1
|
van Hassel F, Bovenkerk B. Bringing Back a Scientific and Updated Approach to Wildlife Conservation: A Response. Reply to Beltrán, J.F.; Rodríguez-Rodríguez, E.J. Relying on Incomplete Information Can Lead to the Wrong Conclusions. Comment on "van Hassel, F.; Bovenkerk, B. How Should We Help Wild Animals Cope with Climate Change? The Case of the Iberian Lynx. Animals 2023, 13, 453". Animals (Basel) 2024; 14:184. [PMID: 38254352 PMCID: PMC10812807 DOI: 10.3390/ani14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 01/24/2024] Open
Abstract
We are pleased that our paper on the need to extend climate justice to animals [...].
Collapse
Affiliation(s)
| | - Bernice Bovenkerk
- Philosophy Group, Department of Communication, Philosophy, Technology, and Education (CPTE), Wageningen University and Research, Hollandseweg 1, 6706 KN Wageningen, The Netherlands
| |
Collapse
|
2
|
Keppel G, Sarnow U, Biffin E, Peters S, Fitzgerald D, Boutsalis E, Waycott M, Guerin GR. Population decline in a Pleistocene refugium: Stepwise, drought-related dieback of a South Australian eucalypt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162697. [PMID: 36898535 DOI: 10.1016/j.scitotenv.2023.162697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Refugia can facilitate the persistence of species under long-term environmental change, but it is not clear if Pleistocene refugia will remain functional as anthropogenic climate change progresses. Dieback in populations restricted to refugia therefore raises concerns about their long-term persistence. Using repeat field surveys, we investigate dieback in an isolated population of Eucalyptus macrorhyncha during two droughts and discuss prospects for its continued persistence in a Pleistocene refugium. We first confirm that the Clare Valley in South Australia has constituted a long-term refugium for the species, with the population being genetically highly distinct from other conspecific populations. However, the population lost >40 % of individuals and biomass through the droughts, with mortality being just below 20 % after the Millennium Drought (2000-2009) and almost 25 % after the Big Dry (2017-2019). The best predictors of mortality differed after each drought. While north-facing aspect of a sampling location was significant positive predictor after both droughts, biomass density and slope were significant negative predictors only after the Millennium Drought, and distance to the north-west corner of the population, which intercepts hot, dry winds, was a significant positive predictor after the Big Dry only. This suggests that more marginal sites with low biomass and sites located on flat plateaus were more vulnerable initially, but that heat-stress was an important driver of dieback during the Big Dry. Therefore, the causative drivers of dieback may change during population decline. Regeneration occurred predominantly on southern and eastern aspects, which would receive the least solar radiation. While this refugial population is experiencing severe decline, some gullies with lower solar radiation appear to support relatively healthy, regenerating stands of red stringybark, providing hope for persistence in small pockets. Monitoring and managing these pockets during future droughts will be essential to ensure the persistence of this isolated and genetically unique population.
Collapse
Affiliation(s)
- Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Udo Sarnow
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia
| | - Ed Biffin
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Stefan Peters
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Donna Fitzgerald
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Evan Boutsalis
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Michelle Waycott
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Greg R Guerin
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Pompa-García M, Camarero JJ, Valeriano C, Vivar-Vivar ED. Climate sensitivity of seasonal radial growth in young stands of Mexican conifers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1711-1723. [PMID: 35672588 PMCID: PMC9300551 DOI: 10.1007/s00484-022-02312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Alteration of forest by climate change and human activities modify the growth response of trees to temperature and moisture. Growth trends of young forests with even-aged stands recruited recently when the climate became warmer and drier are not well known. We analyze the radial growth response of young conifer trees (37-63 years old) to climatic parameters and drought stress employing Pearson correlations and the Vaganov-Shashkin Lite (VS-Lite) model. This study uses tree rings of six species of conifer trees (Pinus teocote, Pinus pseudostrobus, Pinus pinceana, Pinus montezumae, Pinus ayacahuite, and Taxodium mucronatum) collected from young forests with diverse growth conditions in northern and central Mexico. Seasonal ring growth and earlywood width (EW) were modeled as a function of temperature and soil moisture using the VS-Lite model. Wet and cool conditions in the previous winter and current spring enhance ring growth and EW production, mainly in sensitive species from dry sites (P. teocote, P. pseudostrobus, P. pinceana, and P. montezumae), whereas the growth of species from mesic sites (P. ayacahuite and T. mucronatum) shows little responsiveness to soil moisture. In P. ayacahuite and T. mucronatum, latewood growth is enhanced by warm summer conditions. The VS-Lite model shows that low soil moisture during April and May constrains growth in the four sensitive species, particularly in P. pinceana, the species dominant in the most xeric sites. Assessing seasonal ring growth and combining its response to climate with process-based growth models could complement xylogenesis data. Such framework should be widely applied, given the predicted warming and its impact on young forests.
