1
|
Wells MJM, Chen JY, Bodycomb J, Wolgemuth D, Stretz HA, Zacheis GA, Bautista M, Bell KY. Multi-laser nanoparticle tracking analysis (NTA): A unique method to visualize dynamic (shear) and dynamic (Brownian motion) light scattering and quantify nonliving natural organic matter (NNOM) in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174985. [PMID: 39047837 DOI: 10.1016/j.scitotenv.2024.174985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Application of simultaneous multi-laser nanoparticle tracking analysis (NTA) to environmental water samples to investigate nonliving natural organic matter (NNOM) is introduced as an innovative method for observing particles directly in their native media. Multi-laser NTA results of particle visualization, particle number concentration, and particle size distribution elucidated particle dynamics in low and high total dissolved solids (TDS) aqueous environmental samples. A pond water sample and concentrate from a reverse osmosis (RO) treatment process (Stage 1) had 1.3 × 108 and 5.62 × 1019 particles/mL, respectively, (at time = 0) after filtration at 0.45 μm. Beyond the traditional applications for this instrument, this research presents novel evidence-based investigations that probe the existence of supramolecular structures in environmental waters during turbulence or quiescence. The pond water sample exhibited time-dependent aggregation as the volume distribution shifted to greater diameter during quiescence, compared to turbulence. Disaggregation (increased numbers of particles over time) was noted in the >250 nm to <600 nm region, and aggregation of >450 nm particles was also noted in the quiescent RO concentrate sample, indicative of depletion of small particles to form larger ones. Multi-laser NTA and dynamic light scattering (DLS) capabilities were compared and contrasted. DLS and NTA are different (complementary) particle sizing techniques. DLS yielded more information about the physical hydrogel in the NNOM hierarchy whereas multi-laser NTA better characterized meta-chemical and chemical hydrogel characteristics. Operationalization of innovation-moving from fundamental investigations to application-is supported by implementing novel analytical instrumentation as we address issues involving climate change, drought, and the scarcity of potable water. Multi-laser NTA can be used as a tool to study and optimize complex water and wastewater treatment processes. Questions about water treatment efficiencies, membrane fouling, assistance of pollutant transport, and carbon capture cycles affected by NNOM will benefit from insights from multi-laser NTA.
Collapse
Affiliation(s)
| | | | - Jeff Bodycomb
- Horiba Instruments Incorporated, Piscataway, NJ, USA
| | | | | | | | - Mario Bautista
- Water Replenishment District of Southern California, Torrance, CA, USA
| | | |
Collapse
|
2
|
Maraschin M, de Paula N, Carissimi E. Enhancing sludge thickening in continuous treatment using polymeric bubbles with cationic polymer P2900 and cocamidopropyl betaine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58609-58623. [PMID: 39316215 DOI: 10.1007/s11356-024-35100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Sludge thickening is a fundamental stage of treatment. This study investigated the application, in continuous treatment, of polymeric bubbles produced with cationic polymer P2900 and cocamidopropyl betaine (CAPB), a zwitterionic surfactant. The proposed reagent combination aims to form aerated flakes, solid waste structures, and rapidly rising air bubbles, ideal for treatments in compact units. Using this combination, it was possible to achieve a total solids concentration of 45% with the modified bubbles and 25% with the conventional water treatment. This level of thickening occurred under the following operating conditions: initial total solids (TS) concentration of 10 g L-1, a flow rate of 5 L min-1, saturation pressure (psat) of 3 atm, and polymer dosage of 10 mg (gTS)-1. The suggested mechanism of action involves the adhesion of P2900 molecules to CAPB at the air/water interface, forming a lining on the bubble surface. Additionally, polymerized species form due to the residual aluminum (Al) in the sludge, which would occur during flocculation in the helical tubular flocculator (HTF), adsorbing the micelles and bubbles of CAPB. The critical micellar concentration (CMC) of CAPB was 0.26 mmol L-1. Polymeric bubble technology can provide an efficient and cost-effective approach to sludge thickening in continuous treatment.
