeners, functional groups and total PCBs and sperm total motility; (b) negative associations of total PCBs with sperm normal morphology; and (c) no association of PCBs with sperm concentration. Subjects at the highest quartile of semen total PCB concentration had 19% and 23% mean reductions in total motility and normal morphology, respectively, compared to those at the lowest quartile. The analysis of the associations of serum PCB levels with sperm parameters yielded null or mixed (some positive, other negative) results. In conclusion, the present study provides evidence of a negative effect of some PCB congeners and total PCBs in semen on sperm motility and normal morphology. However, the associations between the concentration of serum and semen PCB congeners and functional groups and sperm quality parameters were inconsistent.
Collapse
Affiliation(s)
- Francesco Donato
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (F.D.); (G.C.V.V.); (M.M.)
| | - Matteo Rota
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Elisabetta Ceretti
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (F.D.); (G.C.V.V.); (M.M.)
| | - Gaia Claudia Viviana Viola
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (F.D.); (G.C.V.V.); (M.M.)
| | - Monica Marullo
- Unit of Hygiene, Epidemiology and Public Health, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; (F.D.); (G.C.V.V.); (M.M.)
| | - Danilo Zani
- Unit of Urology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (C.F.); (M.S.)
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (C.F.); (M.S.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (C.F.); (M.S.)
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy;
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), “Oliveto Citra Hospital”, 84020 Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
7
|
Head KZ, Bolatimi OE, Gripshover TC, Tan M, Li Y, Audam TN, Jones SP, Klinge CM, Cave MC, Wahlang B. Investigating the effects of long-term Aroclor 1260 exposure on fatty liver disease in a diet-induced obesity mouse model. FRONTIERS IN GASTROENTEROLOGY (LAUSANNE, SWITZERLAND) 2023; 2:1180712. [PMID: 37426695 PMCID: PMC10327714 DOI: 10.3389/fgstr.2023.1180712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Introduction Polychlorinated biphenyls (PCBs) are persistent environmental toxicants that have been implicated in numerous health disorders including liver diseases such as non-alcoholic fatty liver disease (NAFLD). Toxicant-associated NAFLD, also known as toxicant-associated fatty liver disease (TAFLD), consists of a spectrum of disorders ranging from steatosis and steatohepatitis to fibrosis and hepatocellular carcinoma. Previously, our group demonstrated that 12-week exposure to the PCB mixture, Aroclor 1260, exacerbated steatohepatitis in high-fat diet (HFD)-fed mice; however, the longer-term effects of PCBs on TAFLD remain to be elucidated. This study aims to examine the longer-term effects of Aroclor 1260 (>30 weeks) in a diet-induced obesity model to better understand how duration of exposure can impact TAFLD. Methods Male C57BL/6 mice were exposed to Aroclor 1260 (20 mg/kg) or vehicle control by oral gavage at the beginning of the study period and fed either a low-fat diet (LFD) or HFD throughout the study period. Results Aroclor 1260 exposure (>30 weeks) led to steatohepatitis only in LFD-fed mice. Several Aroclor 1260 exposed LFD-fed mice also developed hepatocellular carcinoma (25%), which was absent in HFD-fed mice. The LFD+Aroclor1260 group also exhibited decreased hepatic Cyp7a1 expression and increased pro-fibrotic Acta2 expression. In contrast, longer term Aroclor 1260 exposure in conjunction with HFD did not exacerbate steatosis or inflammatory responses beyond those observed with HFD alone. Further, hepatic xenobiotic receptor activation by Aroclor 1260 was absent at 31 weeks post exposure, suggesting PCB redistribution to the adipose and other extra-hepatic tissues with time. Discussion Overall, the results demonstrated that longer-term PCB exposure worsened TAFLD outcomes independent of HFD feeding and suggests altered energy metabolism as a potential mechanism fueling PCB mediated toxicity without dietary insult. Additional research exploring mechanisms for these longer-term PCB mediated toxicity in TAFLD is warranted.
