1
|
Xue R, Wang K, Wang Y, Jiang M, Zhao Q, Jiang J. Effect of freeze-thaw frequency plus rainfall on As and Sb metal(loid)s leaching from the solidified/stabilized soil remediated with Fe-based composite agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171844. [PMID: 38513844 DOI: 10.1016/j.scitotenv.2024.171844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The composite agent of ferrous sulfate, fly ash, and calcium lignosulfonate (FFC) can remediate the soil contaminated by As and Sb under cyclic freeze-thaw (F-T) via stabilization/solidification (S/S). However, the impact of high-frequency F-T cycles on the leaching behavior and migration of As and Sb in FFC-treated soils remains unclear. Here the leaching concentrations, heavy metal speciation (Wenzel's method), and Hydrus-1d simulations were investigated. The results showed that FFC effectively maintained the long-term S/S efficiency of arsenic remediation subject to an extended rainfall and freeze-thaw cycles, and stabilized the easily mobile form of As. The short-term S/S effect on Sb in the remediated soils suffering from F-T cycles was demonstrated in the presence of FFC. In a 20-year span, the mobility of Sb was affected by the number of F-T cycles (FT60 > FT20 > FT40 > FT0) in soil with a depth of 100 cm. As leaching progressed, FFC slowed the upward proportion of adsorbed As fractions but converted parts of the residual Sb to the form of crystalline Fe/Al (hydro) oxide. Moreover, the adsorption rate and capacity of As also preceded that of Sb. Long-term curative effects of FFC could be observed for As, but further development of agents capable of remedying Sb under cyclic F-T and long-term rainfall was needed. The predictive results on the migration and leaching behavior of heavy metals in S/S remediated soils may provide new insight into the long-term assessment of S/S under natural conditions.
Collapse
Affiliation(s)
- Ruiyuan Xue
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yipeng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Li C, Ran Y, Wu P, Liu P, Yang B, Gu X, Zhao P, Liu S, Song L, Liu Y, Liu Y, Ning Z, Sun J, Liu C. Antimony and arsenic migration in a heterogeneous subsurface at an abandoned antimony smelter under rainfall. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134156. [PMID: 38565015 DOI: 10.1016/j.jhazmat.2024.134156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
While antimony (Sb) and arsenic (As) co-contamination in subsurface soil systems due to the legacy of Sb smelting wastes has been documented, the role of inherent heterogeneity on pollutant migration is largely overlooked. Herein this study investigated Sb and As migration in a slag impacted, vertically stratified subsurface at an abandoned Sb smelter. A 2-dimensional flume was assembled as a lab-scale analogue of the site and subject to rainfall and stop-rain events. Reactive transport modeling was then performed by matching the experimental observations to verify the key factors and processes controlling pollutant migration. Results showed that rainfall caused Sb and As release from the shallow slag layer and promoted their downward movement. Nevertheless, the less permeable deeper layers limited physical flow and transport, which led to Sb and As accumulation at the interface. The re-adsorption of Sb and As onto iron oxides in the deeper, more acidic layers further retarded their migration. Because of the large difference between Sb and As concentrations, Sb re-adsorption was much less effective, which led to higher mobility. Our findings overall highlight the necessity of understanding the degree and impacts of physicochemical heterogeneity for risk exposure assessment and remediation of abandoned Sb smelting sites.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yiyuan Ran
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, China
| | - Boyi Yang
- School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Ping Zhao
- Geological Brigade 105, Guizhou Bureau of Geology and Mineral Exploration and Development, Guiyang 550018, China
| | - Shirong Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Lei Song
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
3
|
Zhang C, Wu P, Yang Z, Liu F, Luo H, Luo J. Effect of iron cyclic transformation on the natural purification of antimony in contaminated reservoirs of mines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162510. [PMID: 36868284 DOI: 10.1016/j.scitotenv.2023.162510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
To further understand the purification mechanism of antimony (Sb) in reservoirs, samples of stratified water and bottom interface sediment were collected in this study. The cross-flow ultrafiltration technique was used to separate the truly dissolved (<1 kDa) and colloidal (1 kDa-0.45 μm) phases of water, and two modified sequential extraction techniques were used to determine the Sb and Fe mineral forms in sediment, respectively. The results showed that the total Sb concentration could decrease from 142.2 μg/L in surface water to 98.6 μg/L at 16 m; this was contributed to by the removal of truly dissolved Sb. In comparison to particulate Sb (>0.45 μm), the formation of colloidal Sb played a greater role in the purification process. There was a positive correlation between Sb and Fe in the colloidal phase (r = 0.45, P < 0.05). The generation of colloidal Fe could be promoted by higher temperatures, pH values, DO, and DOC in the upper layer (0-5 m). However, the complexation of DOC with colloidal Fe inhibited the adsorption of truly dissolved Sb. After entering the sediment, the secondary release of Sb could not increase the Sb concentration in the lower layer obviously, while the supplementation of Fe(III) could further enhance Sb natural purification.