Collapse
Affiliation(s)
- Manoel Maraschin
- Department of Sanitation and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, Rio Grande Do Sul, 97105-900, Brazil.
| | - Nátalie de Paula
- Department of Sanitation and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, Rio Grande Do Sul, 97105-900, Brazil
| | - Elvis Carissimi
- Department of Sanitation and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, Rio Grande Do Sul, 97105-900, Brazil
| |
Collapse
|
3
|
Wang C, Lü Y, Qi H, Luo X, He L. Flotation mechanism and performance of air/condensate bubbles for removing oil droplets in the presence of acetic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172311. [PMID: 38599416 DOI: 10.1016/j.scitotenv.2024.172311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Flotation technology is widely utilized to remove emulsified oil droplets from Produced water. Organic acid adsorption on the oil droplet surface affects bubble attachment, reducing oil removal efficiency. This investigation exploited the principle of similar dissolution to synthesize condensate bubbles (CB). The surface properties of oil droplets and CB and air bubbles (AB) were appraised using FTIR, zeta potential, interfacial tension, and contact angle measurements. The research also investigated the effects of acetic acids (AA) on the adhesion of oil droplets to AB and CB along with the underlying mechanism via the Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) interaction theory and the Stefan-Reynolds model of liquid film thinning, integrated with adhesion times. Flotation efficiency and kinetic dissimilarities between AB and CB were also examined. The results indicated that CB exhibits superior lipophilic hydrophobicity compared to AB, reduced induction and spreading times upon oil droplet attachment, and maximized oil removal efficiency. Furthermore, CB could mitigate the impact of AA on adhesion. The interaction barriers between CB and oil droplets were minimal, and the thinning rate of the hydration film was quicker than in AB. The conventional first-order model proved effective in fitting the AB flotation, whereas a delay constant was applied to the model of the CB flotation rate.
Collapse
Affiliation(s)
- Ce Wang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, Shandong Province 266580, China
| | - Yuling Lü
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, Shandong Province 266580, China; Surface Engineering Pilot Test Center, CNPC, Heilongjiang, Daqing 163000, China.
| | - Hongwei Qi
- China Petroleum & Chemical Co., Ltd. of North Branch, Ordos, Inner Mongolia 017400, China
| | - Xiaoming Luo
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, Shandong Province 266580, China; Surface Engineering Pilot Test Center, CNPC, Heilongjiang, Daqing 163000, China
| | - Limin He
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, Shandong Province 266580, China; Surface Engineering Pilot Test Center, CNPC, Heilongjiang, Daqing 163000, China
| |
Collapse
|
4
|
Shen D, Li L, Luo J, Jia J, Tang L, Long Y, Shentu J, Lu L, Liu W, Qi S. Enhanced removal of toluene in heterogeneous aquifers through injecting encapsulated ozone micro-nano bubble water. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133810. [PMID: 38382340 DOI: 10.1016/j.jhazmat.2024.133810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Organic contaminants have a tendency to accumulate in low-permeability aquifers, making their removal challenging and creating a bottleneck in groundwater remediation efforts. The use of ozone micro-nano bubbles, due to their smaller size compared to traditional macrobubbles, shows potential for efficient penetration into the low-permeability aquifer and effective oxidization of contaminants. This study conducted batch experiments, column studies, and 2D tank experiments to systematically investigate the remediation efficiency of toluene in a heterogeneous aquifer using ozonated water (OW), ozone micro-bubble water (OMBW), and encapsulated ozone micro-nano bubble water (EOMBW) with rhamnolipid. Experimental results showed that rhamnolipid effectively increased the densities and reduced the sizes of micro-nano bubbles, leading to improved ozone preservation and enhanced toluene degradation. Nanobubbles exhibited higher mobility compared to microbubbles in porous media, while rhamnolipid increased the density of penetrated nanobubbles by 9.6 times. EOMBW demonstrated superior efficiency in oxidizing toluene in low-permeability aquifers, and a numerical model was developed to successfully simulate the ozone and toluene concentration. The model revealed that the increased oxidation rate by EOMBW was attributed to the preservation of ozone in micro-nano bubbles and the enhanced toluene oxidation rate. These findings contribute significantly to the application of EOMBW in heterogeneous aquifer remediation.