Collapse
Affiliation(s)
- Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
| | - Oluwanifemi E. Bolatimi
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Tyler C. Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Min Tan
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Yan Li
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Timothy N. Audam
- Center for Cardiometabolic Science, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Steven P. Jones
- Center for Cardiometabolic Science, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY, United States
- Robley Rex Department of Veterans Affairs Medical Center, Louisville, KY, United States
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
8
|
Mouat JS, Li X, Neier K, Zhu Y, Mordaunt CE, La Merrill MA, Lehmler HJ, Jones MP, Lein PJ, Schmidt RJ, LaSalle JM. Networks of placental DNA methylation correlate with maternal serum PCB concentrations and child neurodevelopment. ENVIRONMENTAL RESEARCH 2023; 220:115227. [PMID: 36608759 PMCID: PMC10518186 DOI: 10.1016/j.envres.2023.115227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gestational exposure to polychlorinated biphenyls (PCBs) has been associated with elevated risk for neurodevelopmental disorders. Placental epigenetics may serve as a potential mechanism of risk or marker of altered placental function. Prior studies have associated differential placental DNA methylation with maternal PCB exposure or with increased risk of autism spectrum disorder (ASD). However, sequencing-based placental methylomes have not previously been tested for simultaneous associations with maternal PCB levels and child neurodevelopmental outcomes. OBJECTIVES We aimed to identify placental DNA methylation patterns associated with maternal PCB levels and child neurodevelopmental outcomes in the high-risk ASD MARBLES cohort. METHODS We measured 209 PCB congeners in 104 maternal serum samples collected at delivery. We identified networks of DNA methylation from 147 placenta samples using the Comethyl R package, which performs weighted gene correlation network analysis for whole genome bisulfite sequencing data. We tested placental DNA methylation modules for association with maternal serum PCB levels, child neurodevelopment, and other participant traits. RESULTS PCBs 153 + 168, 170, 180 + 193, and 187 were detected in over 50% of maternal serum samples and were highly correlated with one another. Consistent with previous findings, maternal age was the strongest predictor of serum PCB levels, alongside year of sample collection, pre-pregnancy BMI, and polyunsaturated fatty acid levels. Twenty seven modules of placental DNA methylation were identified, including five which significantly correlated with one or more PCBs, and four which correlated with child neurodevelopment. Two modules associated with maternal PCB levels as well as child neurodevelopment, and mapped to CSMD1 and AUTS2, genes previously implicated in ASD and identified as differentially methylated regions in mouse brain and placenta following gestational PCB exposure. CONCLUSIONS Placental DNA co-methylation modules were associated with maternal PCBs and child neurodevelopment. Methylation of CSMD1 and AUTS2 could be markers of altered placental function and/or ASD risk following maternal PCB exposure.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Michele A La Merrill
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Pamela J Lein
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
9
|
Ravanipour M, Nabipour I, Yunesian M, Rastkari N, Mahvi AH. Exposure sources of polychlorinated biphenyls (PCBs) and health risk assessment: a systematic review in Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55437-55456. [PMID: 35676570 DOI: 10.1007/s11356-022-21274-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/31/2022] [Indexed: 12/07/2022]
Abstract
This systematic review aims to identify the sources of exposure to polychlorinated biphenyls (PCBs), portioning, and human health risk assessment in Iran. The literature was searched in the international databases of Web of Science, PubMed, Scopus, Google Scholar, and the national databases of SID and MagIran up to November 14, 2020. Among all 153 articles, 21 eligible papers were identified. Among them, only one article was related to drinking water, the rest was related to food and soil, and no article was found on ambient air. The corrected portion of each exposure source was determined to be 90% for food, 9% for water, and 1% for air. The total hazard quotient (HQ) was determined to be within an unsafe range, and the total excess lifetime cancer risk (ELCR) was determined to be at a high risk of oral carcinogenesis. It is suggested that a comprehensive study be conducted in a specific period for all sources of exposure in all counties of Iran. Moreover, it is recommended that the policymakers set national standards for this pollutant in near future in some sources of exposure (e.g., drinking water) which have no standards in Iran.
