1
|
Wu LJ, Ye F, Yang F, Lyu YK. Applicability of temperature-phased anaerobic digestion in enhancing methanation of high-solid sludge: Process performance, microbial community analysis and energy balance assessment. BIORESOURCE TECHNOLOGY 2025; 431:132614. [PMID: 40315927 DOI: 10.1016/j.biortech.2025.132614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/02/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
High-solid anaerobic digestion has been paid more attention, expected to solve the increasing amount of sewage sludge. In order to cope with the new issues of high-solid sludge digestion, recently emerging thermophilic (stage I)-mesophilic (stage II) temperature-phased anaerobic digestion (TPAD) process was employed to probe into its applicability in enhancing methanation. High-solid sludge at a total solid (TS) of above 15 % was fed to a TPAD process and a single-stage mesophilic digestion (MD) process continuously. The increasing loadings from 3.96 g chemical oxygen demand (COD)/L/d to 8.05 g COD/L/d were set by gradually shortening hydraulic retention time from 20 d to 10 d. Methane yield could be increased from 0.11 L/g CODadded to 0.15 L/g CODadded, with 10 % higher TS removal achieved in the TPAD. The reason could be attributed to improved hydrolysis of the main fraction protein. Despite acetic acid accumulation in stage I, surplus alkalinity supply rendered acid/alkalinity ratios much lower. The interaction between the 2 stages offered more diverse microbial community, which led to intensive adaptive ability to external shocking. The density of archaea for stage II /stage I increased nearly linearly with higher organic loading. As high as around 60 % Methanosarcina became the main mesophilic archaea. The dominant functional bacteria Firmicutes in stage II was also promoted. On the premise of enhanced conversion efficiency, additional energy input from heat requirement of thermophilic stage in the TPAD was proven to be compensated by improved methane production, leading to similar or even higher net energy production with the MD.
Collapse
Affiliation(s)
- Li-Jie Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 Shanxi, China.
| | - Fei Ye
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 Shanxi, China
| | - Fan Yang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 Shanxi, China
| | - Yong-Kang Lyu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 Shanxi, China
| |
Collapse
|
2
|
Oliveira HR, Anacleto TM, Abreu F, Enrich-Prast A. New insights into the factors influencing methanogenic pathways in anaerobic digesters. Anaerobe 2025; 91:102925. [PMID: 39617252 DOI: 10.1016/j.anaerobe.2024.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Anaerobic digestion integrates waste treatment, energy generation, and nutrient recycling, producing methane mainly through acetoclastic (AM) and hydrogenotrophic methanogenesis (HM). Methanogenic pathway management can improve biogas productivity and quality. The balance between pathways is influenced by environmental and physicochemical conditions, with conflicting results on the effect of different factors often reported. This systematic review aims to clarify the influence of various parameters on methanogenic pathways in anaerobic digesters. METHODS Literature search was conducted in the Web of Science and Scopus databases. The effects of different parameters on the predominant methanogenic pathway were evaluated using Kruskal-Wallis tests and Spearman's rank correlation. RESULTS Thermophilic temperatures and high free ammonia nitrogen concentrations (>300 mg L-1) increase HM, with a strong combined effect of these variables. Conversely, under moderate temperature and ammonia concentrations, the primary feedstock influences the methanogenic pathway, with algae biomass, pig manure, and food industry wastewater showing the lowest contribution of hydrogenotrophic methanogens. pH effect varied with temperature, with acidic and alkaline pH favoring HM in mesophilic and thermophilic digesters, respectively. Furthermore, higher levels of volatile fatty acids (>2000 mg L-1), carbohydrates (>10 g/L) and lipids (>10 g/L) also appeared to favor HM over AM, while most metals - especially Cr, Se and W - promoted AM. CONCLUSION This study emphasizes the role of various factors in methanogenic pathway selection, highlighting the impact of previously overlooked parameters, such as inorganic elements and organic matter composition. These insights are essential for understanding the methanogenic pathway balance and optimizing biogas processes.
Collapse
Affiliation(s)
- Helena Rodrigues Oliveira
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thuane Mendes Anacleto
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Enrich-Prast
- Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Thematic Studies - Environmental Change and Biogas Solutions Research Center (BSRC), Linköping University, Linköping, Sweden; Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Santos, Brazil.
| |
Collapse
|
3
|
Pratap V, Kumar S, Yadav BR. Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:696-720. [PMID: 39141030 DOI: 10.2166/wst.2024.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.
