1
|
Huang H, Lei L, Shangguan Y, Jian J, Dai J, Wang Y, Xu H, Liu H. Comprehensive bioremediation effect of phosphorus-mineralized bacterium Enterobacter sp. PMB-5 on cadmium contaminated soil-crop system. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134227. [PMID: 38581879 DOI: 10.1016/j.jhazmat.2024.134227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Phosphate-mineralizing bacteria (PMBs) have been widely studied by inducing phosphate heavy metal precipitation, but current researches neglect to study their effects on soil-microbe-crop systems on cadmium (Cd) contaminated. Based on this, a strain PMB, Enterobacter sp. PMB-5, was inoculated into Cd contaminated pots to detect soil characteristics, Cd occurrence forms, soil biological activities, plant physiological and biochemical indicators. The results showed that the inoculation of strain PMB-5 significantly increased the available phosphorus content (85.97%-138.64%), Cd-residual fraction (11.04%-29.73%), soil enzyme activities (31.94%-304.63%), plant biomass (6.10%-59.81%), while decreased the state of Cd-HOAc (11.50%-31.17%) and plant bioconcentration factor (23.76%-44.24%). These findings indicated that strain PMB-5 could perform the function of phosphorus solubilization to realize the immobilization of Cd in the complex soil environment. Moreover, SEM-EDS, FTIR, XPS, and XRD analysis revealed that strain PMB-5 does not significantly alter the soil morphology, structure, elemental distribution, and chemical composition, which suggested that remediation of Cd contamination using strain PMB-5 would not further burden the soil. This research implies that PMB-5 could be a safe and effective bioinoculant for remediating Cd-contaminated soils, contributing to the sustainable management of soil health in contaminated environments.
Collapse
Affiliation(s)
- Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yuxian Shangguan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Jiannan Jian
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jingtong Dai
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yang Wang
- Pengzhou Bureau of Agriculture and Rural Affairs, Chengdu 610066, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
2
|
Su A, Xu Y, Xu M, Ding S, Li M, Zhang Y. Resilience of the wheat root-associated microbiome to the disturbance of phenanthrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156487. [PMID: 35667431 DOI: 10.1016/j.scitotenv.2022.156487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The microbial communities are of high importance to the restoration of ecological function and plant health, while little information about the influence of exogenous pollutants on the resilience and temporal dynamics of root microbial communities is available. In this study, a greenhouse experiment was conducted to investigate the effects of exogenous phenanthrene in terms of time and pollution disturbance on the wheat root-associated microbial communities. It was found that a high phenanthrene degradation rate of 86 % was achieved in the rhizosphere of wheat after the first-week planting. Compared to phenanthrene pollution, temporal changes had more significant impacts on the wheat root microbial communities. Obvious change of microbes influenced by PHE had been revealed at the initial three-week planting even most of PHE has been degraded, and the enriched microbes in the rhizosphere were affiliated to Altererythrobacter, Massilia, Mycobacterium, Ramlibacter, Sphingobium, Novosphingobium and Romboutsia. However, at the later stage after four-week incubation, the wheat root-associated microbial communities gradually recovered to the state without pollution. The results of this study were helpful to deepen the understanding of the response of root-associated microbial resilience to the exogenous phenanthrene pollution, and would benefit the stability and balance of agricultural ecology facing exogenous organic pollutants.
Collapse
Affiliation(s)
- Aoxue Su
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058 Hangzhou, China.
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., LTD., Jinan 250100, China
| | - Shuang Ding
- China National Institute of Standardization, Beijing, China
| | - Mingyue Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Ying Zhang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Li M, Xu M, Su A, Zhang Y, Niu L, Xu Y. Combined Phenanthrene and Copper Pollution Imposed a Selective Pressure on the Rice Root-Associated Microbiome. Front Microbiol 2022; 13:888086. [PMID: 35602076 PMCID: PMC9114715 DOI: 10.3389/fmicb.2022.888086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Combined organic and inorganic pollutants can greatly impact crops and microbes, but the interaction between coexisted pollutants and their effects on root-associated microbes under flooding conditions remains poorly understood. In this study, greenhouse experiments were conducted to investigate the individual and combined effects of phenanthrene (PHE) and copper (Cu) on rice uptake and root-associated microbial coping strategies. The results showed that more than 90% of phenanthrene was degraded, while the existence of Cu significantly reduced the dissipation of PHE in the rhizosphere, and the coexistence of phenanthrene and copper promoted their respective accumulation in plant roots. Copper played a dominant role in the interaction between these two chemicals. Microbes that can tolerate heavy metals and degrade PAHs, e.g., Herbaspirillum, Sphingobacteriales, and Saccharimonadales, were enriched in the contaminated soils. Additionally, microbes associated with redox processes reacted differently under polluted treatments. Fe reducers increased in Cu-treated soils, while sulfate reducers and methanogens were considerably inhibited under polluted treatments. In total, our results uncover the combined effect of heavy metals and polycyclic aromatic hydrocarbons on the assemblage of root-associated microbial communities in anaerobic environments and provide useful information for the selection of effective root-associated microbiomes to improve the resistance of common crops in contaminated sites.