Collapse
Affiliation(s)
- Masoumeh Ravanipour
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Qods St., Enghelab St, Tehran, 141761315, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Qods St., Enghelab St, Tehran, 141761315, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, PourSina St., Qods St., Enghelab St, Tehran, 141761315, Iran.
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
11
|
Chen HY, Li H, Argos M, Persky VW, Turyk ME. Statistical Methods for Assessing the Explained Variation of a Health Outcome by a Mixture of Exposures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2693. [PMID: 35270383 PMCID: PMC8910055 DOI: 10.3390/ijerph19052693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022]
Abstract
Exposures to environmental pollutants are often composed of mixtures of chemicals that can be highly correlated because of similar sources and/or chemical structures. The effect of an individual chemical on a health outcome can be weak and difficult to detect because of the relatively low level of exposures to many environmental pollutants. To tackle the challenging problem of assessing the health risk of exposure to a mixture of environmental pollutants, we propose a statistical approach to assessing the proportion of the variation of an outcome explained by a mixture of pollutants. The proposed approach avoids the difficult task of identifying specific pollutants that are responsible for the effects and may also be used to assess interactions among exposures. Extensive simulation results demonstrate that the proposed approach has very good performance. Application of the proposed approach is illustrated by investigating the main and interaction effects of the chemical pollutants on systolic and diastolic blood pressure in participants from the National Health and Nutrition Examination Survey.
Collapse
Affiliation(s)
- Hua Yun Chen
- Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Chicago, IL 60612, USA; (H.L.); (M.A.); (V.W.P.); (M.E.T.)
| | | | | | | | | |
Collapse
|
12
|
Chen H, Liang X, Chen L, Zuo L, Chen K, Wei Y, Chen S, Hao G. Associations Between Household Pesticide Exposure, Smoking and Hypertension. Front Public Health 2022; 10:754643. [PMID: 35273934 PMCID: PMC8902065 DOI: 10.3389/fpubh.2022.754643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
This analysis aims to investigate the association between household pesticide exposure and hypertension risk, and to determine whether smoking plays a role in this association. We used data from the National Health and Nutrition Examination Survey (NHANES) for the years 1999-2014, including a total of 32,309 U.S. adult participants who were 20 years or older. Smoking status and pesticide exposure were self-reported. Blood pressure was measured by trained personnel using a mercury sphygmomanometer, according to a standardized protocol. We observed an increased risk of hypertension (OR [odds ratio] = 1.10, 95% confidence intervals [CI]: 1.01-1.18) in participants with exposure to household pesticides. Moreover, a significant interaction between smoking status and pesticide exposure on hypertension was observed (P = 0.022). Stratified analysis showed that household pesticide exposure was associated with a 29% higher risk of hypertension (OR = 1.29, 95% CI: 1.08-1.53) in smokers. However, for non-smokers, this association was not significant. Similar trends were found for systolic and diastolic blood pressures. In addition, we investigated the associations between pesticide metabolites in urine/serum and hypertension and found that several metabolites of dioxins, furans, and coplanar polychlorinated biphenyls were significantly associated with a higher risk of hypertension. This study suggests that household pesticide exposure is associated with an elevated risk of hypertension. We also report that smoking may accentuate the effect of pesticide exposure on hypertension.
