1
|
Song X, Wang Z, Xia Y, Chen Z, Wang G, Yang Y, Zhu B, Ai L, Xu H, Wang C. A Cross Talking between the Gut Microbiota and Metabolites of Participants in a Confined Environment. Nutrients 2024; 16:1761. [PMID: 38892694 PMCID: PMC11175105 DOI: 10.3390/nu16111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Certain workplaces, like deep-sea voyages, subject workers to chronic psychological stress and circadian rhythm disorders due to confined environments and frequent shifts. In this study, participants lived in a strictly controlled confined environment, and we analyzed the effects of a confined environment on gut microbiota and metabolites. The results showed that living in confined environments can significantly alter both the gut microbiota and the gut metabolome, particularly affecting lipid metabolism pathways like glycerophospholipid metabolism. There was a significant reduction in the abundance of Faecalibacterium and Bacteroides, while Blautia, Bifidobacterium, and Collinsella showed significant increases. An association analysis revealed a strong correlation between changes in the gut microbiota and the metabolome. Four upregulated lipid metabolites may serve as biomarkers for damage induced by confined environments, and certain gut microbiota alterations, such as those involving Faecalibacterium and Bacteroides, could be potential psychobiotics or therapeutic targets for enhancing mental health in a confined environment.
Collapse
Affiliation(s)
- Xin Song
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Ziying Wang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China;
| | - Yongjun Xia
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Zheng Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Z.C.); (B.Z.)
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Yijin Yang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Z.C.); (B.Z.)
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.S.); (Y.X.); (G.W.); (Y.Y.); (L.A.)
| | - Haodan Xu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China;
| | - Chuan Wang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China;
| |
Collapse
|
2
|
Chen YY, Tsai TH, Liu YL, Lin HJ, Wang IJ. The impact of light properties on ocular growth and myopia development. Taiwan J Ophthalmol 2024; 14:143-150. [PMID: 39027063 PMCID: PMC11253990 DOI: 10.4103/tjo.tjo-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
The objective of this article is to comprehensively review the effect of environmental lighting on ocular growth and refractive status in both animal and clinical studies, with an emphasis on the underlying mechanisms. This review was performed by searching research articles and reviews utilizing the terms "myopia," "light therapy," "axial length," "refractive error," and "emmetropization" in PubMed datasets. The review was finalized in December 2023. In the animal studies, high lighting brightness, illumination periods aligning with circadian rhythm, and color contrast signals including multiple wavelengths all help regulate ocular growth against myopia. Long wavelengths have been found to induce myopia in chicks, mice, fish, and guinea pigs, whereas shorter wavelengths lead to hyperopia. In contrast, red light has been observed to have a protective effect against myopia in tree shrews and rhesus monkeys. Apart from wavelength, flicker status also showed inconsistent effects on ocular growth, which could be attributed to differences in ocular refractive status, evolutionary disparities in retinal cone cells across species, and the selection of myopia induction models in experiments. In the clinical studies, current evidence suggests a control effect with red light therapy. Although the lighting conditions diverge from those in animal experiments, further reports are needed to assess the long-term effects. In conclusion, this review encompasses research related to the impact of light exposure on myopia and further explores the retinoscleral signaling pathway in refractive development. The aim is to establish a theoretical foundation for optimizing environmental factors in lighting design to address the epidemic of childhood myopia.
Collapse
Affiliation(s)
- Ying-Yi Chen
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Lin Liu
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Zhang X, Qiao Y, Wang H, Wang J, Chen D. Lighting environmental assessment in enclosed spaces based on emotional model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161933. [PMID: 36736394 DOI: 10.1016/j.scitotenv.2023.161933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Lighting assessment in special operating environments like enclosed spaces is of great research significance and value. In addition to investigating the visual ergonomics of workers, the emotional monitoring and guidance of workers in enclosed spaces is also a research focus. Based on the Circumplex emotion model theory, this paper designs an experiment to assess emotions in an enclosed space with 6 different lighting settings (2 correlated color temperature (CCT) × 3 illuminance levels). From the perspective of subjective assessment, participants used a rapid sensory analysis method (Check-all-that-apply, CATA) and a Subjective Coordinate Scale (SCS) method for rapid ambience perception checking and emotional self-reporting of lighting settings. From the perspective of objective evaluation, the participants' facial expressions were recorded during the experiment using a camera, and then the recorded facial expressions were automatically analyzed and predicted using FaceReader (FRE) software. The CATA and SCS showed similar results, with the 3100 K × 600 lx, 3100 K × 1000 lx and 6500 K × 600 lx lighting settings creating a relaxed, pleasant emotion in participants, the 6500 K × 1000 lx setting creating an excited, tense atmosphere, and the low illumination level settings of 3100 K × 250 lx and 6500 K × 250 lx made participants feel tired and frustrated. The results of the objective emotion analysis indicate that the FRE was able to effectively identify differences in participants' emotions in response to different lighting settings and was consistent with the results of participants' subjective emotion reports. This laboratory study validates that the three methods can effectively assess the enclosed space lighting settings, and provides a reference for further research on the enclosed space lighting settings and emotional monitoring of workers in the future.