Collapse
Affiliation(s)
- Marin Pompa-García
- Facultad de Ciencias Forestales y Ambientales de la Universidad Juárez del Estado de Durango, Rio Papaloapan Y Blvd. Durango S/N. Col. Valle del Sur, 34120 Durango, Mexico
| | - J. Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| | - Eduardo D. Vivar-Vivar
- Facultad de Ciencias Forestales y Ambientales de la Universidad Juárez del Estado de Durango, Rio Papaloapan Y Blvd. Durango S/N. Col. Valle del Sur, 34120 Durango, Mexico
| |
Collapse
|
4
|
Dakhil MA, El-Barougy RF, El-Keblawy A, Farahat EA. Clay and climatic variability explain the global potential distribution of Juniperus phoenicea toward restoration planning. Sci Rep 2022; 12:13199. [PMID: 35915116 PMCID: PMC9343647 DOI: 10.1038/s41598-022-16046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Juniperus phoenicea is a medicinal conifer tree species distributed mainly in the Mediterranean region, and it is IUCN Red Listed species, locally threatened due to arid conditions and seed over-collection for medicinal purposes, particularly in the East-Mediterranean region. Several studies have addressed the potential distribution of J. phoenicea using bioclimatic and topographic variables at a local or global scale, but little is known about the role of soil and human influences as potential drivers. Therefore, our objectives were to determine the most influential predictor factors and their relative importance that might be limiting the regeneration of J. phoenicea, in addition, identifying the most suitable areas which could be assumed as priority conservation areas. We used ensemble models for species distribution modelling. Our findings revealed that aridity, temperature seasonality, and clay content are the most important factors limiting the potential distribution of J. phoenicea. Potentially suitable areas of the output maps, in which J. phoenicea populations degraded, could be assumed as decision-support tool reforestation planning. Other suitable areas, where there was no previous tree cover are a promising tool for afforestation and conservation planning. Finally, conservation actions are needed for natural habitats, particularly in the arid and semi-arid regions, which are highly threatened by global warming.
Collapse
Affiliation(s)
- Mohammed A Dakhil
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Reham F El-Barougy
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, Egypt.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Emad A Farahat
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
5
|
Gazol A, Camarero JJ. Compound climate events increase tree drought mortality across European forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151604. [PMID: 34780817 DOI: 10.1016/j.scitotenv.2021.151604] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Climate change can lead to the simultaneous occurrence of extreme droughts and heat waves increasing the frequency of compound events with unknown impacts on forests. Here we use two independent datasets, a compiled database of tree drought mortality events and the ICP-Forest level I plots, to study the impacts of the simultaneous occurrence of hot summers, with elevated vapour pressure deficit (VPD), and dry years on forest defoliation and mortality across Europe. We focused on tree drought mortality and background mortality rates, and we studied their co-occurrence with compound events of hot summers and dry years. In total, 143 out of 310 mortality events across Europe, i.e. 46% of cases, corresponded with rare compound events characterized by hot summers and dry years. Over the past decades, summer temperature increased in most sites and severe droughts resulted in compound events not observed before the 1980s. From the ICP-Forest plots we identified 291 (1718 trees) and 61 plots (128 trees) where severe defoliation and mortality, respectively, were caused by drought. The analyses of these events showed that 34% and 27% of the defoliation and mortality cases corresponded with rare compound climate events, respectively. Background mortality rates across Europe in the period 1993-2013 presented higher values in regions where summer temperature and VPD more steeply rose, where drought frequency increased. The steady increase in summer temperatures and VPD in Southern and Eastern Europe may favor the occurrence of compound events of hot summers and dry conditions. Giving that both, local and intense tree drought mortality events and background forest mortality rates, are linked to such compound events we can expect an increase in forest drought mortality in these European regions over the next decades.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), E-50059 Zaragoza, Spain.