Collapse
Affiliation(s)
- Haiyan Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaohua Liang
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing, China
- China International Science and Technology Cooperation Center of Child Development and Critical Disorders, Chongqing, China
| | - Li Chen
- Department of Medicine, Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Kuncai Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yuehong Wei
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Guang Hao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Vidali MS, Dailianis S, Vlastos D, Georgiadis P. PCB cause global DNA hypomethylation of human peripheral blood monocytes in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103696. [PMID: 34171487 DOI: 10.1016/j.etap.2021.103696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
We have recently reported significant associations between exposure to polychlorinated biphenyls (PCB) and alterations on genome-wide methylation of leukocyte DNA of healthy volunteers and provided evidence in support of an etiological link between the observed CpG methylation variations and chronic lymphocytic leukemia. The present study aimed to elucidate the effects of PCB in human lymphocytes' methylome in vitro. Therefore, U937 cells and human peripheral blood monocytes (PBMC) were exposed in vitro to the dioxin-like PCB-118, the non-dioxin-like PCB-153, and hexachlorobenzene (HCB) and thorough cytotoxicity, genotoxicity and global CpG methylation analyses were performed. All compounds currently tested did not show any consistent significant genotoxicity at all exposure periods and concentrations used. On the contrary, extensive dose-dependent hypomethylation was observed, even at low concentrations, in stimulated PBMC treated with PCB-118 and PCB-153 as well as a small but statistically significant hypomethylation in HCB-treated stimulated cells.
Collapse
Affiliation(s)
- Maria-Sofia Vidali
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas.Constantinou Av, GR-11635, Athens, Greece; Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100, Agrinio, Greece
| | - Panagiotis Georgiadis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas.Constantinou Av, GR-11635, Athens, Greece.
| |
Collapse
|
14
|
Simhadri JJ, Loffredo CA, Trnovec T, Murinova LP, Nunlee-Bland G, Koppe JG, Schoeters G, Jana SS, Ghosh S. Biomarkers of metabolic disorders and neurobehavioral diseases in a PCB- exposed population: What we learned and the implications for future research. ENVIRONMENTAL RESEARCH 2020; 191:110211. [PMID: 32937175 PMCID: PMC7658018 DOI: 10.1016/j.envres.2020.110211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 05/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are one of the original twelve classes of toxic chemicals covered by the Stockholm Convention on Persistent Organic Pollutants (POP), an international environmental treaty signed in 2001. PCBs are present in the environment as mixtures of multiple isomers at different degree of chlorination. These compounds are manmade and possess useful industrial properties including extreme longevity under harsh conditions, heat absorbance, and the ability to form an oily liquid at room temperature that is useful for electrical utilities and in other industrial applications. They have been widely used for a wide range of industrial purposes over the decades. Despite a ban in production in 1979 in the US and many other countries, they remain persistent and ubiquitous in environment as contaminants due to their improper disposal. Humans, independent of where they live, are therefore exposed to PCBs, which are routinely found in random surveys of human and animal tissues. The prolonged exposures to PCBs have been associated with the development of different diseases and disorders, and they are classified as endocrine disruptors. Due to its ability to interact with thyroid hormone, metabolism and function, they are thought to be implicated in the global rise of obesity diabetes, and their potential toxicity for neurodevelopment and disorders, an example of gene by environmental interaction (GxE). The current review is primarily intended to summarize the evidence for the association of PCB exposures with increased risks for metabolic dysfunctions and neurobehavioral disorders. In particular, we present evidence of gene expression alterations in PCB-exposed populations to construct the underlying pathways that may lead to those diseases and disorders in course of life. We conclude the review with future perspectives on biomarker-based research to identify susceptible individuals and populations.
Collapse
Affiliation(s)
- Jyothirmai J Simhadri
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC, USA
| | - Tomas Trnovec
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | | | - Gail Nunlee-Bland
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Janna G Koppe
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | - Greet Schoeters
- Dept. Biomedical Sciences, University of Antwerp, Antwerp, Belgium & Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Somiranjan Ghosh
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA; Department of Biology, Howard University, Washington, DC, USA.
| |
Collapse
|
15
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|
16
|
Chang Y, Ding Y. Long-term effects of the perindopril or irbesartan combined with diltiazem on left ventricular hypertrophy in outpatient mild to moderate hypertensive subjects. Hellenic J Cardiol 2020; 62:324-325. [PMID: 32931921 DOI: 10.1016/j.hjc.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yeting Chang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Liaoning, 116021 China
| | - Yanchun Ding
- Department of Cardiology, The Second Hospital of Dalian Medical University, Liaoning, 116021 China.
