1
|
Ningombam SS, Khatri P, Larson EJL, Dumka UC, Sarangi C, Vineeth R. Classification of MODIS fire emission data based on aerosol absorption Angstrom exponent retrieved from AERONET data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159898. [PMID: 36343809 DOI: 10.1016/j.scitotenv.2022.159898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Biomass burning emits a large quantity of gaseous pollutants and aerosols into the atmosphere, which perturbs the regional and global climate and has significant impacts on air quality and human health. In order to understand the temporal and spatial distributions of biomass burning and its contribution to aerosol optical and radiative impacts, we examined fire emission data and its contribution to aerosol optical and radiative impacts over six major hot-spot continents/sub-continents across the globe, namely North-Central (NC) Africa, South America, US-Hawaii, South Asia, South East Asia, and Australia-New Zealand, using long-term satellites, ground-based and re-analysis data during 2000-2021. The selected six sites contributed ∼70% of total global fire data. The classification of biomass burning, such as pre, active, and post burning phases, was performed based on the Absorption Angstrom Exponent (AAE) estimated from 55 AERONET (AErosol RObotic NETwork) stations. The study found the highest contribution of fire count (55 %) during the active burning phase followed by post (36 %) and pre (8 %) burning phases. Such high fire counts were associated with high absorption aerosol optical depth (AAOD) during the active fire event. Strong dominance of fine and coarse mode mixed aerosols were also observed during active and post fire regimes. High AAOD and low Extinction Angstrom Exponent (EAE) over NC Africa during the fire events suggested presence of mineral dust mixed with biomass burning aerosols. Brightness temperature, fire radiative power and fire count were also dominated by the active burning followed by post and pre burning phases. The maximum heating rate of 3.15 K day-1 was observed during the active fire events. The heating rate profile shows clear variations for three different fire regimes with the highest value of 1.80 K day-1 at ∼750 hPa altitude during the active fire event.
Collapse
Affiliation(s)
| | - Pradeep Khatri
- Center for Atmospheric and Oceanic Studies (CAOS), Graduate School of Science, Tohoku University, Japan
| | | | - Umesh Chandra Dumka
- Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, India
| | - Chandan Sarangi
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - R Vineeth
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
2
|
Sharma A, Bhattacharya A, Venkataraman C. Influence of aerosol radiative effects on surface temperature and snow melt in the Himalayan region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151299. [PMID: 34756901 DOI: 10.1016/j.scitotenv.2021.151299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Recent increases in surface temperature and snow melt acceleration in the Himalayan region are influenced by many factors. Here we investigate the influence of absorbing aerosols, including black carbon and dust, on surface temperature and snow melt in western, central, and eastern parts of the India-Nepal Himalayan region (INHR). We compare 40-y simulations (1971-2010) one with all evolving forcing agents representative of a present-day aerosol scenario, compared to a low aerosol forcing scenario. The difference between these scenarios shows a significant increase in surface air temperature, with higher warming in parts of Western and Central Himalaya (~0.2-2 °C) in the months of April and May. Higher absorbing aerosol (BC and dust abundance) both at the surface and in the atmospheric column, in the present-day aerosol simulations, led to increases in atmospheric radiative forcing and surface shortwave heating rate forcing (SWHRF), compared to the low aerosol forcing case. Therefore, the absorbing aerosols cause anomalous atmospheric heat energy transfer to land due to high surface SWHRF and changes in surface energy flux, leading to snow melt. The present model version did not parameterize snow albedo feedback, which would increase the magnitudes of the changes simulated here.