Collapse
Affiliation(s)
- Xian Zhang
- Key Laboratory of Ministry of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yidan Qiao
- Key Laboratory of Ministry of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hanyu Wang
- Key Laboratory of Ministry of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jingluan Wang
- Key Laboratory of Ministry of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dengkai Chen
- Key Laboratory of Ministry of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
4
|
Zhang C, Zhu Z, Zhao J, Li Y, Zhang Z, Zheng Y. Ubiquitous light-emitting diodes: Potential threats to retinal circadian rhythms and refractive development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160809. [PMID: 36502986 DOI: 10.1016/j.scitotenv.2022.160809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The use of light-emitting diodes (LEDs) has increased considerably in the 21st century with humans living in a modern photoperiod with brighter nights and dimmer days. Prolonged exposure to LEDs, especially at night, is considered a new source of pollution because it may affect the synthesis and secretion of retinal melatonin and dopamine, resulting in negative impacts on retinal circadian clocks and potentially disrupting retinal circadian rhythms. The control of ocular refraction is believed to be related to retinal circadian rhythms. Moreover, the global prevalence of myopia has increased at an alarming rate in recent decades. The widespread use of LEDs and the rapid increase in the prevalence of myopia overlap, which is unlikely to be a coincidence. The connection among LEDs, retinal circadian rhythms, and refractive development is both fascinating and confusing. In this review, we aim to develop a systematic framework that includes LEDs, retinal circadian rhythms and refractive development. This paper summarizes the possible mechanisms by which LEDs may disrupt retinal circadian rhythms. We propose that prolonged exposure to LEDs may induce myopia by disrupting retinal circadian rhythms. Finally, we suggest several possible countermeasures to prevent LED interference on retinal circadian rhythms, with the hope of reducing the onset and progression of myopia.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhe Zhu
- Department of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Jinan 250000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhaoying Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
5
|
Chen Z, Wang Z, Li D, Zhu B, Xia Y, Wang G, Ai L, Zhang C, Wang C. The gut microbiota as a target to improve health conditions in a confined environment. Front Microbiol 2022; 13:1067756. [PMID: 36601399 PMCID: PMC9806127 DOI: 10.3389/fmicb.2022.1067756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Confined environments increase psychological stress and lead to health problems such as abnormal mood and rhythm disruption. However, the mechanism by which confined environments impact health has remained unclear. Significant correlations have been reported between psychological stress and changes in gut microbiota. Therefore, we investigated the effect of a confined environment on the composition of the gut microbiota by 16s rDNA high-throughput sequencing, and analyzed the correlation between gut microbiota and health indicators such as uric acid (UA), sleep, and mood. We found that the gut microbiota of the subjects clustered into two enterotypes (Bi and Bla), and that the groups differed significantly. There were notable differences in the abundances of genera such as Bifidobacterium, Dorea, Ruminococcus_torques_group, Ruminococcus_gnavus_group, Klebsiella, and UCG-002 (p < 0.05). A confined environment significantly impacted the subjects' health indicators. We also observed differences in how the subjects of the two enterotypes adapted to the confined environment. The Bi group showed no significant differences in health indicators before and after confinement; however, the Bla group experienced several health problems after confinement, such as increased UA, anxiety, and constipation, and lack of sleep. Redundancy analysis (RDA) showed that UA, RBC, mood, and other health problems were significantly correlated with the structure of the gut microbiota. We concluded that genera such as UCG-002, Ruminococcus, CAG352, and Ruminococcus_torques_group increased vulnerability to confined environments, resulting in abnormal health conditions. We found that the differences in the adaptability of individuals to confined environments were closely related to the composition of their gut microbiota.