Collapse
Affiliation(s)
- Mingyue Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., Ltd., Jinan, China
| | - Aoxue Su
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Ying Zhang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, China
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Jiao A, Gao B, Gao M, Liu X, Zhang X, Wang C, Fan D, Han Z, Hu Z. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum sudanense (Piper) Stapf.) in Ni-pyrene contaminated soil. CHEMOSPHERE 2022; 294:133654. [PMID: 35066084 DOI: 10.1016/j.chemosphere.2022.133654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Phytoremediation is commonly used in the remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) because of its economy and effectiveness. Sudan grass (Sorghum sudanense (Piper) Stapf.) has well-developed roots and strong tolerance to heavy metals, so it has been widely concerned. In this study, nitrilotriacetic acid (NTA) and tea saponin (TS) were used as enhancers and combined with Sudan grass for improving the remediation efficiency of Ni-pyrene co-contaminated soil. The results of the pot experiment in soils showed that enhancers promoted the enrichment of Ni in plants. With the function of enhancers, more inorganic and water-soluble Ni were converted into low-toxic phosphate-bonded and residual Ni, so as to reinforce the tolerance of Sudan grass to Ni. In the pot experiment based on vermiculite, it was found that enhancers increased the accumulation of Ni in cell wall by 49.71-102.73%. Enhancers also had the positive effect on the relative abundance of Proteobacteria, Patescibacteria and Bacteroidetes that could tolerate heavy metals at phylum level. Simultaneously, the study found that pyrene reduced the exchangeable Ni in soils. More Ni entered the organelles and transfer to more high-toxic forms in Sudan grass when pynere coexisted. The study manifested that enhancers improved the phytoremediation effect of Ni significantly, yet the co-existence of pyrene weakened the process. Our results provided meaningful references for remediating actual co-contaminated soil of heavy metals and PAHs.
Collapse
Affiliation(s)
- Anxing Jiao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Bingjie Gao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Mingjing Gao
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Chuanhua Wang
- College of Life and Environment Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Delong Fan
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zongrui Han
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Ziqiao Hu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
5
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
6
|
Hu B, Jiang L, Zheng Q, Luo C, Zhang D, Wang S, Xie Y, Zhang G. Uptake and translocation of organophosphate esters by plants: Impacts of chemical structure, plant cultivar and copper. ENVIRONMENT INTERNATIONAL 2021; 155:106591. [PMID: 33933901 DOI: 10.1016/j.envint.2021.106591] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Organophosphate esters (OPEs) are normally used as flame retardants, plasticizers and lubricants, but have become environmental pollutants. Because OPEs are normally present alongside heavy metals in soils, the effects of interactions between OPEs and heavy metals on plant uptake of OPEs need to be determined. In this study, we investigated the effects of OPEs chemical structure, plant cultivar and copper (Cu) on the uptake and translocation of OPEs by plants. The bioaccumulation of OPEs varied among plant cultivars. They were preferentially enriched in carrot, with the lowest concentrations observed in maize. OPEs with electron-ring substituents (ER-OPEs) exhibited a higher potential for root uptake than did OPEs with open-chain substituents (OC-OPEs), which could be attributed to the higher sorption of ER-OPEs onto root charged surfaces. This was explained by the stronger noncovalent interactions with the electron-rich structure of ER-OPEs. The presence of Cu slightly reduced the distinct difference in the ability of roots to take up OC-OPEs and ER-OPEs. This was explained by the interactions of Cu ions with the electron-rich structure of ER-OPEs, which suppressed the sorption of ER-OPEs on the root surface. A negative relationship between the logarithms of the translocation factor and octanol-water partition coefficient (Kow) was observed in treatments with either OPEs only or OPEs + Cu, implying the significant role of hydrophobicity in the OPEs acropetal translocation. The results will improve our understanding of the uptake and translocation of OPEs by plant cultivars as well as how the process is affected by the chemical structure of OPEs and Cu, leading to improvements in the ecological risk assessment of OPEs in the food chain.
Collapse
Affiliation(s)
- Beibei Hu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Qian Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaorui Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yucheng Xie
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
7
|
Xu Y, Ge Y, Lou Y, Meng J, Shi L, Xia F. Assembly strategies of the wheat root-associated microbiome in soils contaminated with phenanthrene and copper. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125340. [PMID: 33951882 DOI: 10.1016/j.jhazmat.2021.125340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Plants can cope with stressful conditions by indirectly regulating root-associated microbial structures. However, the recruitment strategies of the root-associated microbiome in combined organic and inorganic contaminated soils are not well known, especially for common agricultural crops. In this study, we performed greenhouse experiments to investigate the interactive effects of joint copper (Cu) and phenanthrene (PHE) pollution on wheat growth and microbial detoxication processes. Results show that heavy metals did not affect PHE dissipation in the rhizosphere but significantly enhanced the accumulation of PHE in the endosphere. In contrast, the addition of PHE did not influence the absorption of Cu by wheat roots. Cu was the primary factor affecting the variation of microbial communities in cocontaminated treatments among each rhizocompartment while the interactive effects of combined pollutants were only detected in unplanted bulk soil. Microbes are known to degrade polycyclic aromatic hydrocarbons and tolerant heavy metal stress e.g. Novosphingobium, Sphingomonas, Sphingobium and Pseudomonas enriched in the contaminated treatments. Our results provide an integrated understanding of the synthetic effects of combined pollutants on the root-microbial assemblage process in plant-soil systems and offer useful information on the selection of effective bioremediating root-associated microbes for the application of self-remediation by common crops.
Collapse
Affiliation(s)
- Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi Ge
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yinghua Lou
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jun Meng
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lei Shi
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Fang Xia
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|