Collapse
Affiliation(s)
- Chipeng Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zeyan Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Fengzhu Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Huan Luo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jianglan Luo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Wang L, Guo J, Wang H, Luo J, Hou D. Stimulated leaching of metalloids along 3D-printed fractured rock vadose zone. WATER RESEARCH 2022; 226:119224. [PMID: 36265423 DOI: 10.1016/j.watres.2022.119224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fractured rock aquifers are susceptible to contamination, with metal(loid)s rapidly migrating from poorly developed overburden to the fractured rock vadose zone and thus into groundwater. Compared to typical porous aquifers, retention effects within the rock matrix are small, and rapid advection along fractures leads to a higher risk of groundwater contamination. However, the highly complex anisotropic pathways of natural fractures hinder research in this field. To construct reproducible fractures, this study used 3D printing following Computed X-ray Microtomography (μCT) scans of a fractured rock collected in a natural limestone aquifer. Stimulated metalloid release was observed in the fractured rock during column leaching, and the leachate concentrations of arsenic (As) and antimony (Sb) increased by up to 17.5 and 36.4 times, respectively, compared with the porous vadose zone. Fluctuations in fracture metalloid release patterns in dissolved and adsorbed phases were attributed to retention and filtration effects induced by soil particles within fractures. Geophysical properties of the porous overburden, especially the aggregation characteristics, greatly affected the non-equilibrium leaching behavior of As, but had a limited effect on the near-equilibrium leaching of Sb, which was explored by modifying the surficial soil layer with either montmorillonite clay or charcoal. The results of this study provide a novel method and useful information for modeling and risk assessment of fractured rock aquifers.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiameng Guo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Huixia Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Woodland for Sludge Disposal in Beijing: Sustainable? SUSTAINABILITY 2022. [DOI: 10.3390/su14127444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sludge products of urban sewage treatment plants in Beijing are increasing year by year, and there is a large amount of stagnation, which requires scientific and reasonable disposal strategies. Currently, the woodland in the mountainous area of Beijing is considered the main means for sludge disposal; however, because the heavy metals in the sludge may cause potential pollution to the soil and groundwater, it is unclear how much sludge can be applied per unit area. To ensure the sustainable disposal of sludge, it is necessary to measure the risk of heavy metals on soil and groundwater under different sludge application rates to determine the most scientific disposal plan. In this study, the undisturbed soil columns obtained from the field were used to clarify the migration behaviors and accumulation of eight hazardous heavy metals under simulated rainfall conditions, and three sets of tests (the application rates of sludge products were 30 t·ha−1·a−1, 60 t·ha−1·a−1 and 120 t·ha−1·a−1 respectively) were set based on the supply–demand relationship between Beijing’s annual sludge output and the woodland area available for sludge disposal. The results showed that there were significant differences in the migration rules of heavy metals under different application rates, which were mainly reflected in the differences in accumulation in each layer of the soil. In terms of the leaching efficiency of heavy metals, except for Cadmium, the leaching rates of other heavy metals did not exceed 0.1%, indicating that most heavy metals accumulated in the soil. During the application process of sludge products, Arsenic and Cadmium posed a greater potential risk to groundwater than other heavy metals, to which should be paid sufficient attention. Based on the accumulation of heavy metals in soil, Arsenic was the main factor limiting the amount and frequency of sludge product application. The application rate of 60 t·ha−1·a−1 was preferred compared with the other two tests because it presented minimal risk to groundwater and soil in the short term, while the total amount of sludge disposal can be maximized.
