1
|
Mahakalkar AU, Gianquintieri L, Amici L, Brovelli MA, Caiani EG. Geospatial analysis of short-term exposure to air pollution and risk of cardiovascular diseases and mortality-A systematic review. CHEMOSPHERE 2024; 353:141495. [PMID: 38373448 DOI: 10.1016/j.chemosphere.2024.141495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The cardiovascular risk associated with short-term ambient air pollution exposure is well-documented. However, recent advancements in geospatial techniques have provided new insights into this risk. This systematic review focuses on short-term exposure studies that applied advanced geospatial pollution modelling to estimate cardiovascular disease (CVD) risk and accounted for additional unconventional neighbourhood-level confounders to analyse their modifier effect on the risk. Four databases were investigated to select publications between 2018 and 2023 that met the inclusion criteria of studying the effect of particulate matter (PM2.5 and PM10), SO2, NOx, CO, and O3 on CVD mortality or morbidity, utilizing pollution modelling techniques, and considering spatial and temporal confounders. Out of 3277 publications, 285 were identified for full-text review, of which 34 satisfied the inclusion criteria for qualitative analysis, and 12 of them were chosen for additional quantitative analysis. Quality assessment revealed that 28 out of 34 included articles scored 4 or above, indicating high quality. In 30 studies, advanced pollution modelling techniques were used, while in 4 only simpler methods were applied. The most pertinent confounders identified were socio-demographic variables (e.g., socio-economic status, population percentage by race or ethnicity) and neighbourhood-level built environment variables (e.g., urban/rural area, percentage of green space, proximity to healthcare), which exhibited varying modifier effects depending on the context. In the quantitative analysis, only PM 2.5 showed a significant positive association to all-cause CVD-related hospitalisation. Other pollutants did not show any significant effect, likely due to the high inter-study heterogeneity and a limited number of cases. The application of advanced geospatial measurement and modelling of air pollution exposure, as well as its risk, is increasing. This review underscores the importance of accounting for unconventional neighbourhood-level confounders to enhance the understanding of the CVD risk associated with short-term pollution exposure.
Collapse
Affiliation(s)
- Amruta Umakant Mahakalkar
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy; University School for Advanced Studies IUSS, Pavia, Italy
| | - Lorenzo Gianquintieri
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy.
| | - Lorenzo Amici
- Politecnico di Milano, Civil and Environmental Engineering Dpt., Milan, Italy
| | | | - Enrico Gianluca Caiani
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy; IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
2
|
Guan T, Cao M, Zheng C, Zhou H, Wang X, Chen Z, Zhang L, Cao X, Tian Y, Guo J, Han X, Wang Z. Dose-response association between physical activity and blood pressure among Chinese adults: a nationwide cross-sectional study. J Hypertens 2024; 42:360-370. [PMID: 38037282 PMCID: PMC10763713 DOI: 10.1097/hjh.0000000000003587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/25/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVES The aim of this study was to examine the dose-response associations of physical activity with blood pressure (BP) and hypertension risk among Chinese adults. METHODS Derived from the national community-based China Hypertension Survey database during 2012--2015, a total of 203 108 residents aged at least 18 years were included. Individual-level physical activity was evaluated using a standardized questionnaire, and minutes of metabolic equivalent tasks per week (MET-min/week) were calculated, integrating domain, intensity, frequency, and duration. Multivariable linear and logistic regressions were used to estimate associations of physical activity with BP and hypertension risk, and restricted cubic spline regressions were performed for their nonlinear dose-response relationships. RESULTS Overall, the median total physical activity (TPA) was 3213.0 MET-min/week and the prevalence of physical inactivity was 14.8%. TPA was negatively associated with BP. Increasing TPA levels was related to a steep decrease in systolic BP, up to approximately 2500 MET-min/week, with more modest benefits above that level of TPA. Higher levels of domain-specific and intensity-specific physical activity were found to be associated with lower BP levels and hypertension risk, except for the association between vigorous-intensity physical activity and systolic BP. We found that TPA within the range of 2000--4000 MET-min/week, a higher frequency and shorter duration were inversely associated with diastolic BP levels. CONCLUSION Total, domain-specific, and intensity-specific physical activity were inversely related to BP levels, respectively, in a dose-response fashion. Of a given amount, higher-frequency, shorter-duration, and lower-intensity physical activity produced more beneficial effects.