Collapse
Affiliation(s)
- Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Lili Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States
| | - Jia Jia
- Eco-Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310012, PR China
| | - Lu Tang
- Hangzhou Environmental Protection Co., Ltd, Hangzhou 310000, PR China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
5
|
El-Kalliny AS, Abdel-Wahed MS, El-Zahhar AA, Hamza IA, Gad-Allah TA. Nanomaterials: a review of emerging contaminants with potential health or environmental impact. DISCOVER NANO 2023; 18:68. [PMID: 37382722 PMCID: PMC10409958 DOI: 10.1186/s11671-023-03787-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 02/02/2023] [Indexed: 06/30/2023]
Abstract
Nanotechnologies have been advantageous in many sectors and gaining much concern due to the unique physical, chemical and biological properties of nanomaterials (NMs). We have surveyed peer-reviewed publications related to "nanotechnology", "NMs", "NMs water treatment", "NMs air treatment", and "NMs environmental risk" in the last 23 years. We found that most of the research work is focused on developing novel applications for NMs and new products with peculiar features. In contrast, there are relatively few of publications concerning NMs as environmental contaminants relative to that for NMs applications. Thus, we devoted this review for NMs as emerging environmental contaminants. The definition and classification of NMs will be presented first to demonstrate the importance of unifying the NMs definition. The information provided here should facilitate the detection, control, and regulation of NMs contaminants in the environment. The high surface-area-to-volume ratio and the reactivity of NMs contaminants cause the prediction of the chemical properties and potential toxicities of NPs to be extremely difficult; therefore, we found that there are marked knowledge gaps in the fate, impact, toxicity, and risk of NMs. Consequently, developing and modifying extraction methods, detection tools, and characterization technologies are essential for complete risk assessment of NMs contaminants in the environment. This will help also in setting regulations and standards for releasing and handling NMs as there are no specific regulations. Finally, the integrated treatment technologies are necessary for the removal of NMs contaminants in water. Also, membrane technology is recommended for NMs remediation in air.
Collapse
Affiliation(s)
- Amer S El-Kalliny
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mahmoud S Abdel-Wahed
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Adel A El-Zahhar
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ibrahim A Hamza
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Tarek A Gad-Allah
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
6
|
Facile Synthesis and Catalytic Activity Assessment of Cobalt Oxide Nanoparticles: Towards Advanced Energetic Nitramines. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Zhang M, Yang J, Kang Z, Wu X, Tang L, Qiang Z, Zhang D, Pan X. Removal of micron-scale microplastic particles from different waters with efficient tool of surface-functionalized microbubbles. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124095. [PMID: 33049633 DOI: 10.1016/j.jhazmat.2020.124095] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 05/06/2023]
Abstract
Microplastic (MP) contamination in water has garnered significantly global concerns. The MP removal particularly challenges when the particle size decreases to several microns and other contaminants co-exist. This study used the coagulative colloidal gas aphrons (CCGAs) to simultaneously remove the micron-scale MP particles (~5 µm in diameter) and dissolved organic matter (DOM). Carboxyl-modified poly-(methyl methacrylate) (PMMA) and unsurface-coated polystyrene (PS) were chosen as target MPs. Over 94% of PS particles and almost 100% of color were simultaneously removed with lower CCGA consumption than the scenarios with either contaminant in water. The PMMA removal was not as high as the PS removal since the HA polyanions could compete with the negatively-charged PMMA for CCGAs. High salinity reduced the removal of HA by changing its interfacial behaviors without impacting the MP separation. In river water or influent of wastewater treatment plant, the MP particles were almost completely eliminated whereas the DOM (tyrosine-like or tryptophan-like) was partially removed. The fluorescence quenching titration revealed that CCGAs preferably captured the free DOM and the DOM-coated MP particles through complexation interaction. The study denoted that the CCGA system could be a robust tool for efficiently and synergistically removing micron-scale MPs and DOM from different water matrixes.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen Kang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyou Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linfeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
8
|
Zhang M, Yang J, Tang L, Zhang D, Pan X. Lability-specific enrichment of typical engineered metal (oxide) nanoparticles by surface-functionalized microbubbles from waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137526. [PMID: 32120116 DOI: 10.1016/j.scitotenv.2020.137526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Enrichment of metallic engineered nanoparticles (MENPs) from environmental waters is a prerequisite for their removal, reliable analyses, and environmental process interpretations. This work investigated the enrichment of typical MENPs with different degrees of lability using surface-functionalized microbbubles. During the process, the transformation/dissolution characteristics of MENPs were considered, and the impact of surfactant or coagulant dose, pH of MENP suspensions, and water matrix was systematically investigated. Results show that the colloidal gas aphrons (CGAs) were capable of enriching over 90.0% of ionic Ag(I) which ended up as AgBr and Ag2CO3 in floats when the pH of suspension was 6.0. The polyaluminum chloride-modified CGAs with positive surface charges were good at capturing the particulate ZnO-NPs (~84.8%) but failed to collect the ionic species. It should be noted that the total MENP enrichment efficiency closely related to the content proportions of different species. In the river water, both of the dissolved natural organic matter (fulvic acids) and the electrolytes might influence the enrichment process by affecting the species transformation of Ag-NPs and ZnO-NPs. For the stable TiO2-NPs, 97.1% of the nanoparticles were captured by CGAs. FAs apparently reinforced the enrichment performance since the molecules acted as bridge and facilitated the attachment between TiO2-NP and CGAs. This work contributes to establishing the robust microbubble-induced enrichment method considering the characteristics of MENP contaminants.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linfeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|