1
|
Tan G, LeCates CN, Simpson A, Holtzen S, Parris DJ, Stewart FJ, Stockton A. Amplicon Sequencing Reveals Diversity in Spatially Separated Microbial Communities in the Icelandic Mars Analog Environment Mælifellssandur. ASTROBIOLOGY 2025; 25:72-81. [PMID: 39792461 DOI: 10.1089/ast.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Exploration missions to Mars rely on landers or rovers to perform multiple analyses over geographically small sampling regions, while landing site selection is done using large-scale but low-resolution remote-sensing data. Utilizing Earth analog environments to estimate small-scale spatial and temporal variation in key geochemical signatures and biosignatures will help mission designers ensure future sampling strategies meet mission science goals. Icelandic lava fields can serve as Mars analog sites due to conditions that include low nutrient availability, temperature extremes, desiccation, and isolation from anthropogenic contamination. This work reports analysis of samples collected using methods analogous to those of planetary missions to characterize microbial communities at different spatial scales in Mælifellssandur, Iceland, an environment with homogeneity at "remote imaging" resolution (overall temperature, apparent moisture content, and regolith grain size). Although microbial richness did not vary significantly among samples, the phylogenetic composition of the sediment microbiome differed significantly among sites separated by 100 m, which suggests distinct microbial signatures despite apparent homogeneity from remote observations. This work highlights the importance of considering microenvironments in future life-detection missions to extraterrestrial planetary bodies.
Collapse
Affiliation(s)
- George Tan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chloe N LeCates
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anna Simpson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Jet Propulsion Laboratory, Pasadena, California, USA
| | - Samuel Holtzen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - D Joshua Parris
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Kimberly-Clark Corporation, Roswell, Georgia, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Amanda Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Sułowicz S, Borymski S, Dulski M, Nowak A, Bondarczuk K, Markowicz A. Nanopesticide risk assessment based on microbiome profiling - Community structure and functional potential as biomarkers in captan@ZnO 35-45 nm and captan@SiO 220-30 nm treated orchard soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131948. [PMID: 37392645 DOI: 10.1016/j.jhazmat.2023.131948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Nanoformulation should minimise the usage of pesticides and limit their environmental footprint. The risk assessment of two nanopesticides with fungicide captan as an active organic substance and ZnO35-45 nm or SiO220-30 nm as nanocarriers was evaluated using the non-target soil microorganisms as biomarkers. The first time for that kind of nanopesticides next-generation sequencing (NGS) of bacterial 16 S rRNA and fungal ITS region and metagenomics functional predictions (PICRUST2) was made to study structural and functional biodiversity. During a 100-day microcosm study in soil with pesticide application history, the effect of nanopesticides was compared to pure captan and both nanocarriers. Nanoagrochemicals affected microbial composition, especially Acidobacteria-6 class, and alpha diversity, but the observed effect was generally more substantial for pure captan. As for beta diversity, the negative impact was detected only in response to captan and still observed on day 100. Fungal community in the orchard soil showed only a decrease in phylogenetic diversity in captan set-up since day 30. PICRUST2 analysis confirmed several times lower impact of nanopesticides considering the abundance of functional pathways and genes encoding enzymes. Furthermore, the overall data indicated that using SiO220-30 nm as a nanocarrier speeds up a recovery process compared to ZnO35-45 nm.