Collapse
Affiliation(s)
- Vinay Pratap
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Bholu Ram Yadav
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India E-mail:
| |
Collapse
|
4
|
Wu LJ, Li XX, Ye F, Liu YX, Yang F, Zhou Q, Lyu YK. Ammonia stripping by in situ biogas self-circulation to upgrade continuous thermophilic and mesophilic digestion of hydrothermal high-solid sludge. BIORESOURCE TECHNOLOGY 2024; 402:130797. [PMID: 38705214 DOI: 10.1016/j.biortech.2024.130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
High-solid anaerobic digestion of hydrothermal sewage sludge has been developed. In order to upgrade the process by focusing on ammonia inhibition, a simply-equipped stripping system without additional alkali or heat supply was introduced by in situ biogas self-circulation. As the determined limit of total ammonia nitrogen at 1500 mg/L and 1000 mg/L for the mesophilic (MAD) and thermophilic anaerobic digestion (TAD) respectively and stripping rate at 5 L/min, continuous MAD and TAD was conducted in parallel. The stripping system successfully polished up the ammonia inhibition, and methanogenic capability of the TAD was promoted to approximately 90.0 % of the potential. Intermittent stripping mode proved usable. More frequent stripping was inevitable for the TAD as compared to the MAD. Hydraulic retention time below 20 d resulted in failure of the stripping mode due to rapid ammonia generation. Overall, this technology was practical in upgrading high-solid sludge digestion by effective ammonia control.
Collapse
Affiliation(s)
- Li-Jie Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Xiao-Xiao Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, Shanxi, China
| | - Fei Ye
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yu-Xiang Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, Shanxi, China
| | - Fan Yang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Quan Zhou
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yong-Kang Lyu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
5
|
Liu W, Sun C, Li W, Li T, Chen Z, Wang J, Ren Z, Wen X. Sludge composition and characteristics shaped microbial community and further determined process performance: A study on full-scale thermal hydrolysis-anaerobic digestion processes. J Environ Sci (China) 2024; 137:96-107. [PMID: 37980058 DOI: 10.1016/j.jes.2022.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 11/20/2023]
Abstract
Anaerobic digestion (AD) with thermal hydrolysis (TH) pretreatment is a promising process for excess sludge treatment, while there lacks of the knowledge from full-scale process about the impact of sludge composition and characteristics on microbial community and performance. The sludge physiochemical indices, microbial community and performance data of four full-scale TH-AD plants were characterized, and their relationships was elucidated. The four plants were operated under almost similar total organic loading rate (OLR) but their methanogenesis performance differentiate into two groups, namely superior group (SupG) and the inferior group (InfG). In both groups, TH effectively solubilized particulate organic compounds, meanwhile raised the ammonia nitrogen (NH4+-N) and volatile fatty acid (VFA) concentration. Compared with the SupG, thermal hydrolyzed sludge of InfG had higher level of VFAs, NH4+-N and total chemical oxygen demand (tCOD), which showed higher inhibition effect on microbes, leading to a community with lower diversity, lower abundance of carbohydrate degrading functional guild, higher protein degrading one, and methanogens that adapted to limited substrates, and further declined the methane production rate. Thus, it was recommended that OLR alone was not sufficient for controlling the system in design and operation, the concentration of VFAs, NH4+-N and tCOD should be equally considered. Their higher concentration, together with the higher abundance of Defluviitoga and Proteiniphilum were recommended as indicators for inferior running condition. Our results proposed that microbial communities played a role of bridge between environmental factors and performance, provided implications for engineering ecology and operational regulation for full-scale sludge TH-AD process.
