1
|
Sun B, Lan X, Bock C, Shang Y, Hu M, Wang Y. Effects of ocean acidification and warming on apoptosis and immune response in the mussel Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110134. [PMID: 39826631 DOI: 10.1016/j.fsi.2025.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Ocean acidification and warming are significant stressors impacting marine ecosystems, exerting profound effects on the physiological ecology of marine organisms. We investigated the impact of ocean acidification and warming on the immune system of mussels, focusing on the regulatory mechanisms of intrinsic and extrinsic apoptosis. The study explored the effects on the immune response ability of mussels (Mytilus coruscus) after 14 and 21 days under combined conditions of different temperatures (20 °C and 30 °C) and pH (8.1 and 7.7), as expected for the year 2100. The experimental results indicated that ocean acidification and warming have significant interactive effects on various immune parameters of M. coruscus. Specifically, ocean acidification and warming lead to an increase in ROS (Reactive Oxygen Species), apoptosis, TNF-α (Tumor Necrosis Factor-alpha), TGF-β (Transforming Growth Factor-beta), Caspase-8, and a decrease in IL-17 (Interleukin 17). These findings suggest that ocean acidification and warming trigger an immune inflammatory response in mussels. Regulating immune functions through apoptosis pathways may be a crucial coping mechanism in response to environmental variations, but its long-term impact on population health and sustainability remains uncertain. Our findings offer important insights into the complex interactions between bivalve immune responses and environmental stressors. This also underscores the need for further research into the adaptive capabilities of marine organisms facing the compounded challenges of ocean acidification and warming.
Collapse
Affiliation(s)
- Bingyan Sun
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Xukai Lan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Christian Bock
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar & Marine Research, Bremerhaven, Germany
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
2
|
Czaja R, Holmberg R, Pales Espinosa E, Hennen D, Cerrato R, Lwiza K, O'Dwyer J, Beal B, Root K, Zuklie H, Allam B. Behavioral and physiological effects of ocean acidification and warming on larvae of a continental shelf bivalve. MARINE POLLUTION BULLETIN 2023; 192:115048. [PMID: 37236091 DOI: 10.1016/j.marpolbul.2023.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
The negative impacts of ocean warming and acidification on bivalve fisheries are well documented but few studies investigate parameters relevant to energy budgets and larval dispersal. This study used laboratory experiments to assess developmental, physiological and behavioral responses to projected climate change scenarios using larval Atlantic surfclams Spisula solidissima solidissima, found in northwest Atlantic Ocean continental shelf waters. Ocean warming increased feeding, scope for growth, and biomineralization, but decreased swimming speed and pelagic larval duration. Ocean acidification increased respiration but reduced immune performance and biomineralization. Growth increased under ocean warming only, but decreased under combined ocean warming and acidification. These results suggest that ocean warming increases metabolic activity and affects larval behavior, while ocean acidification negatively impacts development and physiology. Additionally, principal component analysis demonstrated that growth and biomineralization showed similar response profiles, but inverse response profiles to respiration and swimming speed, suggesting alterations in energy allocation under climate change.
Collapse
Affiliation(s)
- Raymond Czaja
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Robert Holmberg
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Daniel Hennen
- Northeast Fisheries Science Center, 166 Water Street Woods Hole, MA 02543-1026, United States
| | - Robert Cerrato
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Kamazima Lwiza
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States
| | - Jennifer O'Dwyer
- New York State Department of Environmental Conservation, East Setauket, NY 1173, United States
| | - Brian Beal
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States; University of Maine at Machias, 116 O'Brien Avenue, Machias, ME 04654, United States
| | - Kassandra Root
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States
| | - Hannah Zuklie
- Downeast Institute, 39 Wildflower Lane, P.O. Box 83, Beals, ME 04611, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790-5000, United States.
| |
Collapse
|
3
|
Thomas JT, Spady BL, Munday PL, Watson SA. The role of ligand-gated chloride channels in behavioural alterations at elevated CO2 in a cephalopod. J Exp Biol 2021; 224:269059. [PMID: 34100547 DOI: 10.1242/jeb.242335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/30/2021] [Indexed: 11/20/2022]
Abstract
Projected future carbon dioxide (CO2) levels in the ocean can alter marine animal behaviours. Disrupted functioning of γ-aminobutyric acid type A (GABAA) receptors (ligand-gated chloride channels) is suggested to underlie CO2-induced behavioural changes in fish. However, the mechanisms underlying behavioural changes in marine invertebrates are poorly understood. We pharmacologically tested the role of GABA-, glutamate-, acetylcholine- and dopamine-gated chloride channels in CO2-induced behavioural changes in a cephalopod, the two-toned pygmy squid (Idiosepius pygmaeus). We exposed squid to ambient (∼450 µatm) or elevated (∼1000 µatm) CO2 for 7 days. Squid were treated with sham, the GABAA receptor antagonist gabazine or the non-specific GABAA receptor antagonist picrotoxin, before measurement of conspecific-directed behaviours and activity levels upon mirror exposure. Elevated CO2 increased conspecific-directed attraction and aggression, as well as activity levels. For some CO2-affected behaviours, both gabazine and picrotoxin had a different effect at elevated compared with ambient CO2, providing robust support for the GABA hypothesis within cephalopods. In another behavioural trait, picrotoxin but not gabazine had a different effect in elevated compared with ambient CO2, providing the first pharmacological evidence, in fish and marine invertebrates, for altered functioning of ligand-gated chloride channels, other than the GABAAR, underlying CO2-induced behavioural changes. For some other behaviours, both gabazine and picrotoxin had a similar effect in elevated and ambient CO2, suggesting altered function of ligand-gated chloride channels was not responsible for these CO2-induced changes. Multiple mechanisms may be involved, which could explain the variability in the CO2 and drug treatment effects across behaviours.
Collapse
Affiliation(s)
- Jodi T Thomas
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Blake L Spady
- Coral Reef Watch, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA.,ReefSense Pty Ltd., Cranbrook, QLD 4814, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, QLD 4810, Australia
| |
Collapse
|