Collapse
|
6
|
Yao Y, Li J, He C, Hu X, Yin L, Zhang Y, Zhang J, Huang H, Yang S, He H, Zhu F, Li S. Distribution Characteristics and Relevance of Heavy Metals in Soils and Colloids Around a Mining Area in Nanjing, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:996-1003. [PMID: 34374788 DOI: 10.1007/s00128-021-03350-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution in agricultural soils poses a direct threat to food safety and human health. It has been shown that the colloids is the carrier of heavy metal transport in the polluted soil by heavy metals, but the sources of heavy metals in the soil and colloids and their interrelations are not transparent at present. This study aims to investigate the distribution characteristics of heavy metals in agricultural soils near mining areas, and reveal the relevance of heavy metal content in colloids with total content in soils and their chemical species in soils. Results showed that the concentrations of Mn, Zn, and Pb in agricultural soils and colloids were higher than those of other heavy metals. The content of heavy metals in colloids was positively correlated with the total content of heavy metals in soil. Heavy metals in soil could be easily combined by humus-like substances and tryptophan-like protein in the colloids. The primary source of heavy metals in soil and colloids was mining activities. This study provides theoretical support for revealing the pollution characteristics and migration of heavy metals in agricultural soils and colloids around mining areas.
Collapse
Affiliation(s)
- Youru Yao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jing Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng He
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200082, China
| | - Xin Hu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Jie Zhang
- Analytical and Testing Center, Nanjing Normal University, Nanjing, 210023, China
| | - Heyong Huang
- Analytical and Testing Center, Nanjing Normal University, Nanjing, 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Hu X, Liu Y, Liu F, Jiang H, Li F, Shen C, Fang X, Yang J. Simultaneous decontamination of arsenite and antimonite using an electrochemical CNT filter functionalized with nanoscale goethite. CHEMOSPHERE 2021; 274:129790. [PMID: 33540306 DOI: 10.1016/j.chemosphere.2021.129790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The co-presence of arsenic (As) and antimony (Sb) in water bodies has been commonly reported. The toxicity of As and Sb varies with different speciation. Herein, we designed a dual-functional electrochemical filter toward "one-step" detoxification and sequestration of highly toxic As(III) and Sb(III). The key to this technology is a functional anodic filter consists of nanoscale goethite and carbon nanotubes (CNT). Results showed that 97.9% As(III) and 91.9% Sb(III) transformation and 86.4% Astotal and 70.1% Sbtotal removal efficiency can be obtained over 2 h continuous filtration under optimized conditions. The Astotal removal kinetics and efficiency enhanced with flow rate and applied voltage (e.g., the Astotal removal efficiency increased from 62.9% at 0 V to 86.4% at 2.5 V). This enhancement in kinetics and efficiency can be explained by the synergistic effects of the flow-through design, plentiful exposed sorption sites, electrochemical reactivity, and nanoscale goethite. Moreover, the proposed technology works effectively across a wide pH range. Only negligible inhibition was observed in the presence of nitrate, chloride, and carbonate. Exhausted hybrid filters can be effectively regenerated by using chemical wash with NaOH solution. This study not only revealed the different adsorption behaviors of As(III) and Sb(III) on the hybrid filters, but also provided new insights into rational design of continuous-flow filters toward simultaneous decontamination of As(III) and Sb(III).
Collapse
Affiliation(s)
- Xuemei Hu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| | - Fuqiang Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Hualin Jiang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaofeng Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, 201620, Shanghai, China
| |
Collapse
|