Collapse
Affiliation(s)
- Wei Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chenxiang Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Jinneng Holding Group, Datong, Shanxi 037000, China
| | - Wei Li
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China; Beijing Dabeinong Science and Technology Group Co., Ltd., Beijing 100080, China
| | - Tianle Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhan Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiawei Wang
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Zhengran Ren
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Chen P, Wang E, Zheng Y, Ran X, Ren Z, Guo J, Dong R. Synergistic effect of hydrothermal sludge and food waste in the anaerobic co-digestion process: microbial shift and dewaterability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18723-18736. [PMID: 38349498 DOI: 10.1007/s11356-024-32282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
While thermal hydrolysis technology is commonly employed for sewage sludge treatment in extensive wastewater treatment facilities, persistent challenges remain, including issues such as ammonia-induced digestive inhibition and reduced productivity stemming from nutrient deficiency within the hydrothermal sludge. In this study, the effects of hydrothermal sludge-to-food waste mixing ratios and fermentation temperatures on anaerobic co-digestion were systematically investigated through a semi-continuous experiment lasting approximately 100 days. The results indicated that anaerobic co-digestion of hydrothermal sludge and food waste proceeded synergistically at any mixing ratio, and the synergistic effect is mainly attributed to the improvement of carbohydrate removal and digestive system stability. However, thermophilic digestion did not improve the anaerobic performance and methane yield. On the contrary, mesophilic digestion performed better in terms of organic matter removal, especially in the utilization of soluble carbohydrates, soluble proteins, and VFAs. Microbial community analysis revealed that the transition from mesophilic to thermophilic anaerobic co-digestion prompts changes in the methane-producing pathways. Specifically, the transition entails a gradual shift from pathways involving acetoclastic and hydrogenotrophic methanogenesis to a singular hydrogenotrophic methanogenesis pathway. This shift is driven by thermodynamic tendencies, as reflected in Gibbs free energy, as well as environmental factors like ammonia nitrogen and volatile fatty acids. Lastly, it is worth noting that the introduction of food waste did lead to a reduction in cake solids following dewatering. Nevertheless, it was observed that thermophilic digestion had a positive impact on dewatering performance.
Collapse
Affiliation(s)
- Penghui Chen
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Enzhen Wang
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yonghui Zheng
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Xueling Ran
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Zhengran Ren
- Beijing Drainage Group Co. Ltd, Beijing, 100022, China
| | - Jianbin Guo
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
- Yantai Institute, China Agricultural University, Yantai, 264032, Shandong, People's Republic of China
| |
Collapse
|
7
|
Gao S, Chen Z, Zhu S, Yu J, Wen X. Enhancement of medium-chain fatty acids production from sludge anaerobic fermentation liquid under moderate sulfate reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120459. [PMID: 38402788 DOI: 10.1016/j.jenvman.2024.120459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
In recent years, there has been a marked increase in the production of excess sludge. Chain-elongation (CE) fermentation presents a promising approach for carbon resource recovery from sludge, enabling the transformation of carbon into medium-chain fatty acids (MCFAs). However, the impact of sulfate, commonly presents in sludge, on the CE process remains largely unexplored. In this study, batch tests for CE process of sludge anaerobic fermentation liquid (SAFL) under different SCOD/SO42- ratios were performed. The moderate sulfate reduction under the optimum SCOD/SO42- of 20:1 enhanced the n-caproate production, giving the maximum n-caproate concentration, selectivity and production rate of 5.49 g COD/L, 21.4% and 4.87 g COD/L/d, respectively. The excessive sulfate reduction under SCOD/SO42- ≤ 5 completely inhibited the CE process, resulting in almost no n-caproate generation. The variations in n-caproate production under different conditions of SCOD/SO42- were all well fitted with the modified Gompertz kinetic model. Alcaligenes and Ruminococcaceae_UCG-014 were the dominant genus-level biomarkers under moderate sulfate reduction (SCOD/SO42- = 20), which enhanced the n-caproate production by increasing the generation of acetyl-CoA and the hydrolysis of difficult biodegradable substances in SAFL. The findings presented in this work elucidate a strategy and provide a theoretical framework for the further enhancement of MCFAs production from excess sludge.
Collapse
Affiliation(s)
- Shan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Shihui Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinlan Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Chen Z, Zhu S, Gao S, Sun C, Tian Z, Wen X. A hyperthermophilic anaerobic fermentation platform for highly efficient short chain fatty acids production from thermal hydrolyzed sludge. WATER RESEARCH 2023; 243:120434. [PMID: 37573843 DOI: 10.1016/j.watres.2023.120434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
In this study, a carboxylate platform of hyperthermophilic (70 ℃) anaerobic fermentation (HAF) for short chain fatty acids (SCFAs) production from thermal hydrolyzed sludge (THS) was established. The long-term performance for SCFAs production and the microbial communities of this HAF under different SRTs were systematically investigated. Under the optimum SRT of 3 d, the HAF had the highest acetate production rate of 1.12 g COD/L/d which accounted for 60% in SCFAs. It also rendered a good performance in SCFAs production, with concentration, production rate and yield of 6.61 g COD/L, 1.86 g COD/L/d and 324 g COD/kg VSSin, respectively. Nearly no biogas produced from this system, which reduced the loss of carbon sources from the system. This was due to the inhibition of methanogenesis by the hyperthermophilic condition and the high content of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN). Tepidimicrobium, Bhargavaea and XBB1006 were the dominant genus-level biomarkers under the optimum SRT, which facilitated the decomposition of monosaccharides, amino acids, terpenoids and polyketides into SCFAs. This work provides an applicable anaerobic carboxylate platform for highly efficient SCFAs production from excess sludge.