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), E-50059 Zaragoza, Spain.
| |
Collapse
|
6
|
Valeriano C, Gazol A, Colangelo M, González de Andrés E, Camarero JJ. Modeling Climate Impacts on Tree Growth to Assess Tree Vulnerability to Drought During Forest Dieback. FRONTIERS IN PLANT SCIENCE 2021; 12:672855. [PMID: 34512680 PMCID: PMC8426521 DOI: 10.3389/fpls.2021.672855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/02/2021] [Indexed: 06/12/2023]
Abstract
Forest dieback because of drought is a global phenomenon threatening particular tree populations. Particularly vulnerable stands are usually located in climatically stressing locations such as xeric sites subjected to seasonal drought. These tree populations show a pronounced loss of vitality, growth decline, and high mortality in response to extreme climate events such as heat waves and droughts. However, dieback events do not uniformly affect stands, with some trees showing higher symptoms of drought vulnerability than other neighboring conspecifics. In this study, we investigated if trees showing different vulnerabilities to dieback showed lower growth rates (Grs) and higher sensitivities to the climate in the past using dendroecology and the Vaganov-Shashkin (VS) process-based growth model. We studied two Pinus pinaster stands with contrasting Grs showing recent dieback in the Iberian System, north-eastern Spain. We compared coexisting declining (D) and non-declining (ND) trees with crown defoliation values above and below the 50% threshold, respectively. The mean growth rate was lower in D than in ND trees in the two stands. The two vigor classes showed a growth divergence prior to the dieback onset and different responsiveness to climate. The ND trees were more responsive to changes in spring water balance and soil moisture than D trees, indicating a loss of growth responsiveness to the climate in stressed trees. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. Such an interaction between water availability and vigor was reflected by the VS-model simulations, which provided evidence for the observation that growth was mainly limited by low soil moisture in both sites. The presented comparisons indicated different stand vulnerabilities to drought contingent on-site conditions. Further research should investigate the role played by environmental conditions and individual features such as access to soil water or hydraulic traits and implement them in process-based growth models to better forecast dieback.
Collapse
Affiliation(s)
- Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- Departamento de Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | | | | |
Collapse
|
7
|
Salvà‐Catarineu M, Romo A, Mazur M, Zielińska M, Minissale P, Dönmez AA, Boratyńska K, Boratyński A. Past, present, and future geographic range of the relict Mediterranean and Macaronesian Juniperus phoenicea complex. Ecol Evol 2021; 11:5075-5095. [PMID: 34025993 PMCID: PMC8131820 DOI: 10.1002/ece3.7395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 01/13/2023] Open
Abstract
AIM The aim of this study is to model the past, current, and future distribution of J. phoenicea s.s., J. turbinata, and J. canariensis, based on bioclimatic variables using a maximum entropy model (Maxent) in the Mediterranean and Macaronesian regions. LOCATION Mediterranean and Macaronesian. TAXON Cupressaceae, Juniperus. METHODS Data on the occurrence of the J. phoenicea complex were obtained from the Global Biodiversity Information Facility (GBIF.org), the literature, herbaria, and the authors' field notes. Bioclimatic variables were obtained from the WorldClim database and Paleoclim. The climate data related to species localities were used for predictions of niches by implementation of Maxent, and the model was evaluated with ENMeval. RESULTS The potential niches of Juniperus phoenicea during the Last Interglacial period (LIG), Last Glacial Maximum climate (LGM), and Mid-Holocene (MH) covered 30%, 10%, and almost 100%, respectively, of the current potential niche. Climate warming may reduce potential niches by 30% in RCP2.6 and by 90% in RCP8.5. The potential niches of Juniperus turbinata had a broad circum-Mediterranean and Canarian distribution during the LIG and the MH; its distribution extended during the LGM when it was found in more areas than at present. The predicted warming in scenarios RCP2.6 and RCP8.5 could reduce the current potential niche by 30% and 50%, respectively. The model did not find suitable niches for J. canariensis during the LIG and the LGM, but during the MH its potential niche was 30% larger than at present. The climate warming scenario RCP2.6 indicates a reduction in the potential niche by 30%, while RCP8.5 so indicates a reduction of almost 60%. MAIN CONCLUSIONS This research can provide information for increasing the protection of the juniper forest and for counteracting the phenomenon of local extinctions caused by anthropic pressure and climate changes.
