1
|
Safira R, Elghali A, Benzaazoua M, Coudert L, Rosa E, Neculita CM. Stability of As- and Mn-sludge after neutral mine water treatment using Fe(VI) vs electrocoagulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122767. [PMID: 39418705 DOI: 10.1016/j.jenvman.2024.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
The electrocoagulation (ECG) and ferrate (Fe(VI))-based processes are increasingly acknowledged as efficient for the simultaneous removal of As and Mn from synthetic and real mine effluents. Prior to design of full-scale applications, more information on the physicochemical, mineralogical, and environmental characterization of the produced sludge is required. The main objective of this study was to characterize and evaluate the leaching potential of problematic elements in As- and Mn-rich sludge produced during ECG or Fe(VI) treatment of circumneutral surrogate mine water. To do so, PHREEQC modelling was carried out on the effluents, before and after ECG or Fe(VI) treatment, to calculate the saturation index of dissolved As, Fe, and Mn species. A physicochemical and mineralogical characterization of the sludge was also performed using powder X-ray diffraction (PXRD) and a scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS). Then, a non-sequential selective extraction procedure (N-SEP) combined with a USGS field leaching test (FLT) were conducted to evaluate the environmental behaviour of the As- and Mn-rich sludge. Geochemical modelling indicated that the Fe(VI) and ECG processes favor the precipitation of Fe-(oxy)hydroxides (lepidocrocite, schwertmannite, ferrihydrite). Chemical characterization showed that the Fe(VI)-sludge contained higher As and Mn concentrations and lower Fe concentrations than the ECG-sludge (3.8% As, 5.3% Mn, and 34% Fe for the Fe(VI)-sludge vs 1.2% As, 0.77% Mn, and 52% Fe for the ECG-sludge). These findings can be explained by the smaller amount of sludge produced during the Fe(VI) treatment and the higher removal efficiency of this method, especially for Mn. The PXRD patterns suggested the formation of poorly crystalline Fe-(oxy)hydroxides (lepidocrocite or βFeO(OH) in the ECG-sludge vs ferrihydrite in the Fe(VI)-sludge); however, no As- or Mn-bearing minerals were identified. Findings from N-SEP tests showed different speciation of As and Mn in the sludge, with a higher proportion of As bound to poorly crystalline Fe-(oxy)hydroxides in the Fe(VI) sludge than the ECG-sludge (97% and 71%, respectively), and higher proportion of Mn associated with the residuals in the Fe(VI)-sludge than the ECG-sludge (57% and 5.7%, respectively). Finally, FLT results indicated that very low concentrations of As (<0.05 mg/L) and Mn (<0.5 mg/L) were leached from the ECG- and Fe(VI)-sludge, with the Fe(VI) treatment resulting in slightly better As and Mn immobilization in the sludge relative to the ECG process. Nevertheless, both treatment processes were satisfactory in terms of efficient removal of As and Mn and their immobilization in the produced sludge.
Collapse
Affiliation(s)
- Reem Safira
- Research Institute on Mines and Environment (RIME), University of Québec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada
| | - Abdellatif Elghali
- Geology and Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Mostafa Benzaazoua
- Geology and Sustainable Mining Institute (GSMI), Mohammed VI Polytechnic University (UM6P), Benguerir, 43150, Morocco
| | - Lucie Coudert
- Research Institute on Mines and Environment (RIME), University of Québec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada.
| | - Eric Rosa
- Research Institute on Mines and Environment (RIME), University of Québec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada; Groupe de Recherche sur l'Eau Souterraine (GRES - Groundwater Research Group), RIME, UQAT, Amos, QC, Canada
| | - Carmen M Neculita
- Research Institute on Mines and Environment (RIME), University of Québec in Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada
| |
Collapse
|
2
|
Xie ZX, Wu Y, Zhou J, Lu JY, Huang WT. Multifunctional Antimonene-Silver Nanocomposites for Ultra-Multi-Mode and Multi-Analyte Sensing, Parallel and Batch Logic Computing, Long-Text Information Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401510. [PMID: 38745545 DOI: 10.1002/smll.202401510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
To simulate life's emergent functions, mining the multiple sensing capabilities of nanosystems, and digitizing networks of transduction signals and molecular interactions, is an ongoing endeavor. Here, multifunctional antimonene-silver nanocomposites (AM-Ag NCs) are synthesized facilely and fused for molecular sensing and digitization applications (including ultra-multi-mode and multi-analyte sensing, parallel and batch logic computing, long-text information protection). By mixing surfactant, AM, Ag+ and Sodium borohydride (NaBH4) at room temperature for 5 min, the resulting NCs are comprised of Ag nanoparticles scattered within AM nanosheets and protected by the surfactant. Interestingly, AM-Ag NCs exhibit ultra-multi-mode sensing ability for multiplex metal ions (Hg2+, Fe3+, or Al3+), which significantly improved selectivity (≈2 times) and sensitivity (≈400 times) when analyzing the combined channels. Moreover, multiple sensing capabilities of AM-Ag NCs enable diverse batch and parallel molecular logic computations (including advanced cascaded logic circuits). Ultra-multi-mode selective patterns of AM-Ag NCs to 18 kinds of metal ions can be converted into a series of binary strings by setting the thresholds, and realized high-density, long-text information protection for the first time. This study provides new ideas and paradigms for the preparation and multi-purpose application of 2D nanocomposites, but also offers new directions for the fusion of molecular sensing and informatization.