Collapse
Affiliation(s)
- Zhan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shihui Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shan Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chenxiang Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zeshen Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Wang J, Sun Y, Zhang D, Broderick T, Strawn M, Santha H, Pallansch K, Deines A, Wang Z. Unblocking the rate-limiting step of the municipal sludge anaerobic digestion. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10793. [PMID: 36184901 PMCID: PMC9827873 DOI: 10.1002/wer.10793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/24/2022] [Accepted: 09/03/2022] [Indexed: 05/31/2023]
Abstract
Anaerobic digestion stabilizes municipal sludge through total solids reduction and biogas production. It is generally accepted that hydrolysis accounts for the rate-limiting step of municipal sludge anaerobic digestion, impacting the overall rates of solids reduction and methane production. Technically, the sludge hydrolysis rate can be enhanced by the application of thermal hydrolysis pretreatment (THP) and is also affected by the total solids concentration, temperature, and solids retention time used in the anaerobic digestion. This study systematically analyzed and compared ways to take these four factors into the consideration of modern anaerobic digestion system for achieving the maximum solid reduction. Results showed that thermophilic anaerobic digestion was superior to mesophilic anaerobic digestion in terms of solids reduction but vice versa in terms of the methane production when integrated with THP. This difference has to do with the intermediate product accumulation and inhibition when hydrolysis outpaced methanogenesis in THP-enhanced thermophilic anaerobic digestion, which can be mitigated by adjusting the solids retention time. PRACTITIONER POINTS: THP followed by TAD offers the greatest solids reduction rate. THP followed by MAD offered the greatest methane production rate. FAN inhibition appears to be an ultimate limiting factor constraining the methane production rate. In situ ammonia removal technique should be developed to further unblock the rate-limiting step.
Collapse
Affiliation(s)
- Jiefu Wang
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Yuepeng Sun
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | | | - Tom Broderick
- Arlington County Water Pollution Control BureauArlingtonVirigniaUSA
| | - Mary Strawn
- Arlington County Water Pollution Control BureauArlingtonVirigniaUSA
| | - Hari Santha
- Alexandria Renew EnterprisesAlexandriaVirginiaUSA
| | | | | | - Zhi‐Wu Wang
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
10
|
Zhang L, Gong X, Chen Z, Zhou Y. Genome-centric metagenomics analysis revealed the metabolic function of abundant microbial communities in thermal hydrolysis-assisted thermophilic anaerobic digesters under propionate stress. BIORESOURCE TECHNOLOGY 2022; 360:127574. [PMID: 35792328 DOI: 10.1016/j.biortech.2022.127574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The ecological roles of microbial communities and how they interact with each other in thermal hydrolysis process (THP) assisted thermophilic anaerobic digestion (THP-AD) reactors remain largely unknown, especially under propionate stress. Two thermophilic THP-AD reactors had methane yield of 240-248 mL/g VSadded, but accumulated approximately 2000 mg/L propionate. Genome-centric metagenomics analysis showed that 68 metagenome-assembled genomes (MAGs) were recovered, 32 MAGs of which were substantially enriched. Firmicutes spp. dominated the enriched microbial community, including hydrolytic/fermentative bacteria and syntrophs. Methanogenic activities were mainly mediated by Methanosarcina sp. and Methanothermobacter spp. In addition to hydrogenotrophic methanogens, Thermodesulfovibrio sp. could also be a vital H2 scavenger, contributing to maintaining low H2 partial pressure in the bioreactors. The remarkable accumulation of propionate could be likely attributed to the weak syntrophic propionate-oxidizing activity or its absence. These findings advanced our knowledge about the mutualistic symbiosis of carbon metabolism in thermophilic THP-AD reactors.