Collapse
Affiliation(s)
- Zheng Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - ZiYing Wang
- Navy Special Medical Center, Naval Medical University, Shanghai, China
| | - Dan Li
- Navy Special Medical Center, Naval Medical University, Shanghai, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yongjun Xia
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Chunhong Zhang
- Navy Special Medical Center, Naval Medical University, Shanghai, China,*Correspondence: Chunhong Zhang,
| | - Chuan Wang
- Navy Special Medical Center, Naval Medical University, Shanghai, China,Chuan Wang,
| |
Collapse
|
6
|
Oh ST, Ga DH, Lim JH. TadGAN-Based Daily Color Temperature Cycle Generation Corresponding to Irregular Changes of Natural Light. SENSORS (BASEL, SWITZERLAND) 2022; 22:7774. [PMID: 36298124 PMCID: PMC9610023 DOI: 10.3390/s22207774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
This study to develop lighting is advanced for reproducing natural light color temperature beneficial to humans. Methods were introduced to provide daily color temperature cycles through formulas based on the measured natural light characteristics or real-time reproduction of natural light color temperature linking sensors. Analysis results for the measured natural light showed that irregular color temperature cycles were observed for more than 90% of the year due to the influence of regional weather and atmospheric conditions. Regular color temperature cycles were observed only on some clear days. The color temperature cycle dramatically affects the health of the occupants. However, since irregular color temperatures are difficult to predict and cannot easily generate cycles, only the color temperatures of some clear days are currently used, and the actual color temperature of natural light cannot be reproduced. There is little research on deriving real-time periodic characteristics and lighting services targeting irregular color temperatures of natural light. Therefore, this paper proposes a TadGAN (Time Series Anomaly Detection Using Generative Adversarial Networks)-based daily color temperature cycle generation method that responds to irregular changes in the natural light color temperature. A TadGAN model for generating the natural light color temperature cycle was built, and learning was performed based on the dataset extracted through the measured natural light characteristic Database. After that, the generator of TadGAN was repeatedly applied to generate a color temperature cycle close to the change of natural light. In the performance test of the proposed method, it was possible to generate periodic characteristics of the irregular natural light color temperature distribution.
Collapse
Affiliation(s)
- Seung-Taek Oh
- Smart Natural Space Research Center, Kongju National University, Cheonan 31080, Chungcheongnam-do, Korea
| | - Deog-Hyeon Ga
- Department of Computer Science & Engineering, Kongju National University, Cheonan 31080, Chungcheongnam-do, Korea
| | - Jae-Hyun Lim
- Department of Computer Science & Engineering, Kongju National University, Cheonan 31080, Chungcheongnam-do, Korea
- Department of Urban Systems Engineering, Kongju National University, Cheonan 31080, Chungcheongnam-do, Korea
| |
Collapse
|
7
|
Effects of Socio-Familial Behavior on Sleep Quality Predictive Risk Factors in Individuals under Social Isolation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063702. [PMID: 35329386 PMCID: PMC8950965 DOI: 10.3390/ijerph19063702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Social confinement involves a series of temporary changes in the habits and lifestyles of individuals, severely affecting their regular activities and schedules and substantially modifying socio-familial behavior (SFB) and sleep quality (SQ). There is no literature reporting the effects of SFB changes on SQ during social confinement due to the COVID-19 outbreak. An observational transversal research design, with group comparison and correlation methods, was used to perform the present study. The results were analyzed as follows: (1) An exploratory factor analysis (EFA); (2) A description of the sample was determined by proportions comparisons of sleep habits between the different variables of interest; and (3) A linear regression model was analyzed to explore the predictive association of the negative effects of social isolation during the COVID-19 pandemic on SFB and SQ. In addition to the global SFB score, two SFB factors were identified as predictors affecting the SQ, SF-Habits, and SF-Emotional scores, suggesting a close balance between daily life activities and sleep health during critical social changes. Furthermore, two main risk factors resulted from the regression analysis: economic concerns and increased alcohol consumption. Therefore, the predictive capacity of economic concerns showed statistical significance in anticipating negative sleep quality scores. Overall, this suggests that sleep quality, economic concerns, schedules, and substance use were associated with the self-perception of coping skills, elucidating the importance of fostering habits related to schedules within the home and ensuring that all family members participate.