Collapse
Affiliation(s)
- Zhi Xin Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jie Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiao Yang Lu
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), School of Nursing, Changsha Medical University, Changsha, 410219, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
3
|
Liu Y, Yuan Y, Wang Y, Ngo HH, Wang J. Research and application of active species based on high-valent iron for the degradation of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171430. [PMID: 38458457 DOI: 10.1016/j.scitotenv.2024.171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Fe(VI), as a new green treatment agent, has two indispensable processes in water treatment: coagulation and oxidation. Fe(VI) has a strong oxidation ability. The intermediate iron species (Fe(V) and Fe(IV)) and reactive radical species (H2O2, •OH, and O2•-) produced by decomposition and reduction reaction have strong oxidation ability, in addition, the hydrolyzed product formed in situ with core (γ-Fe2O3)-shell (γ-FeOOH) structure also has good coagulation effect. Because Fe(VI) is easy to decompose and challenging to preserve, it limits the application and sometimes significantly reduces the subsequent processing effect. How to make Fe(VI) more efficient use is a hot spot in current research. This article summarizes the distribution of active substances during the hydrolysis of Fe(VI), distinguish the differences mechanisms in the similar regulation methods, reviews the current preparation methods of Fe(VI), and finally reviews the applications of Fe(VI) in the field of environmental remediation.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Yang Y, Huang P, Ma X, Yang D, Liang J, Jin Y, Jiang L, Zhao L, Chen D, He J, Wang J. Facile synthesis of δ-MnO 2 biotemplated by waste tobacco stem-silks for enhanced removal of Sb(III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7543-7555. [PMID: 38165545 DOI: 10.1007/s11356-023-31663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024]
Abstract
The elimination of antimony pollution has attracted increasing concerns because of its high toxicity to human health and the natural environment. In this work, biomimetic δ-MnO2 was synthesized by using waste tobacco stem-silks as biotemplate (Bio-δ-MnO2) and used in the capture of Sb(III)from aqueous solution. The tobacco stem-silks not only provided unique wrinkled morphologies but also contained carbon element self-doped into the resulting samples. The maximum Sb(III) adsorption capacity reached 763.4 mg∙g -1, which is 2.06 times higher than δ-MnO2 without template (370.0 mg∙g -1), 4.53 times than tobacco stem-silks carbon (168.5 mg∙g -1), and 10.39 times than commercial MnO2 (73.5 mg∙g -1), respectively. The isotherm and kinetic studies indicated that the adsorption behavior was consistent with the Langmuir isotherm model and the pseudo-second-order kinetic equation. As far as we are aware, the adsorption capacity of Bio-δ-MnO2 is much higher than that of most Sb(III) adsorbents. FT-IR, XPS, SEM, XRD, and Zeta potential analyses showed that the main mechanism for the adsorption of Sb(III) by Bio-δ-MnO2 includes electrostatic attraction, surface complexation, and redox. Overall, this study provides a new sustainable way to convert agricultural wastes to more valuable products such as biomimetic adsorbent for Sb(III) removal in addition to conventional activated carbon and biochar.