Collapse
Affiliation(s)
| | - Man Cao
- School of Health Policy and Management
| | - Congyi Zheng
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital
| | - Haoqi Zhou
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital
| | - Xin Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital
| | - Zuo Chen
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital
| | - Linfeng Zhang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital
| | - Xue Cao
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital
| | - Yixin Tian
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital
| | - Jian Guo
- Medical Research Center
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Zengwu Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital
| |
Collapse
|
3
|
Yuan Z, Miao L, Yang L, Chen P, Jiang C, Fang M, Wang H, Xu D, Lin Z. PM 2.5 and its respiratory tract depositions on blood pressure, anxiety, depression and health risk assessment: A mechanistic study based on urinary metabolome. ENVIRONMENTAL RESEARCH 2023; 233:116481. [PMID: 37364626 DOI: 10.1016/j.envres.2023.116481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Effects of fine particulate matter (PM2.5) and regional respiratory tract depositions on blood pressure (BP), anxiety, depression, health risk and the underlying mechanisms need further investigations. A repeated-measures panel investigation among 40 healthy young adults in Hefei, China was performed to explore the acute impacts of PM2.5 exposure and its deposition doses in 3 regions of respiratory tract over diverse lag times on BP, anxiety, depression, health risk, and the potential mechanisms. We collected PM2.5 concentrations, its deposition doses, BP, the Self-Rating Anxiety Scale (SAS) score and the Self-Rating Depression Scale (SDS) score. An untargeted metabolomics approach was used to detect significant urine metabolites, and the health risk assessment model was used to evaluate the non-carcinogenic risks associated with PM2.5. We applied linear mixed-effects models to assess the relationships of PM2.5 with the aforementioned health indicators We further evaluate the non-carcinogenic risks associated with PM2.5. We found deposited PM2.5 dose in the head accounted for a large proportion. PM2.5 and its three depositions exposures at a specific lag day was significantly related to increased BP levels and higher SAS and SDS scores. Metabolomics analysis showed significant alterations in urinary metabolites (i.e., glucoses, lipids and amino acids) after PM2.5 exposure, simultaneously accompanied by activation of the cAMP signaling pathway. Health risk assessment presented that the risk values for the residents in Hefei were greater than the lower limits of non-cancer risk guidelines. This real-world investigation suggested that acute PM2.5 and its depositions exposures may increase health risks by elevating BP, inducing anxiety and depression, and altering urinary metabolomic profile via activating the cAMP signaling pathway. And the further health risk assessment indicated that there are potential non-carcinogenic risks of PM2.5 via the inhalation route in this area.
Collapse
Affiliation(s)
- Zhi Yuan
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ping Chen
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Cunzhong Jiang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Miao Fang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhijing Lin
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Cao M, Zheng C, Zhou H, Wang X, Chen Z, Zhang L, Cao X, Tian Y, Han X, Liu H, Liu Y, Xue T, Wang Z, Guan T. Air pollution attenuated the benefits of physical activity on blood pressure: Evidence from a nationwide cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115345. [PMID: 37572623 DOI: 10.1016/j.ecoenv.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION Although physical activity (PA) has multiple health benefits, the inhaled dose of fine particulate matter (PM2.5) during PA may increase. The trade-off between harmful effects of PM2.5 exposure and protective effects of PA remain unclear. Our study aims to examine the joint effects of PA and PM2.5 exposure on blood pressure (BP) in Chinese adults. METHODS A total of 203,108 adults aged ≥ 18 years from the China Hypertension Survey study (2012-2015) were included. Individual-level PA was assessed as minutes of metabolic equivalent tasks per week (MET-min/week). The average weekly PM2.5 exposures were estimated by using a spatial resolution of 10 km, integrating multiple data sources, including monitoring values, satellite measurements and model simulations. BP was measured with a professional portable BP monitor. Generalized linear regressions were used to estimate joint associations and to further explore two-dimensional nonlinear associations. RESULTS The median PA and 4-week PM2.5 average exposures were 3213.0 MET-min/week and 47.8 μg/m3, respectively. PA was negatively associated with BP, while PM2.5 exposure was positively with BP. The associations between PA and systolic BP were significantly modified by PM2.5 exposure (Pinteraction < 0.001). Compared with inactive participants under low PM2.5 exposure, those with highest level of PA under low PM2.5 exposure had a 0.90 (95 % CI: 0.53, 1.26) mmHg decrease in systolic BP, whereas they had a 0.48 (95 % CI: 0.07, 0.89) mmHg increase under high PM2.5 exposure. When PM2.5 exposure was approximately > 25 μg/m3, the joint exposure to total PA and PM2.5 was associated with an increase in systolic BP. CONCLUSIONS The benefits of PA on BP were counteracted by high PM2.5 levels.