Collapse
Affiliation(s)
- Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
11
|
Zhang L, Ban Q, Li J, Zhang S. An enhanced excess sludge fermentation process by anthraquinone-2-sulfonate as electron shuttles for the biorefinery of zero-carbon hydrogen. ENVIRONMENTAL RESEARCH 2022; 210:113005. [PMID: 35231458 DOI: 10.1016/j.envres.2022.113005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 05/23/2023]
Abstract
Excess sludge (ES) largely produced in municipal wastewater treatment plants is known as a waste biomass and the traditional treatment processes such as landfill and incineration are considered as unsustainable due to the negative environmental impact. Fermentation process of ES for the biorefinery of zero-carbon hydrogen has attracted an increasing interesting and was extensively researched in the last decades. However, the technology is far from commercial application due to the insufficient effectivity. In the present study, anthraquinone-2-sulfonate (AQS) as electron shuttles was introduced into the fermentation process of ES for mediating the composition and activity of bacterial community to get an enhanced biohydrogen production. Inoculated with the same anaerobic activated sludge of 1.12 gVSS/L, a series of batch anaerobic fermentation systems with various dosage of AQS were conducted at the same ES load of 2.75 gVSS/L, initial pH 6.5 and 35 °C. The results showed that the fermentation process was remarkably enhanced by the introduction of 100 mg/L AQS, accompanying the lag phase was shortened to 1.35 h from 7.62. The obtained biohydrogen yield and the specific biohydrogen production rate were also remarkably enhanced to 24.9 mL/gVSS and 0.3 mL/(gVSS·h), respectively. Illumina Miseq sequencing showed that Longilinea and Guggenheimella as the dominant genera had been enriched from 9.2% to 0-12.0% and 4.7%, respectively, in the presence of 100 mg/L AQS. Function predicted analysis suggested that the presence of AQS had increased the abundance of genes involved in the transport and metabolism of carbohydrate, amino acid and energy production. Further redundancy analysis (RDA) revealed that the enhanced hydrogen production was highly positively correlated with the enrichment of genera such as Longilinea and Guggenheimella. The research work presents a novel potential biorefinery of ES for the effective production of zero-carbon hydrogen.
Collapse
Affiliation(s)
- Liguo Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Qiaoying Ban
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China.
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Siyu Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
12
|
Zhang L, Gong X, Xu R, Guo K, Wang L, Zhou Y. Responses of mesophilic anaerobic sludge microbiota to thermophilic conditions: Implications for start-up and operation of thermophilic THP-AD systems. WATER RESEARCH 2022; 216:118332. [PMID: 35364350 DOI: 10.1016/j.watres.2022.118332] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) has been widely employed for wastewater and organic waste treatment, in which methanogenesis is highly driven by close microbial interactions among intricate microbial communities. However, the ecological processes underpinning the community assembly that support methanogenesis in such engineered ecosystems remain largely unknown, especially when exposed to challenging circumstances (e.g., high temperature, ammonium content). Here, eight AD bioreactors were seeded with four different inocula (two from full-scale mesophilic AD systems and the other two from lab-scale mesophilic AD systems), and were operated under thermophilic conditions (55 °C) for treating thermal hydrolysis process (THP) pre-treated waste activated sludge to investigate how mesophilic community responds to thermophilic conditions during the long-term cultivation. Results showed that the inocula collected from the full-scale systems were more resilient than that from the lab-scale systems, which may be primarily attributed to indigenous robust methanogens. As a result, the former efficiently generated methane which was predominantly contributed by Methanothermobacter and Methanosarcina (healthy AD ecosystem), while methanogenic activity was remarkably prohibited in the latter (dysfunctional AD ecosystem). Thermophilic environment was a strong selection force, resulting in the convergence of microbial communities in both the healthy and dysfunctional AD ecosystems. Deterministic processes predominated the community assembly regardless of AD ecosystem function, but stronger influences of stochastic processes were observed in dysfunctional AD ecosystems, which was likely attributable from the stronger effect of immigrants from the feedstock. As indicated by molecular ecological network analysis, the microbial network structures in the healthy AD ecosystems were more stable than those in the dysfunctional AD ecosystems. Although keystone taxa were different among the bioreactors, most of which played vital roles in organic hydrolysis/fermentation. To sum up, this study greatly improved our understanding of the relationships between microbiological traits and AD ecosystem function under thermophilic conditions, which could provide useful information to guide thermophilic AD (e.g., THP-AD) start-up and health diagnosis during operation.