Collapse
Affiliation(s)
- Yepeng Yang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Pizhen Huang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xiaoqian Ma
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Donghan Yang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiaxuan Liang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yixin Jin
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Liang Jiang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Lixia Zhao
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Daomei Chen
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiao He
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiaqiang Wang
- School of Chemical Sciences & Technology, National Center for International Research On Photoelectric and Energy Materials, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Materials and Energy, School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
5
|
Lin D, Zhang H, Wang Z, Xu D, Li G, Ulbricht M, Liang H. New insights into the influence of pre-oxidation on membrane fouling during nanofiltration of brackish water considering inorganic-organic complexation and oxidant reduction byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167364. [PMID: 37769728 DOI: 10.1016/j.scitotenv.2023.167364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Even though pre-oxidation is usually considered as a promising method to alleviate membrane fouling, information on performance and inner mechanisms of pre-oxidation-influenced membrane fouling during nanofiltration of brackish water is still limited. This study is the first work in which oxidant reduction byproducts and interaction between different pollutants were particularly considered to address these problems. Herein, nanofiltration experiments with different pre-oxidized synthesis brackish water containing inorganic salts and organic pollutants were conducted. Membrane flux results showed that both NaClO and K2FeO4 aggravated membrane fouling, but 0.45 mg/mg TOC KMnO4 mitigated it when simulation results of NICA-Donnan model showed that the complexation between calcium ions and humic acid (HA) was weakened. However, membrane fouling was enhanced by higher dosage of KMnO4. Fourier transform infrared spectrometer using attenuated total reflection (ATR-FTIR) and X-ray diffraction (XRD) spectrum showed that the aggravated membrane fouling was mainly caused by the generation of amorphous manganese oxide, which was oxidant reduction byproduct and had strong capacity for adsorption of HA. Particle size distribution and zeta potential variation indicated that the accumulation of HA could enhance the crystallization process and then the electrostatic attraction between membrane and bulk crystallization was induced. According to SEM images and fitting results of Hermia's models, the already-formed bulk crystallization by 1.90 mg/mg TOC KMnO4 could deposit on membranes more easily, followed by the formation of a denser fouling layer. Overall, the present study provided new insights into the design of reliable pre-oxidation strategies for alleviating membrane fouling during nanofiltration of brackish water.
Collapse
Affiliation(s)
- Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
6
|
Joshi B, Khalil AM, Tabish TA, Memon FA, Chang H, Zhang S. Near Green Synthesis of Porous Graphene from Graphite Using an Encapsulated Ferrate(VI) Oxidant. ACS OMEGA 2023; 8:29674-29684. [PMID: 37599955 PMCID: PMC10433472 DOI: 10.1021/acsomega.3c03812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Graphene oxide (GO) is a conventional yet vital precursor for the synthesis of porous graphene (PG). Several strong oxidizing agents such as potassium permanganate and perchlorates are typically used for oxidization of graphite. However, they expose toxic reactants/products that harm the environment. Therefore, a greener approach is desperately needed to oxidize and exfoliate graphite. This study reports for the first time on successful oxidation of graphite by ferrate(VI) compounds via an encapsulation approach. By further reducing GO prepared from this near green route with vitamin C, PG anticipated by many highly important and expanding areas such as water treatment could be readily achieved. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and UV-vis spectroscopy, and scanning electronic microscopy (SEM) along with energy-dispersive spectroscopy confirmed the high yield of GO from the oxidation of graphite. Raman spectroscopy, XRD, and TEM confirmed the formation of high-quality few-layered PG from the reduction of as-prepared GO. The above results demonstrated the practicality of using encapsulated ferrate(VI) compounds to realize green oxidation of graphite and resolve the paradox about the oxidation capability of ferrate(VI). To further illustrate its potential for the removal of emerging and crucial contaminants from water, as-prepared PG was further examined against the contaminants of methyl orange (MeO) dye and ibuprofen (IBU). Taken together, the results revealed that more than 90% removal efficiency could be achieved at a high PG dosage against MeO and IBU. This ground-breaking greener approach opens the door to risk-free, extensive graphene environmental applications.
Collapse
Affiliation(s)
- Bhavya Joshi
- Faculty
of Environment, Science and Economy, University
of Exeter, Exeter EX4 4QF, U.K.
| | - Ahmed M.E. Khalil
- Faculty
of Environment, Science and Economy, University
of Exeter, Exeter EX4 4QF, U.K.