Collapse
Affiliation(s)
- Sławomir Sułowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Sławomir Borymski
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Mateusz Dulski
- University of Silesia, Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Nowak
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| | - Kinga Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Białystok, Jerzego Waszyngtona 13A, 15-269 Białystok, Poland
| | - Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
3
|
Citterich F, Lo Giudice A, Azzaro M. A plastic world: A review of microplastic pollution in the freshwaters of the Earth's poles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161847. [PMID: 36709890 DOI: 10.1016/j.scitotenv.2023.161847] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microplastic (MP) pollution is of great environmental concern. MPs have been found all over the Earth, including in the poles, which is indicative for the important threat they constitute. Yet, while the ocean is object of major interest, the data available in the literature about MP pollution in the freshwaters of the Earth's poles are still limited. Here, we review the current knowledge of MP pollution in the freshwaters of the Arctic, Antarctica and Third Pole, and we assess its ecological implications. This review highlights the presence of MPs in the lakes, rivers, snow, and glaciers of the investigated sites, questions the transport patterns through which MPs reach these remote areas, and illustrates that MP pollution is a real problem not only in marine systems, but also in the freshwater environments of the Earth's poles. MPs can indeed be ingested by animals and can physically damage their digestive tracts, as well as escalate the trophic levels. MPs can also alter microbial communities by serving as surfaces onto which microbes can grow and develop, and can enhance ice melting when trapped in glaciers. Hence, considered the limited data available, we encourage more research on the theme.
Collapse
Affiliation(s)
- Federico Citterich
- Institute of Polar Sciences (ISP), National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences (ISP), National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Maurizio Azzaro
- Institute of Polar Sciences (ISP), National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| |
Collapse
|
4
|
Xu Q, Du Z, Wang L, Xue K, Wei Z, Zhang G, Liu K, Lin J, Lin P, Chen T, Xiao C. The Role of Thermokarst Lake Expansion in Altering the Microbial Community and Methane Cycling in Beiluhe Basin on Tibetan Plateau. Microorganisms 2022; 10:1620. [PMID: 36014037 PMCID: PMC9412574 DOI: 10.3390/microorganisms10081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most significant environmental changes across the Tibetan Plateau (TP) is the rapid lake expansion. The expansion of thermokarst lakes affects the global biogeochemical cycles and local climate regulation by rising levels, expanding area, and increasing water volumes. Meanwhile, microbial activity contributes greatly to the biogeochemical cycle of carbon in the thermokarst lakes, including organic matter decomposition, soil formation, and mineralization. However, the impact of lake expansion on distribution patterns of microbial communities and methane cycling, especially those of water and sediment under ice, remain unknown. This hinders our ability to assess the true impact of lake expansion on ecosystem services and our ability to accurately investigate greenhouse gas emissions and consumption in thermokarst lakes. Here, we explored the patterns of microorganisms and methane cycling by investigating sediment and water samples at an oriented direction of expansion occurred from four points under ice of a mature-developed thermokarst lake on TP. In addition, the methane concentration of each water layer was examined. Microbial diversity and network complexity were different in our shallow points (MS, SH) and deep points (CE, SH). There are differences of microbial community composition among four points, resulting in the decreased relative abundances of dominant phyla, such as Firmicutes in sediment, Proteobacteria in water, Thermoplasmatota in sediment and water, and increased relative abundance of Actinobacteriota with MS and SH points. Microbial community composition involved in methane cycling also shifted, such as increases in USCγ, Methylomonas, and Methylobacter, with higher relative abundance consistent with low dissolved methane concentration in MS and SH points. There was a strong correlation between changes in microbiota characteristics and changes in water and sediment environmental factors. Together, these results show that lake expansion has an important impact on microbial diversity and methane cycling.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Du
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Wang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kai Xue