Collapse
Affiliation(s)
- Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kun Guo
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
13
|
Wei Y, Gao Y, Yuan H, Chang Y, Li X. Effects of organic loading rate and pretreatments on digestion performance of corn stover and chicken manure in completely stirred tank reactor (CSTR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152499. [PMID: 34968582 DOI: 10.1016/j.scitotenv.2021.152499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The performance, system stability, and microbial community response in anaerobic co-digestion (AcoD) of corn stover (CS) and chicken manure (CM) were investigated by running completely stirred tank reactor (CSTR) under controlled organic loading rate (OLR). Prior to anaerobic digestion (AD), potassium hydroxide (KOH) or liquid fraction of digestate (LFD) was applied to pretreat CS, respectively. The results showed that the daily biogas production (DBP) in co-digestion showed a gradual increasing trend with an increase in the OLR from 65 g TS·L-1 to 100 g TS·L-1. The daily methane production per g volatile solids (DMP-VS) in co-digestion increased by 23.0%-27.1%, 18.7%-18.8%, and 17.5%-18.0% at the OLRs of 65, 80, and 100 g TS·L-1, respectively, upon pretreatment with KOH or LFD, as compared to that in co-digestion CSTR without any pretreatment. In addition, all co-digestion CSTRs were operated in stable state. Approximately half of the total carbon in the substrates was recovered in the form of a biogas product, with the carbon mass balance being impacted by the OLR as well as pretreatment. The diversity as well as function of the microbial community varied in response to different OLRs and pretreatment methods. The majority of bacterial genera were strongly correlated with operational parameters. The study indicates that management of OLR and selection of proper pretreatment method could enhance the efficiency and productivity of CS and CM co-digestion in CSTR.
Collapse
Affiliation(s)
- Yufang Wei
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China; State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yuan Gao
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Hairong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Yanqing Chang
- WELLE Environmental Group Co., Ltd., No. 156, Hanjiang Road, Xinbei District, Changzhou, Jiangsu 213125, PR China
| | - Xiujin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
14
|
Li MT, Rao L, Wang L, Gou M, Sun ZY, Xia ZY, Song WF, Tang YQ. Bioaugmentation with syntrophic volatile fatty acids-oxidizing consortia to alleviate the ammonia inhibition in continuously anaerobic digestion of municipal sludge. CHEMOSPHERE 2022; 288:132389. [PMID: 34606893 DOI: 10.1016/j.chemosphere.2021.132389] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 05/23/2023]
Abstract
Ammonia inhibition easily affects the performance of anaerobic digestion (AD) for municipal sludge and the oxidization of volatile fatty acids (VFAs) is the rate-limiting step of this process. Bioaugmentation is considered to be an effective method to alleviate ammonia inhibition of AD, but most study used the hydrogenotrophic methanogens as the bioaugmentation culture. In this study, bioaugmentation of mesophilic AD (MAD) and thermophilic AD (TAD) under ammonia inhibition with syntrophic acetate and propionate oxidizing consortia was investigated. The results showed that the bioaugmented reactors recovered earlier than control reactors with 20 (MAD) and 8 (TAD) days, respectively. The high-throughput 16S rRNA gene sequencing indicated that the relative abundance of carbohydrates fermenter (Lentimicrobium), syntrophic VFAs-oxidizing bacteria (Rikenellaceae_DMER64, Smithella and Syntrophobacter) and acetoclastic and hydrogenotrophic methanogens (Methanosaeta, Methanolinea and Methanospirillum) increased in MAD after bioaugmentation. However, part of the bioaugmentation culture could not adapt to the high free ammonia (FAN) concentration in MAD and the effect was weakened. In TAD, proteolytic bacteria (Keratinibaculum and Tepidimicrobium), syntrophic VFAs-oxidizing bacteria (Syntrophomonas) and hydrogenotrophic methanogen (Methanosarcina) were strengthened. The effect of bioaugmentation in TAD was durable even at higher organic loading rate (OLR), due to its positive influence on microbial community. These results suggested that the different bioaugmentation mechanism occurred in MAD and TAD, which are derived from the synergetic effects of ammonia tolerance and microbial interactions. Our study revealed the VFAs-oxidizing consortia as bioaugmented culture could be the potential strategy to alleviate the ammonia stress of AD.