- Department
of Chemical Engineering, Faculty of Engineering, Cairo Universitynal-id id_type=″Ringgold″ id_value=″3286″
source-system=″pplus″/>, Giza 12613, Egypt
| | - Tanveer A. Tabish
- Division
of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Fayyaz A. Memon
- Faculty
of Environment, Science and Economy, University
of Exeter, Exeter EX4 4QF, U.K.
| | - Hong Chang
- Faculty
of Environment, Science and Economy, University
of Exeter, Exeter EX4 4QF, U.K.
| | - Shaowei Zhang
- Faculty
of Environment, Science and Economy, University
of Exeter, Exeter EX4 4QF, U.K.
| |
Collapse
|
7
|
Jin X, Yang L, Li H, Chen Z, Chen Z. Impact of coexisting components in acid mine drainage on Sb(Ⅲ) oxidation by biosynthesized iron nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121866. [PMID: 37225079 DOI: 10.1016/j.envpol.2023.121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Despite the oxidation mechanism of antimonite (Sb(Ⅲ)) by biosynthesized iron nanoparticles (Fe NPs) has been reported, the impact of coexisting components in acid mine drainage (AMD) on the Sb(III) oxidation by Fe NPs is unknown. Herein, how the coexisting components in AMD affect Sb(Ⅲ) oxidation by Fe NPs was investigated. Firstly, Fe NPs achieved complete oxidation of Sb(Ⅲ) (100%), while only 65.0% of Sb(Ⅲ) was oxidized when As(Ⅲ) was added, due to competitive oxidation between As(Ⅲ) and Sb(Ⅲ), which was verified by characterization analysis. Secondly, the decline in solution pH improved Sb(Ⅲ) oxidation from 69.5% (pH 4) to 100% (pH 2), which could be attributed to the rise of Fe3+ in solution promoting the electron transfer between Sb(Ⅲ) and Fe NPs. Thirdly, the oxidation efficiencies of Sb(Ⅲ) fell by 14.9 and 44.2% following the addition of oxalic and citric acid, respectively, resulting from the fact that these two acids reduced the redox potential of Fe NPs, thereby inhibiting Sb(Ⅲ) oxidation by Fe NPs. Finally, the interference effect of coexisting ions was studied, where PO43- significantly reduced Sb(Ⅲ) oxidation efficiency due to the occupation of the surface-active sites on Fe NPs. Overall, this study has significant implications for the prevention of Sb contamination in AMD.
Collapse
Affiliation(s)
- Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Lu Yang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Zhiqiang Chen
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian Province, China.
| |
Collapse
|
8
|
Wang N, Li W, Wang N, Li M, Wang H. Influence of Humic Acids on the Removal of Arsenic and Antimony by Potassium Ferrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4317. [PMID: 36901331 PMCID: PMC10001810 DOI: 10.3390/ijerph20054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the removal ability of potassium ferrate (K2FeO4) on aqueous heavy metals has been confirmed by many researchers, little information focuses on the difference between the individual and simultaneous treatment of elements from the same family of the periodic table. In this project, two heavy metals, arsenic (As) and antimony (Sb) were chosen as the target pollutants to investigate the removal ability of K2FeO4 and the influence of humic acid (HA) in simulated water and spiked lake water samples. The results showed that the removal efficiencies of both pollutants gradually increased along the Fe/As or Sb mass ratios. The maximum removal rate of As(III) reached 99.5% at a pH of 5.6 and a Fe/As mass ratio of 4.6 when the initial As(III) concentration was 0.5 mg/L; while the maximum was 99.61% for Sb(III) at a pH of 4.5 and Fe/Sb of 22.6 when the initial Sb(III) concentration was 0.5 mg/L. It was found that HA inhibited the removal of individual As or Sb slightly and the removal efficiency of Sb was significantly higher than that of As with or without the addition of K2FeO4. For the co-existence system of As and Sb, the removal of As was improved sharply after the addition of K2FeO4, higher than Sb; while the latter was slightly better than that of As without K2FeO4, probably due to the stronger complexing ability of HA and Sb. X-ray energy dispersive spectroscopy (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the precipitated products to reveal the potential removal mechanisms based on the experimental results.