Collapse
Affiliation(s)
- Man Cao
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congyi Zheng
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haoqi Zhou
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zuo Chen
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linfeng Zhang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue Cao
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yixin Tian
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueyan Han
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hengyi Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yuanli Liu
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zengwu Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Tianjia Guan
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Hu J, Xue X, Xiao M, Wang W, Gao Y, Kan H, Ge J, Cui Z, Chen R. The acute effects of particulate matter air pollution on ambulatory blood pressure: A multicenter analysis at the hourly level. ENVIRONMENT INTERNATIONAL 2021; 157:106859. [PMID: 34509047 DOI: 10.1016/j.envint.2021.106859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological evidence from ambulatory blood pressure monitoring is needed to clarify the associations of particulate air pollution with blood pressure and potential lag patterns. We examined the associations of fine and coarse particulate matter (PM2.5, PM2.5-10) with ambulatory blood pressure among 7108 non-hypertensive participants from 7 Chinese cities between April 2016 and November 2020. Hourly concentrations of PM2.5 and PM2.5-10 were obtained from the nearest monitoring stations. We measured four blood pressure indicators, including systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP). Linear mixed-effect models combined with distributed lag models were applied to analyze the data. Generally, very short-term exposure to PM2.5 was significantly associated with elevated blood pressure. These effects occurred on the same hour of blood pressure measurement, attenuated gradually, and became insignificant approximately at lag 12 h. An interquartile range (IQR, 33 μg/m3) increase of PM2.5 was significantly associated with cumulative increments of 0.58 mmHg for SBP, 0.31 mmHg for DBP, 0.38 mmHg for MAP, and 0.33 mmHg for PP over lag 0 to 12 h. The exposure-response relationship curves were almost linear without thresholds, but tended to be flat at very high concentrations. No significant associations were observed for PM2.5-10. Our study provides independent and robust associations between transient PM2.5 exposure and elevated blood pressure within the first 12 h, and reinforces the evidence for a linear and non-threshold exposure-response relationship, which may have implications for blood pressure management and hypertension prevention in susceptible population.
Collapse
Affiliation(s)
- Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Min Xiao
- Jiangsu Standard Medical Technology Co., Ltd, Beijing 100096, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Abstract
Inhalation of fine particulate matter (PM2.5), produced by the combustion of fossil fuels, is an important risk factor for cardiovascular disease. Exposure to PM2.5 has been linked to increases in blood pressure, thrombosis, and insulin resistance. It also induces vascular injury and accelerates atherogenesis. Results from animal models corroborate epidemiological evidence and suggest that the cardiovascular effects of PM2.5 may be attributable, in part, to oxidative stress, inflammation, and the activation of the autonomic nervous system. Although the underlying mechanisms remain unclear, there is robust evidence that long-term exposure to PM2.5 is associated with premature mortality due to heart failure, stoke, and ischemic heart disease. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aruni Bhatnagar
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA;
| |
Collapse
|