Collapse
Affiliation(s)
- Arushi Sharma
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
| | - Anwesa Bhattacharya
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
| | - Chandra Venkataraman
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India; Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
3
|
Impacts of Aerosol Loading in the Hindu Kush Himalayan Region Based on MERRA-2 Reanalysis Data. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The impacts of climate change have severely affected geosphere, biosphere and cryosphere ecosystems in the Hindu Kush Himalayan (HKH) region. The impact has been accelerating further during the last few decades due to rapid increase in anthropogenic activities such as modernization, industrialization and urbanization, along with energy demands. In view of this, the present work attempts to examine aerosol optical depth (AOD) over the HKH region using the long-term homogeneous MERRA-2 reanalysis data from January, 1980 to December, 2020. The AOD trends are examined statistically with student’s t-test (t). Due to a vast landmass, fragile topography and harsh climatic conditions, we categorized the HKH region into three sub-regions, namely, the northwestern and Karakoram (HKH1), the Central (HKH2) and the southeastern Himalaya and Tibetan Plateau (HKH3). Among the sub-regions, the significant enhancement of AOD is observed at several potential sites in the HKH2 region, namely, Pokhara, Nainital, Shimla and Dehradun by 55.75 × 10−4 ± 3.76 × 10−4, 53.15 × 10−4 ± 3.94 × 10−4, 51.53 × 10−4 ± 4.99 × 10−4 and 39.16 × 10−4 ± 4.08 × 10−4 AOD year−1 (550 nm), respectively, with correlation coefficients (Rs) of 0.86 to 0.93. However, at a sub-regional scale, HKH1, HKH2 and HKH3 exhibit 23.33 × 10−4 ± 2.28 × 10−4, 32.20 × 10−4 ± 2.58 × 10−4 and 9.48 × 10−4 ± 1.21 × 10−4 AOD year−1, respectively. The estimated trends are statistically significant (t > 7.0) with R from 0.81 to 0.91. Seasonally, the present study also shows strong positive AOD trends at several potential sites located in the HKH2 region, such as Pokhara, Nainital, Shimla and Dehradun, with minimum 19.81 × 10−4 ± 3.38 × 10−4 to maximum 72.95 × 10−4 ± 4.89 × 10−4 AOD year−1 with statistical significance. In addition, there are also increasing AOD trends at all the high-altitude background sites in all seasons.
Collapse
|
4
|
Chemical Composition and Source Apportionment of Total Suspended Particulate in the Central Himalayan Region. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study analyzes data from total suspended particulate (TSP) samples collected during 3 years (2005–2008) at Nainital, central Himalayas, India and analyzed for carbonaceous aerosols (organic carbon (OC) and elemental carbon (EC)) and inorganic species, focusing on the assessment of primary and secondary organic carbon contributions (POC, SOC, respectively) and on source apportionment by positive matrix factorization (PMF). An average TSP concentration of 69.6 ± 51.8 µg m−3 was found, exhibiting a pre-monsoon (March–May) maximum (92.9 ± 48.5 µg m−3) due to dust transport and forest fires and a monsoon (June–August) minimum due to atmospheric washout, while carbonaceous aerosols and inorganic species expressed a similar seasonality. The mean OC/EC ratio (8.0 ± 3.3) and the good correlations between OC, EC, and nss-K+ suggested that biomass burning (BB) was one of the major contributing factors to aerosols in Nainital. Using the EC tracer method, along with several approaches for the determination of the (OC/EC)pri ratio, the estimated SOC component accounted for ~25% (19.3–29.7%). Furthermore, TSP source apportionment via PMF allowed for a better understanding of the aerosol sources in the Central Himalayan region. The key aerosol sources over Nainital were BB (27%), secondary sulfate (20%), secondary nitrate (9%), mineral dust (34%), and long-range transported mixed marine aerosol (10%). The potential source contribution function (PSCF) and concentration weighted trajectory (CWT) analyses were also used to identify the probable regional source areas of resolved aerosol sources. The main source regions for aerosols in Nainital were the plains in northwest India and Pakistan, polluted cities like Delhi, the Thar Desert, and the Arabian Sea area. The outcomes of the present study are expected to elucidate the atmospheric chemistry, emission source origins, and transport pathways of aerosols over the central Himalayan region.
Collapse
|
5
|
Liu J, Ning A, Liu L, Wang H, Kurtén T, Zhang X. A pH dependent sulfate formation mechanism caused by hypochlorous acid in the marine atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147551. [PMID: 34000527 DOI: 10.1016/j.scitotenv.2021.147551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Secondary sulfate plays a crucial role in forming marine aerosol, which in turn is an important source of natural aerosol at a global level. Recent experimental studies suggest that oxidation of S(IV) compounds, in practice dissolved sulfur dioxide, to sulfate (S(VI)) by hypochloric acid could be one of the most significant pathways for sulfate formation in marine areas. However, the exact mechanism responsible for this process remains unknown. Using high-level quantum chemical calculations, we studied the reaction between dissolved sulfur dioxide and hypochloric acid. We account for the dominant protonation states of reactants in the pH range 3.0-9.0. We also consider possible catalytic effects of species such as H2O. Our results show that sulfate formation in HOCl+HOSO2- and HOCl+SO32- reactions relevant to acidic and nearly neutral conditions can occur either through previously proposed Cl+ transfer or through a novel HO+ transfer mechanism. In alkaline conditions, where the dominant reactants are OCl- and SO32-, an O atom transfer mechanism proposed in previous experimental studies may be more important than Cl+ transfer. Catalysis by common cloud-water species is found to lower barriers of Cl+ transfer mechanisms substantially. Nevertheless, we find that the dominant S(IV) + HOCl reaction mechanism for the full studied pH range is HO+ transfer from HOCl to SO32-, which leads directly to sulfate formation without ClSO3- intermediates. The rate-limiting barrier of this reaction is low, leading to an essentially diffusion-controlled reaction rate. S(IV) lifetimes due to this reaction decrease with increasing pH due to the increasing fractional population of SO32-. Especially in neutral and alkaline conditions, depletion of HOCl by the reaction is so rapid that S(IV) oxidation will be controlled mainly by mass transfer of gas-phase HOCl to the liquid phase. The mechanism proposed here may help to explain marine sulfate sources missing from current atmospheric models.