Collapse
Affiliation(s)
- Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Wenwen Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Nannan Wang
- Qingdao Municipal Engineering Design and Research Institute, Qingdao 266061, China
| | - Man Li
- Shandong Soil Pollution Prevention and Recalcination Center, Jinan 250033, China
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
9
|
Li F, Guo Z, Mao L, Feng J, Huang J, Tao H. Impact of Textile Industries on Surface Water Contamination by Sb and Other Potential Toxic Elements: A Case Study in Taihu Lake Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3600. [PMID: 36834301 PMCID: PMC9963225 DOI: 10.3390/ijerph20043600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Contamination of industry-derived antimony (Sb) is currently of great concern. This study was conducted to identify the source of Sb together with other potential toxic elements (PTEs) in a typical industrial area in China and emphasize the contribution of Sb to ecological risk in the local aquatic environment. By investigating the distribution of nine PTEs in surface water in Wujiang County in dry and wet seasons, this study revealed that textile wastewater was the main source of Sb. The distribution of Sb (0.48~21.4 μg/L) showed the least seasonal variation among the nine elements. Factor analysis revealed that the factor that controlled Sb distribution is unique. In general, Sb was more concentrated in the southeastern part of the study area where there was a large number of textile industries, and was affected by the specific conductivity and total dissolved solids in water (p < 0.01). Sb concentration in 35.71% of samples collected from the drainage outlet exceeded the standard limit of 10 μg/L. Results from three pollution assessment methods suggested that >5% of the sampling sites were slightly too heavily polluted and Sb contributed the most. Therefore, it is necessary to strengthen the administrative supervision of local textile enterprises and elevate the local standard of textile wastewater emission.
Collapse
Affiliation(s)
| | | | - Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | | | | | | |
Collapse
|
10
|
Gan Y, Ding C, Xu B, Liu Z, Zhang S, Cui Y, Wu B, Huang W, Song X. Antimony (Sb) pollution control by coagulation and membrane filtration in water/wastewater treatment: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130072. [PMID: 36303342 DOI: 10.1016/j.jhazmat.2022.130072] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Antimony (Sb) pollution in the water environment caused by the large-scale mining of Sb ore and the wide use of Sb-containing products seriously endangers human health and poses a great threat to the ecological environment. Coagulation is one of the most cost-effective technologies for Sb pollution control in water/wastewater treatment and has been widely used. However, a comprehensive understanding of Sb pollution control by coagulation, from fundamental research to practical applications, is lacking. In this work, based on the current status of Sb pollution in the water environment, a critical review of the Sb removal performance and mechanism by coagulation and related combined processes was carried out. The influencing factors of Sb removal performance by coagulation are introduced in detail. The internal mechanisms and improvement strategies of Sb removal by oxidation/reduction-coagulation and coagulation-membrane filtration technologies are emphasized. Moreover, given the development of Sb-removing coagulants and the resource utilization of Sb-containing sludge, future perspectives of coagulation for Sb removal are discussed. As the first review in this field, this work will illuminate avenues of basic research and practical applications for Sb and Sb-like pollution control in water/wastewater treatment.
Collapse
Affiliation(s)
- Yonghai Gan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhuang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| | - Wenguang Huang
- South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510535, China
| | - Xiaojie Song
- SINOPEC Yangzi Petrochemical Co., Ltd., Nanjing 210048, China
| |
Collapse
|
11
|
Kong Y, Ma Y, Guo M, Huang Z, Ma J, Nie Y, Ding L, Chen Z, Shen J. Highly efficient removal of arsenate and arsenite with potassium ferrate: role of in situ formed ferric nanoparticle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10697-10709. [PMID: 36083368 DOI: 10.1007/s11356-022-22858-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
It is well known the capacity of potassium ferrate (Fe(VI)) for the oxidation of pollutants or co-precipitation and adsorption of hazardous species. However, little information has been paid on the adsorption and co-precipitation contribution of the Fe(VI) resultant nanoparticles, the in situ hydrolytic ferric iron oxides. Here, the removal of arsenate (As(V)) and arsenite (As(III)) by Fe(VI) was investigated, which focused on the interaction mechanisms of Fe(VI) with arsenic, especially in the contribution of the co-precipitation and adsorption of its hydrolytic ferric iron oxides. pH and Fe(VI) played significant roles on arsenic removal; over 97.8% and 98.1% of As(V) and As(III) removal were observed when Fe(VI):As(V) and Fe(VI):As(III) were 24:1 and 16:1 at pH 4, respectively. The removal of As(V) and As(III) by in situ and ex situ formed hydrolytic ferric iron oxides was examined respectively. The results revealed that As(III) was oxidized by Fe(VI) to As(V), and then was removed though co-precipitation and adsorption by the hydrolytic ferric iron oxides with the contribution content was about 1:3. For As(V), it could be removed directly by the in situ formed particles from Fe(VI) through co-precipitation and adsorption with the contribution content was about 1:1.5. By comparison, As(III) and As(V) were mainly removed through adsorption by the 30-min hydrolytic ferric iron oxides during the ex situ process. The hydrolytic ferric iron oxides size was obviously different in the process of in situ and ex situ, possessing abundant and multiple morphological structures ferric oxides, which was conducive for the efficient removal of arsenic. This study would provide a new perspective for understanding the potential of Fe(VI) treatment on arsenic control.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Yaqian Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Meng Guo
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Zhiyan Huang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China.