| |
Collapse
|
17
|
Raffetti E, Donat-Vargas C, Mentasti S, Chinotti A, Donato F. Association between exposure to polychlorinated biphenyls and risk of hypertension: A systematic review and meta-analysis. CHEMOSPHERE 2020; 255:126984. [PMID: 32679627 DOI: 10.1016/j.chemosphere.2020.126984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Experimental and epidemiological studies have suggested an association between exposure to polychlorinated biphenyls (PCBs), ubiquitous environmental toxic compounds, and the risk of hypertension. We conducted a systematic review and meta-analysis of epidemiological studies of the association between PCB exposure and the risk of hypertension. Studies were identified by searching PubMed, Embase and Web of Science and by reviewing reference lists. Study-specific risk estimates comparing the highest versus lowest quantile of PCB distribution were combined using random-effects models. We identified 10 cross-sectional studies, 6 cohort studies, and 1 nested case-control study. A pooled excess risk of hypertension was found for total PCBs (OR 1.70, 95% CI 1.28-2.26), dioxin-like (DL)-PCBs (OR 1.46, 1.19-1.79), but not for non-dioxin like (NDL)-PCBs (OR 1.19, 0.81-1.73) comparing the highest with the lowest quartile of the distribution. According to a dose-response meta-analysis, a linear dose-effect relationship was found for total PCBs [OR 2.23 (95% CI: 1.59-3.14) for 1000 ng PCB/g lipid increase]. This positive association remained when stratifying the analyses by study design (cohort vs cross-sectional studies) and population (general population vs high exposed workers/residents). Among single PCB congeners, DL-PCB 105 and 118, and non-DL-PCB138 and 153 were related to hypertension. In conclusion, this meta-analysis suggests that exposure to PCBs, particularly to DL-PCBs, may be a risk factor for hypertension, independently of other risk factors.
Collapse
Affiliation(s)
- Elena Raffetti
- Department of Global Public Health, Karolinska Institutet, Sweden.
| | - Carolina Donat-Vargas
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, CEI UAM+CSIC, Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health) Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Mentasti
- Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Unit of Hygiene, Epidemiology, and Public Health, University of Brescia, Italy
| | - Annalisa Chinotti
- Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Unit of Hygiene, Epidemiology, and Public Health, University of Brescia, Italy
| | - Francesco Donato
- Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Unit of Hygiene, Epidemiology, and Public Health, University of Brescia, Italy
| |
Collapse
|
18
|
Belenguer-Sapiña C, Pellicer-Castell E, Amorós P, Simó-Alfonso EF, Mauri-Aucejo AR. A new proposal for the determination of polychlorinated biphenyls in environmental water by using host-guest adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138266. [PMID: 32251885 DOI: 10.1016/j.scitotenv.2020.138266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants whose wide industrial use has been banned over the years in most countries due to their persistence and bioaccumulation. In fact, the International Agency for Research on Cancer defined them in 2016 as carcinogenic to humans based on sufficient evidence of an increased risk of cancer, being children and pregnant or lactating women the most vulnerable population subgroups. In this work, a new alternative for the determination of polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB138, PCB153, and PCB180) in water samples has been developed by using a cyclodextrin-containing silica microparticulated material as an adsorbent in solid-phase extraction. Gas chromatography coupled to an electron capture detector has been used in the quantification step. The methodology allows quantifying polychlorinated biphenyls at very trace levels, with limits of detection between 0.2 and 1.7 ng L-1. Other parameters such as the repeatability, with coefficients of variation lower than 11%, were likewise established. To end, real water samples were analyzed, and the results were comparable with those obtained with a reference method. The proposed methodology can be utilized for assessing the presence of these compounds in the environment and can come in handy for evaluation and remediation purposes.
Collapse
Affiliation(s)
- Carolina Belenguer-Sapiña
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Enric Pellicer-Castell
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Pedro Amorós
- Institute of Materials Science (ICMUV), University of Valencia, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Adela R Mauri-Aucejo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|