Collapse
|
8
|
Zhang L, Deng H, Mei X, Pang L, Xie Q, Ye Y. 城市人因工程学:一种关于人的空间体验质量的设计科学. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Baeza Moyano D, González-Lezcano RA. Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution? ENERGIES 2021; 14:3827. [DOI: 10.3390/en14133827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The existence of a growing myopia pandemic is an unquestionable fact for health authorities around the world. Different possible causes have been put forward over the years, such as a possible genetic origin, the current excess of children’s close-up work compared to previous stages in history, insufficient natural light, or a multifactorial cause. Scientists are looking for different possible solutions to alleviate it, such as a reduction of time or a greater distance for children’s work, the use of drugs, optometric correction methods, surgical procedures, and spending more time outdoors. There is a growing number of articles suggesting insufficient natural light as a possible cause of the increasing levels of childhood myopia around the globe. Technological progress in the world of lighting is making it possible to have more monochromatic LED emission peaks, and because of this, it is possible to create spectral distributions of visible light that increasingly resemble natural light in the visible range. The possibility of creating indoor luminaires that emit throughout the visible spectrum from purple to infrared can now be a reality that could offer a new avenue of research to fight this pandemic.
Collapse
Affiliation(s)
- David Baeza Moyano
- Department of Chemistry and Biochemistry, Campus Montepríncipe, Universidad San Pablo CEU, 28668 Alcorcón, Madrid, Spain
| | - Roberto Alonso González-Lezcano
- Arquitecture and Design Depertment, Escuela Politécnica Superior, Campus Montpríncipe, Universidad San Pablo CEU, 28668 Alcorcón, Madrid, Spain
| |
Collapse
|
10
|
Reiter RJ, Sharma R, Rodriguez C, Martin V, Rosales-Corral S, Zuccari DAPDC, Chuffa LGDA. Part-time cancers and role of melatonin in determining their metabolic phenotype. Life Sci 2021; 278:119597. [PMID: 33974932 DOI: 10.1016/j.lfs.2021.119597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
This brief review describes the association of the endogenous pineal melatonin rhythm with the metabolic flux of solid tumors, particularly breast cancer. It also summarizes new information on the potential mechanisms by which endogenously-produced or exogenously-administered melatonin impacts the metabolic phenotype of cancer cells. The evidence indicates that solid tumors may redirect their metabolic phenotype from the pathological Warburg-type metabolism during the day to the healthier mitochondrial oxidative phosphorylation on a nightly basis. Thus, they function as cancer cells only during the day and as healthier cells at night, that is, they are only part-time cancerous. This switch to oxidative phosphorylation at night causes cancer cells to exhibit a reduced tumor phenotype and less likely to rapidly proliferate or to become invasive or metastatic. Also discussed is the likelihood that some solid tumors are especially aggressive during the day and much less so at night due to the nocturnal rise in melatonin which determines their metabolic state. We further propose that when melatonin is used/tested in clinical trials, a specific treatment paradigm be used that is consistent with the temporal metabolic changes in tumor metabolism. Finally, it seems likely that the concurrent use of melatonin in combination with conventional chemotherapies also would improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Carmen Rodriguez
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, Oviedo, 33006, Spain
| | - Vanesa Martin
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, Oviedo, 33006, Spain
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara CP 45150, Mexico
| | | | | |
Collapse
|
11
|
Influences of Spectral Power Distribution on Circadian Energy, Visual Comfort and Work Performance. SUSTAINABILITY 2021. [DOI: 10.3390/su13094852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spectral power distribution (SPD) is an essential element that has considerable implications on circadian energy and the perception of lit environments. The present study assessed the potential influences of SPD on energy consumption (i.e., considering circadian energy), visual comfort, work performance and mood. Two lighting conditions based on light-emitting diode (LED) and organic light-emitting diode (OLED) were used as proxies for SPDs of different spectral content: dominant peak wavelength of 455 nm (LED) and 618 nm (OLED). Using measured photometric values, the circadian light (CL), melatonin suppression (MS), and circadian efficacy (CE) of the two lighting sources were estimated via a circadian-phototransduction model and compared. Additionally, twenty-six participants were asked to evaluate the said lit environments subjectively in terms of visual comfort and self-reported work performance. Regarding circadian lighting and the associated energy implications, the LED light source induced higher biological actions with relatively less energy than the OLED light source. For visual comfort, OLED lighting-based conditions were preferred to LED lighting-based conditions, while the opposite was true when considering work performance and mood. The current study adds to the on-going debate regarding human-centric lighting, particularly considering the role of SPD in energy-efficient and circadian lighting practices.
Collapse
|