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China.
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
12
|
Zhu C, Xue C, Huang M, Zhu F, Fang G, Wang D, Liu S, Chen N, Wu S, Zhou D. Rapid As(III) oxidation mediated by activated carbons: Reactive species vs. direct oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153536. [PMID: 35104530 DOI: 10.1016/j.scitotenv.2022.153536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Activated carbon (AC) is widely used in pollutant removal, due to its adsorption capacity, conductivity and catalytic performance. However, few studies focus on the redox activity of AC and its role in pollutant transformation. In this study, we found that AC could efficiently mediate the oxidation of As(III) and the process of As(III) oxidation was pH and oxygen concentration dependent. In general, the presence of O2 promoted As(III) oxidation at pH 3.0-9.5. Acidic and alkaline conditions favored As(III) oxidation regardless of whether there was oxygen, but the mechanisms involved were quite different when there was oxygen. At pH 3.0, reactive species (H2O2 and ·OH) were generated and accounted for As(III) oxidation; at pH 9.5, As(III) was directly oxidized by O2 (electron transfer from As(III) to O2 mediated by carbon matrix) under aerobic conditions. Pre-oxidation and cyclic experiments results indicated the ability of AC to oxidize As(III) at pH 9.5 was sustainable and recyclable. This study provided a new insight in pollutant oxidation by AC in the environment.
Collapse
Affiliation(s)
- Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Chenyan Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mingquan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dixiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shaochong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
13
|
Cheng M, Fang Y, Li H, Yang Z. Review of recently used adsorbents for antimony removal from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26021-26044. [PMID: 35072873 DOI: 10.1007/s11356-022-18653-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
As prior pollutants, antimony (Sb) and its compounds are carcinogenic to threaten human health. With the development of the industry, various Sb-contained pollutants have been released into nature, thus heavily damaging the ecological environment. Effectively treating Sb-polluted waterbodies is very important and have obtained ever-growing attention. In this review, we have summarized and classified the adsorbents used for removing Sb from water in recent two decades as natural and synthetic biological adsorbents, mineral adsorbents, natural and synthetic carbon materials, metal-based adsorbents, and metal-organic frameworks. We focus on the adsorption behavior of various adsorbents for Sb, including adsorption capacity, isotherms, kinetics, thermodynamics, and effects of environmental factors (e.g., pH, coexisting anions, and natural organic matter). Meanwhile, the involved adsorption mechanisms of Sb by different adsorbents are discussed. Finally, we have outlined the development of adsorbents over the last two decades and summarized the performance characteristics of effective adsorbents, such as the rich functional groups on the surface of the adsorbents (i.e., hydroxyl, carboxyl and amino groups), and the presence of metal elements to coordinate with Sb in (i.e., iron and manganese). We hope this review give enlightenment to design adsorbents for effective removal of Sb.
Collapse
Affiliation(s)
- Mengsi Cheng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, People's Republic of China.
| |
Collapse
|
14
|
Goren AY, Kobya M, Khataee A. How does arsenic speciation (arsenite and arsenate) in groundwater affect the performance of an aerated electrocoagulation reactor and human health risk? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152135. [PMID: 34864021 DOI: 10.1016/j.scitotenv.2021.152135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) occurrence in water resources has become one of the most critical environmental problems worldwide. The detrimental health impacts on humans have been reported due to the consumption of As-contaminated groundwater resources. Consumption of As-containing water over the long term can cause arsenicosis and chronic effects on human health due to its toxicity. Several treatment processes are available for As removals such as coagulation, ion exchange, adsorption, and membrane technologies but they have various major drawbacks. In the present work, therefore, an aerated electrocoagulation (EC) system with aluminum anodes was operated for simultaneous arsenate (As(V)) and arsenite (As(III)) removal to overcome the disadvantages of other processes such as, sludge formation, difficulties in operation, high operating costs, high energy consumption, and the requirement of pre-treatment process and to enhance the conventional EC process. The combined effects of the applied current (0.075-0.3 A), aeration rate (0-6 L/min), pH (6.5-8.5), and As speciation (As(V)-As(III)) were studied on As removal efficiency. The findings revealed that As removal mostly depended on the airflow rate and the applied current in the EC system. The highest As removal efficiency (99.1%) was obtained at an airflow rate of 6 L/min, a pH of 6.5, an initial As (V) concentration of 200 μg/L, and a current of 0.3 A, with an energy consumption of 2.85 kWh/m3 and an operating cost of 0.66 $/m3. The human health risk assessment of treated water was also examined to understand the performance of the EC system. At most of the experimental runs, the chronic toxic risk (CTR) and carcinogenic risk (CR) of As were within the permissible limits except for an airflow rate of 0-2 L/min, an initial pH of 8.5, and a current of 0.075-0.15 A for high initial As (III) concentrations. Overall, the As removal performance and groundwater risk assessment show that the EC process is a promising option for industrial applications.