Collapse
Affiliation(s)
- Mao-Ting Li
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Ling Rao
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing, 100083, PR China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China.
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Wen-Feng Song
- Research Institute of Petroleum Exploration and Development, CNPC, Beijing, 100083, PR China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan, 610065, China
| |
Collapse
|
15
|
Zhang L, Guo K, Wang L, Xu R, Lu D, Zhou Y. Effect of sludge retention time on microbial succession and assembly in thermal hydrolysis pretreated sludge digesters: Deterministic versus stochastic processes. WATER RESEARCH 2022; 209:117900. [PMID: 34902758 DOI: 10.1016/j.watres.2021.117900] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/06/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Thermal hydrolysis process (THP) assisted anaerobic digestion (AD) has been demonstrated to be an efficient approach to improve biogas production and solids reduction. Given the faster reaction kinetics in the THP-AD system, reduction of sludge retention time (SRT) is possible. However, a comprehensive understanding of the effects of sludge retention time (SRT) on microbial dynamics and community assemblages is still lacking in THP-AD systems. Thus, twelve THP-AD reactors were operated at different SRTs (10-30 d) to fulfill the knowledge gap. Results showed that, although all the bioreactors displayed good performance, shorter SRT reactors (SRT 10 d) took a longer time to reach the stable state. The total biogas production at SRT of 10 d was lower than that at other longer SRTs, attributing to the limited hydrolytic/fermentative capacities of AD microbiomes. Different SRTs resulted in distinct succession patterns of AD microbiomes. THP sludge reduced the microbial diversity in all the bioreactors over time, but longer SRTs maintained higher biodiversity. Null model analysis suggested that THP-AD microbial community assembly was predominately driven by deterministic selection at the tested SRT range, but stochasticity increased with elevated SRTs, likely attributing to the immigrants from the feedstock. Phylogenetic molecular ecological networks (pMENs) analysis revealed more stable network structures at longer SRTs, evidenced by the lower modularity, shorter harmonic geodesic distance, and higher connectivity. The potential keystone taxa under varied SRTs were identified, some of which were hydrolytic/fermentative bacteria (e.g., Peptostreptococcus, Lutispora, Synergistaceae), suggesting that these species related to organic hydrolysis/fermentation even with low-abundance could still play pivotal ecological roles in maintaining the THP-AD microbial community structure and functions. Collectively, this study provides comprehensive and in-depth insights into the mechanisms underlying community assembly in THP-AD reactors, which could aid in diagnosing system stability.
Collapse
Affiliation(s)
- Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Kun Guo
- Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Dan Lu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
16
|
Ban Q, Zhang L, Li J. Correlating bacterial and archaeal community with efficiency of a coking wastewater treatment plant employing anaerobic-anoxic-oxic process in coal industry. CHEMOSPHERE 2022; 286:131724. [PMID: 34388873 DOI: 10.1016/j.chemosphere.2021.131724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Coking wastewater (CWW) contains various complex pollutants, and biological treatment processes are frequently applied in the coking wastewater treatment plants (CWWTPs). The present work is to evaluate the contaminants removal of a full-scale CWWTP with an anaerobic-anoxic-oxic process (A/A/O), to reveal function of bacterial and archaeal community involved in different bioreactors, and to clarify the relationship between the performance and microbial community. Illumina Miseq sequencing of bacteria showed that β-proteobacteria dominated in three bioreactors with relative abundance of 60.2%~81.7%. 75.2% of sequences were assigned to Petrobacter in the bioreactor A1, while Thiobacillus dominated in A2 and O with relative abundance of 31.8% and 38.7%, respectively. Illumina Miseq sequencing of archaea revealed a high diversity of methanogens existed in A1 and A2 activated sludge. Moreover, Halostagnicola was the dominant archaea in A1 and A2 activated sludge with relative abundance of 41.8% and 66.5%, respectively. Function predicted analysis explored that function of bacteria was similar to that of archaea but the relative abundance differed from each other. A putative biodegradation model of CWW treatment in A/A/O process indicated that A1 and A2 activated sludge mainly reduced carbohydrate, protein, TN, phenol and cyanide, as well as methane production. Bacteria in the bioreactor O were responsible for aerobic biotransformation of residual carbohydrates, refractory organics and nitrification. The redundancy analysis (RDA) further revealed that removal of COD, TN, and NO3--N, phenol and cyanides were highly correlated with some anaerobic bacteria and archaea, whereas the transformation of NH4+-N was positively correlated with some aerobic bacteria.