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Wei
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiahui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Penglin Lin
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Ren Z, Gao H, Luo W, Elser JJ. Bacterial communities in surface and basal ice of a glacier terminus in the headwaters of Yangtze River on the Qinghai-Tibet Plateau. ENVIRONMENTAL MICROBIOME 2022; 17:12. [PMID: 35346386 PMCID: PMC8962558 DOI: 10.1186/s40793-022-00408-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND On the front lines of climate change, glacier termini play crucial roles in linking glaciers and downstream ecosystems during glacier retreat. However, we lack a clear understanding of biological processes that occur in surface and basal ice at glacier termini. METHODS Here, we studied the bacterial communities in surface ice and basal ice (the bottom layer) of a glacier terminus in the Yangtze River Source, Qinghai-Tibet Plateau. RESULTS Surface and basal ice harbored distinct bacterial communities but shared some core taxa. Surface ice communities had a higher α-diversity than those in basal ice and were dominated by Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria while basal ice was dominated by Firmicutes and Proteobacteria. The bacterial communities were also substantially different in functional potential. Genes associated with functional categories of cellular processes and metabolism were significantly enriched in surface ice, while genes connected to environmental information processing were enriched in basal ice. In terms of biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur, bacterial communities in surface ice were enriched for genes connected to aerobic carbon fixation, aerobic respiration, denitrification, nitrogen assimilation, nitrogen mineralization, sulfur mineralization, alkaline phosphatase, and polyphosphate kinase. In contrast, bacterial communities in basal ice were enriched for genes involved in anaerobic carbon fixation, fermentation, nitrate reduction, 2-aminoethylphosphonic acid pathway, G3P transporter, glycerophosphodiester phosphodiesterase, and exopolyphosphatase. Structural equation modeling showed that total nitrogen and environmental carbon:phosphorus were positively while environmental nitrogen:phosphorus was negatively associated with taxonomic β-diversity which itself was strongly associated with functional β-diversity of bacterial communities. CONCLUSIONS This study furthers our understanding of biogeochemical cycling of the mountain cryosphere by revealing the genetic potential of the bacterial communities in surface and basal ice at the glacier terminus, providing new insights into glacial ecology as well as the influences of glacier retreat on downstream systems.
Collapse
Affiliation(s)
- Ze Ren
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hongkai Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Wei Luo
- Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, 59860, USA
| |
Collapse
|
6
|
Gavrilov SN, Potapov EG, Prokof’eva MI, Klyukina AA, Merkel AY, Maslov AA, Zavarzina DG. Diversity of Novel Uncultured Prokaryotes in Microbial Communities of the Yessentukskoye Underground Mineral Water Deposit. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Combined Use of Aerial Photogrammetry and Terrestrial Laser Scanning for Detecting Geomorphological Changes in Hornsund, Svalbard. REMOTE SENSING 2022. [DOI: 10.3390/rs14030601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Arctic is a region undergoing continuous and significant changes in land relief due to different glaciological, geomorphological and hydrogeological processes. To study those phenomena, digital elevation models (DEMs) and highly accurate maps with high spatial resolution are of prime importance. In this work, we assess the accuracy of high-resolution photogrammetric DEMs and orthomosaics derived from aerial images captured in 2020 over Hornsund, Svalbard. Further, we demonstrate the accuracy of DEMs generated using point clouds acquired in 2021 with a Riegl VZ®-6000 terrestrial laser scanner (TLS). Aerial and terrestrial data were georeferenced and registered based on very reliable ground control points measured in the field. Both DEMs, however, had some data gaps due to insufficient overlaps in aerial images and limited sensing range of the TLS. Therefore, we compared and integrated the two techniques to create a continuous and gapless DEM for the scientific community in Svalbard. This approach also made it possible to identify geomorphological activity over a one-year period, such as the melting of ice cores at the periglacial zone, changes along the shoreline or snow thickness in gullies. The study highlights the potential for combining other techniques to represent the active processes in this region.