Collapse
Affiliation(s)
| | - Angel Romo
- Botanical Institute of Spanish National Research CouncilCSICBarcelonaSpain
| | | | | | - Pietro Minissale
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Ali A. Dönmez
- Faculty of Science Department of BotanyHacettepe UniversityAnkaraTurkey
| | | | - Adam Boratyński
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
| |
Collapse
|
8
|
A Degeneration Gradient of Poplar Trees Contributes to the Taxonomic, Functional, and Resistome Diversity of Bacterial Communities in Rhizosphere Soils. Int J Mol Sci 2021; 22:ijms22073438. [PMID: 33810508 PMCID: PMC8036350 DOI: 10.3390/ijms22073438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.
Collapse
|
9
|
Climate Differently Impacts the Growth of Coexisting Trees and Shrubs under Semi-Arid Mediterranean Conditions. FORESTS 2021. [DOI: 10.3390/f12030381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background and Objectives—Coexisting tree and shrub species will have to withstand more arid conditions as temperatures keep rising in the Mediterranean Basin. However, we still lack reliable assessments on how climate and drought affect the radial growth of tree and shrub species at intra- and interannual time scales under semi-arid Mediterranean conditions. Materials and Methods—We investigated the growth responses to climate of four co-occurring gymnosperms inhabiting semi-arid Mediterranean sites in northeastern Spain: two tree species (Aleppo pine, Pinus halepensis Mill.; Spanish juniper, Juniperus thurifera L.) and two shrubs (Phoenicean juniper, Juniperus phoenicea L.; Ephedra nebrodensis Tineo ex Guss.). First, we quantified the intra-annual radial-growth rates of the four species by periodically sampling wood samples during one growing season. Second, we quantified the climate–growth relationships at an interannual scale at two sites with different soil water availability by using dendrochronology. Third, we simulated growth responses to temperature and soil moisture using the forward, process-based Vaganov‒Shashkin (VS-Lite) growth model to disentangle the main climatic drivers of growth. Results—The growth of all species peaked in spring to early summer (May–June). The pine and junipers grew after the dry summer, i.e., they showed a bimodal growth pattern. Prior wet winter conditions leading to high soil moisture before cambium reactivation in spring enhanced the growth of P. halepensis at dry sites, whereas the growth of both junipers and Ephedra depended more on high spring–summer soil moisture. The VS-Lite model identified these different influences of soil moisture on growth in tree and shrub species. Conclusions—Our approach (i) revealed contrasting growth dynamics of co-existing tree and shrub species under semi-arid Mediterranean conditions and (ii) provided novel insights on different responses as a function of growth habits in similar drought-prone regions.
Collapse
|
10
|
Shifts in Growth Responses to Climate and Exceeded Drought-Vulnerability Thresholds Characterize Dieback in Two Mediterranean Deciduous Oaks. FORESTS 2020. [DOI: 10.3390/f11070714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drought stress has induced dieback episodes affecting many forest types and tree species worldwide. However, there is scarce information regarding drought-triggered growth decline and canopy dieback in Mediterranean deciduous oaks. These species face summer drought but have to form new foliage every spring which can make them vulnerable to hotter and drier conditions during that season. Here, we investigated two stands dominated by Quercus frainetto Ten. and Quercus canariensis Willd. and situated in southern Italy and Spain, respectively, showing drought-induced dieback since the 2000s. We analyzed how radial growth and its responses to climate differed between non-declining (ND) and declining (D) trees, showing different crown defoliation and coexisting in each stand by: (i) characterizing growth variability and its responsiveness to climate and drought through time, and (ii) simulating growth responses to soil moisture and temperature thresholds using the Vaganov–Shashkin VS-lite model. Our results show how growth responsiveness to climate and drought was higher in D trees for both oak species. Growth has become increasingly limited by warmer-drier climate and decreasing soil moisture availability since the 1990s. These conditions preceded growth drops in D trees indicating they were more vulnerable to warming and aridification trends. Extremely warm and dry conditions during the early growing season trigger dieback. Changes in the seasonal timing of water limitations caused contrasting effects on long-term growth trends of D trees after the 1980s in Q. frainetto and during the 1990s in Q. canariensis. Using growth models allows identifying early-warning signals of vulnerability, which can be compared with shifts in the growth responses to warmer and drier conditions. Our approach facilitates establishing drought-vulnerability thresholds by combining growth models with field records of dieback.
Collapse
|