Collapse
Affiliation(s)
- Aysegül Yagmur Goren
- Izmir Institute of Technology, Department of Environmental Engineering, 35430 Izmir, Turkey
| | - Mehmet Kobya
- Gebze Technical University, Department of Environmental Engineering, 41400 Kocaeli, Turkey; Kyrgyz-Turkish Manas University, Department of Environmental Engineering, 720000 Bishkek, Kyrgyzstan
| | - Alireza Khataee
- Gebze Technical University, Department of Environmental Engineering, 41400 Kocaeli, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| |
Collapse
|
15
|
Sharma VK, Feng M, Dionysiou DD, Zhou HC, Jinadatha C, Manoli K, Smith MF, Luque R, Ma X, Huang CH. Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:30-47. [PMID: 34918915 DOI: 10.1021/acs.est.1c04616] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efforts are being made to tune the reactivity of the tetraoxy anion of iron in the +6 oxidation state (FeVIO42-), commonly called ferrate, to further enhance its applications in various environmental fields. This review critically examines the strategies to generate highly reactive high-valent iron intermediates, FeVO43- (FeV) and FeIVO44- or FeIVO32- (FeIV) species, from FeVIO42-, for the treatment of polluted water with greater efficiency. Approaches to produce FeV and FeIV species from FeVIO42- include additions of acid (e.g., HCl), metal ions (e.g., Fe(III)), and reductants (R). Details on applying various inorganic reductants (R) to generate FeV and FeIV from FeVIO42- via initial single electron-transfer (SET) and oxygen-atom transfer (OAT) to oxidize recalcitrant pollutants are presented. The common constituents of urine (e.g., carbonate, ammonia, and creatinine) and different solids (e.g., silica and hydrochar) were found to accelerate the oxidation of pharmaceuticals by FeVIO42-, with potential mechanisms provided. The challenges of providing direct evidence of the formation of FeV/FeIV species are discussed. Kinetic modeling and density functional theory (DFT) calculations provide opportunities to distinguish between the two intermediates (i.e., FeIV and FeV) in order to enhance oxidation reactions utilizing FeVIO42-. Further mechanistic elucidation of activated ferrate systems is vital to achieve high efficiency in oxidizing emerging pollutants in various aqueous streams.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Chetan Jinadatha
- Central Texas Veterans Health Care System, Temple, Texas 76504-7451, United States
- College of Medicine, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Kyriakos Manoli
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mallory F Smith
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Rafael Luque
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C_3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation
| | - Xingmao Ma
- Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Wang K, Ran T, Yu P, Chen L, Zhao J, Ahmad A, Ramzan N, Xu X, Xu Y, Shi Y. Evaluation of renewable pH-responsive starch-based flocculant on treating and recycling of highly saline textile effluents. ENVIRONMENTAL RESEARCH 2021; 201:111489. [PMID: 34166665 DOI: 10.1016/j.envres.2021.111489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report a novel renewable pH-responsive starch-based flocculant (CIAT-ST) via etherifying 2-chloro-4,6-isopropylamino-[1,3,5]-triazine (CIAT) onto the starch backbones for decontamination and reuse of highly saline effluents. The obtained CIAT-ST shows a unique pH-sensibility and reversibility in response to a subtle pH change due to a pH-controllable surface charge density of polymer chains. The level of residual CIAT-ST in the solution can be facilely monitored by using UV-vis detection. The dye flocculation performance of CIAT-ST was evaluated by using a batch experiment. The results exhibited that the dye removal was highly dependent on the solution pH (optimal pH was 2), the flocculation equilibrium can be achieved within 5 min, and the maximum flocculation capacity of CIAT-ST for K-2BP and KN-B5 were calculated to be 2452.6 ± 23.9 and 792.7 ± 14.1 mg/g, respectively. The multiple flocculation mechanisms, including charge neutralization, bridging and charge patching, may participate in the flocculation process. Adjustment in pH-mediated hydrophilicity-hydrophobicity switch of flocculant facilitates readily recovery and then sequentially reused three times while retaining satisfying flocculation efficiency. A significant contribution was also confirmed that the highly saline effluents after flocculation and sedimentation were reused in three successive dyeing processes without sacrificing fabric quality (ΔE* < 1) due to relatively low polymer residuals, and the efficiency of salt reuse for consecutive regeneration processes could be achieved above 85%. The present work could provide alternative thoughts for the reutilization of spent flocculant and clarified saline wastewater, which is also an efficient and sustainable strategy for textile wastewater management.