Collapse
|
8
|
Farooq S, Nazir R, Ganai BA, Mushtaq H, Dar GJ. Psychrophilic and psychrotrophic bacterial diversity of Himalayan Thajwas glacial soil, India. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
González-Pleiter M, Velázquez D, Casero MC, Tytgat B, Verleyen E, Leganés F, Rosal R, Quesada A, Fernández-Piñas F. Microbial colonizers of microplastics in an Arctic freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148640. [PMID: 34246139 DOI: 10.1016/j.scitotenv.2021.148640] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 05/12/2023]
Abstract
Microplastics (MPs) have been found everywhere as they are easily transported between environmental compartments. Through their transport, MPs are quickly colonized by microorganisms; this microbial community is known as the plastisphere. Here, we characterized the plastisphere of three MPs, one biodegradable (PHB) and two non-biodegradables (HDPE and LDPE), deployed in an Arctic freshwater lake for eleven days. The plastisphere was found to be complex, confirming that about a third of microbial colonizers were viable. Plastisphere was compared to microbial communities on the surrounding water and microbial mats on rocks at the bottom of the lake. Microbial mats followed by MPs showed the highest diversity regarding both prokaryotes and eukaryotes as compared to water samples; however, for fungi, MPs showed the highest diversity of the tested substrates. Significant differences on microbial assemblages on the three tested substrates were found; regarding microbial assemblages on MPs, bacterial genera found in polar environments such as Mycoplana, Erythromicrobium and Rhodoferax with species able to metabolize recalcitrant chemicals were abundant. Eukaryotic communities on MPs were characterized by the presence of ciliates of the genera Stentor, Vorticella and Uroleptus and the algae Cryptomonas, Chlamydomonas, Tetraselmis and Epipyxis. These ciliates normally feed on algae so that the complexity of these assemblages may serve to unravel trophic relationships between co-existing taxa. Regarding fungal communities on MPs, the most abundant genera were Betamyces, Cryptococcus, Arrhenia and Paranamyces. MPs, particularly HDPE, were enriched in the sulI and ermB antibiotic resistance genes (ARGs) which may raise concerns about human health-related issues as ARGs may be transferred horizontally between bacteria. This study highlights the importance of proper waste management and clean-up protocols to protect the environmental health of pristine environments such as polar regions in a context of global dissemination of MPs which may co-transport microorganisms, some of them including ARGs.
Collapse
Affiliation(s)
- Miguel González-Pleiter
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - David Velázquez
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - María Cristina Casero
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, E-28006 Madrid, Spain
| | - Bjorn Tytgat
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Francisco Leganés
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | |
Collapse
|
10
|
Thomas FA, Mohan M, Krishnan KP. Bacterial diversity and their metabolic profiles in the sedimentary environments of Ny-Ålesund, Arctic. Antonie van Leeuwenhoek 2021; 114:1339-1360. [PMID: 34148162 DOI: 10.1007/s10482-021-01604-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Sedimentary environments in the Arctic are known to harbor diverse microbial communities playing a crucial role in the remineralization of organic matter and associated biogeochemical cycles. In this study, we used a combination of culture-dependent and culture-independent approaches to understanding the bacterial community composition associated with the sediments of a terrestrial versus fjord system in the Svalbard Arctic. Community-level metabolic profiling and growth response of retrieved bacterial isolates towards different carbon substrates at varying temperatures were also studied to assess the metabolic response of communities and isolates in the system. Bacterial species belonging to Cryobacterium and Psychrobacter dominated the terrestrial and fjord sediment retrievable fraction. Amplicon sequencing analysis revealed higher bacterial diversity in the terrestrial sediments (Shannon index; 8.135 and 7.935) as compared to the fjord sediments (4.5-5.37). Phylum Proteobacteria and Bacteroidetes dominated both terrestrial and fjord sediments. Phylum Verrucomicrobia and Cyanobacteria were abundant in terrestrial sediments while Epsilonbacteraeota and Fusobacteriia dominated the fjord sediments. Significant differences were observed in the carbon substrate utilization profiles between the terrestrial and fjord sediments at both 4 °C and 20 °C incubations (p < 0.005). Utilization of N-acetyl-D-glucosamine, D-mannitol and Tween-80 by the sediment communities and bacterial isolates from both systems, irrespective of their temperature incubations implies the affinity of bacteria for such substrates as energy sources and for their survival in cold environments. Our results suggest the ability of sediment bacterial communities to adjust their substrate utilization profiles according to condition changes in the ecosystems and are found to be less influenced by their phylogenetic relatedness.
Collapse
Affiliation(s)
- Femi Anna Thomas
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa, 403804, India
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau Goa, 403206, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa, 403804, India.
| |
Collapse
|
11
|
Bacterial and archaeal community structure in benthic sediments from glacial lakes at the Múlajökull Glacier, central Iceland. Polar Biol 2020. [DOI: 10.1007/s00300-020-02770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|