Collapse
Affiliation(s)
- Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huixian Wang
- Beijing Guodian Longyuan Environment Engineering Co. Ltd, Beijing 100081, China
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
6
|
Liu J, Liang D, Liu L, Ning A, Zhang X. Catalytic sulfate formation mechanism influenced by important constituents of cloud water via the reaction of SO 2 oxidized by hypobromic acid in marine areas. Phys Chem Chem Phys 2021; 23:15935-15949. [PMID: 34296723 DOI: 10.1039/d1cp01981c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comprehensive investigations of the possible formation pathways of sulfate, the main composition of atmospheric aerosol in marine areas, continue to challenge atmospheric chemists. As one of the most important oxidation routes of S(iv) contributing to sulfate formation, the reaction process of S(iv) oxidized by hypobromic acid, which is ubiquitous with the gas-phase mixing ratios of ∼310 ppt and has a well-known oxidative capacity, has attracted wide attention. However, little information is available about the detailed reaction mechanism. Especially, due to the abundant species in cloud water, the potential effect of these compositions on these reaction processes and the corresponding effect mechanism are also uncertain. Using high-level quantum chemical calculations, we theoretically elucidate the two-step mechanism of Br+ transfer proposed by experiment through the verification of the key BrSO3- intermediate formation and subsequent hydrolysis reaction or the uncovered reaction of BrSO3- intermediate with OH-. Further, the novel and more competitive mechanisms (OH+ or O atom transfer pathways) that have not been considered in previous studies, leading to sulfate formation directly, have been found. Furthermore, it should be mentioned that we revealed the effect mechanism of constituents catalyzed in cloud water, especially the important H2O-catalyzed mechanism. In addition, all the above pathways follow this catalytic mechanism. This finding indicates a linkage between the complex nature of the atmospheric constituents and related atmospheric reaction, as well as the enhanced occurrence of atmospheric secondary sulfate formation in the atmosphere. Hence, this exploration of sulfate formation related to hypobromic acid could provide a better understanding about the sources of sulfate in marine areas.
Collapse
Affiliation(s)
- Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
7
|
A Long-Term Spatiotemporal Analysis of Vegetation Greenness over the Himalayan Region Using Google Earth Engine. CLIMATE 2021. [DOI: 10.3390/cli9070109] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Himalayas constitute one of the richest and most diverse ecosystems in the Indian sub-continent. Vegetation greenness driven by climate in the Himalayan region is often overlooked as field-based studies are challenging due to high altitude and complex topography. Although the basic information about vegetation cover and its interactions with different hydroclimatic factors is vital, limited attention has been given to understanding the response of vegetation to different climatic factors. The main aim of the present study is to analyse the relationship between the spatiotemporal variability of vegetation greenness and associated climatic and hydrological drivers within the Upper Khoh River (UKR) Basin of the Himalayas at annual and seasonal scales. We analysed two vegetation indices, namely, normalised difference vegetation index (NDVI) and enhanced vegetation index (EVI) time-series data, for the last 20 years (2001–2020) using Google Earth Engine. We found that both the NDVI and EVI showed increasing trends in the vegetation greening during the period under consideration, with the NDVI being consistently higher than the EVI. The mean NDVI and EVI increased from 0.54 and 0.31 (2001), respectively, to 0.65 and 0.36 (2020). Further, the EVI tends to correlate better with the different hydroclimatic factors in comparison to the NDVI. The EVI is strongly correlated with ET with r2 = 0.73 whereas the NDVI showed satisfactory performance with r2 = 0.45. On the other hand, the relationship between the EVI and precipitation yielded r2 = 0.34, whereas there was no relationship was observed between the NDVI and precipitation. These findings show that there exists a strong correlation between the EVI and hydroclimatic factors, which shows that changes in vegetation phenology can be better captured using the EVI than the NDVI.
Collapse
|