Collapse
Affiliation(s)
- Kaixiang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Tingmin Ran
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Pai Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Long Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jigang Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China; International Joint Research Center for Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ayyaz Ahmad
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, 60000, Pakistan
| | - Naveed Ramzan
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Xiaolin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yisheng Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yulin Shi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
17
|
Lin Z, Weng X, Khan NI, Owens G, Chen Z. Removal mechanism of Sb(III) by a hybrid rGO-Fe/Ni composite prepared by green synthesis via a one-step method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147844. [PMID: 34134369 DOI: 10.1016/j.scitotenv.2021.147844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The annual influx of antimony (Sb) into the environment due to the widespread use of Sb compounds in industry and agriculture has become of global concern. Herein, a functional nanomaterial composite based on loading bimetallic iron/nickel nanoparticles on reduced graphene oxide (rGO-Fe/Ni) was initially prepared in a one-step phytogenic synthesis using a green tea extract. Subsequently, when applied for Sb(III) removal, the removal efficiency of rGO-Fe/Ni reached 69.7% within 3 h at an initial Sb concentration of 1.0 mg·L-1. Advanced materials characterization via scanning electron microscopy-energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that Sb(III) was initially adsorbed onto the surface of rGO and then oxidized to Sb(V). This result was also supported by adsorption isotherm, kinetics, and thermodynamic analysis. These studies revealed that the adsorption was spontaneous and endothermic, following a Langmuir adsorption model with pseudo-second-order kinetics and allowed a Sb(III) removal mechanism based on adsorption and catalytic oxidation to be proposed. Furthermore, when rGO-Fe/Ni was practically used to remove Sb(III) in groundwater a 95.7% removal efficiency was obtained at 1 mg·L-1 Sb(III), thus successfully demonstrating that rGO-Fe/Ni has significant potential for the practical remediation of Sb contaminated groundwater.
Collapse
Affiliation(s)
- Ze Lin
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Xiulan Weng
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Nasreen Islam Khan
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
18
|
Hu X, Liu Y, Liu F, Jiang H, Li F, Shen C, Fang X, Yang J. Simultaneous decontamination of arsenite and antimonite using an electrochemical CNT filter functionalized with nanoscale goethite. CHEMOSPHERE 2021; 274:129790. [PMID: 33540306 DOI: 10.1016/j.chemosphere.2021.129790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The co-presence of arsenic (As) and antimony (Sb) in water bodies has been commonly reported. The toxicity of As and Sb varies with different speciation. Herein, we designed a dual-functional electrochemical filter toward "one-step" detoxification and sequestration of highly toxic As(III) and Sb(III). The key to this technology is a functional anodic filter consists of nanoscale goethite and carbon nanotubes (CNT). Results showed that 97.9% As(III) and 91.9% Sb(III) transformation and 86.4% Astotal and 70.1% Sbtotal removal efficiency can be obtained over 2 h continuous filtration under optimized conditions. The Astotal removal kinetics and efficiency enhanced with flow rate and applied voltage (e.g., the Astotal removal efficiency increased from 62.9% at 0 V to 86.4% at 2.5 V). This enhancement in kinetics and efficiency can be explained by the synergistic effects of the flow-through design, plentiful exposed sorption sites, electrochemical reactivity, and nanoscale goethite. Moreover, the proposed technology works effectively across a wide pH range. Only negligible inhibition was observed in the presence of nitrate, chloride, and carbonate. Exhausted hybrid filters can be effectively regenerated by using chemical wash with NaOH solution. This study not only revealed the different adsorption behaviors of As(III) and Sb(III) on the hybrid filters, but also provided new insights into rational design of continuous-flow filters toward simultaneous decontamination of As(III) and Sb(III).
Collapse
Affiliation(s)
- Xuemei Hu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| | - Fuqiang Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Hualin Jiang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaofeng Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, 201620, Shanghai, China
| |
Collapse
|