Collapse
Affiliation(s)
- Qiaoying Ban
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Liguo Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
17
|
Zhang L, Gong X, Wang L, Guo K, Cao S, Zhou Y. Metagenomic insights into the effect of thermal hydrolysis pre-treatment on microbial community of an anaerobic digestion system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148096. [PMID: 34118665 DOI: 10.1016/j.scitotenv.2021.148096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Thermal hydrolysis process (THP) is an effective pre-treatment method to reduce solids volume and improve biogas production during anaerobic digestion (AD) via increasing the biodegradability of waste activated sludge (WAS). However, the effects of THP pre-treated sludge on microbial diversity, interspecies interactions, and metabolism in AD systems remain largely unknown. We therefore setup and operated an anaerobic digester during a long-term period to shed light on the effect of THP pre-treatment on AD microbial ecology in comparison to conventional AD via Illumina based 16S rRNA gene amplicon sequencing and genome-centric metagenomics analysis. Results showed THP sludge significantly reduced the microbial diversity, shaped the microbial community structure, and resulted in more intense microbial interactions. Compared to WAS as the feed sludge, THP sludge shaped the core functional groups, but functional redundancy ensured the system's stability. The metabolic interactions between methanogens and syntrophic bacteria as well as the specific metabolic pathways were further elucidated. Hydrogenotrophic methanogens, Methanospirillum sp. and Methanolinea sp., were the primary contributors for methane production when treating THP and WAS, respectively, which also have potential for acetate oxidation to methane. Collectively, this study provides in-depth information on the interspecies interactions to better understand how THP pre-treatment influences AD microbial community.
Collapse
Affiliation(s)
- Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Kun Guo
- Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
18
|
High-Solid Anaerobic Digestion: Reviewing Strategies for Increasing Reactor Performance. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-solid and solid-state anaerobic digestion are technologies capable of achieving high reactor productivity. The high organic load admissible for this type of configuration makes these technologies an ideal ally in the conversion of waste into bioenergy. However, there are still several factors associated with these technologies that result in low performance. The economic model based on a linear approach is unsustainable, and changes leading to the development of a low-carbon model with a high degree of circularity are necessary. Digestion technology may represent a key driver leading these changes but it is undeniable that the profitability of these plants needs to be increased. In the present review, the digestion process under high-solid-content configurations is analyzed and the different strategies for increasing reactor productivity that have been studied in recent years are described. Percolating reactor configurations and the use of low-cost adsorbents, nanoparticles and micro-aeration seem the most suitable approaches to increase volumetric production and reduce initial capital investment costs.
Collapse
|
19
|
Wu LJ, Li XX, Liu YX, Yang F, Zhou Q, Ren RP, Lyu YK. Optimization of hydrothermal pretreatment conditions for mesophilic and thermophilic anaerobic digestion of high-solid sludge. BIORESOURCE TECHNOLOGY 2021; 321:124454. [PMID: 33285502 DOI: 10.1016/j.biortech.2020.124454] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Hydrothermal pretreatment (HTP) conditions were optimized for continuous mesophilic (MAD) and thermophilic (TAD) anaerobic digestion of high-solid sludge (10-11% total solids). COD solubilization increased with prolonged HTP durations, and became not significant after 210 min. According to the methane production rate and energy consumption, the optimal HTP temperature was determined at 160 °C. Regarding continuous operation without HTP, TAD achieved higher methane yield and volatile solids (VS) reduction, at 0.12 L/g VSadded and 23.9%, respectively. After HTP, methane yield and VS reduction in MAD and TAD were increased by 400% and 191% (MAD), 67% and 72% (TAD), respectively. TAD was limited due to the inhibition from about 2800 mg/L of NH4+-N concentration. The methanogenic activity of MAD was enhanced, whereas TAD displayed a reduced value owing to ammonia inhibition. Ultimately, MAD with HTP and TAD without HTP achieved the higher energy balance, 5.25 and 3.27 kJ/g VS, respectively.
Collapse
Affiliation(s)
- Li-Jie Wu
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xiao-Xiao Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yu-Xiang Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fan Yang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Quan Zhou
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Rui-Peng Ren
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yong-Kang Lyu
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|