1
|
Ji L, Shi Q, Chen C, Liu X, Zhu J, Hong X, Wei C, Zhu X, Li W. Biochemical, Histological, and Multi-Omics Analyses Reveal the Molecular and Metabolic Mechanisms of Cold Stress Response in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). BIOLOGY 2025; 14:55. [PMID: 39857286 PMCID: PMC11760877 DOI: 10.3390/biology14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis), a type of warm-water reptile, is frequently chosen as the model animal to understand how organisms respond to environmental stressors. However, the responsive mechanism of P. sinensis to natural cold stress is unclear, especially in terms of metabolic pattern and molecular pathways. Herein, plasma biochemical, hepatic morphological, apoptotic, transcriptomic, and metabolomic detection methods were performed to investigate the response of P. sinensis to acute cold stress. A consistent increase in plasma AST and ALT activities with a decline in ALP activity was found following 14 °C and 7 °C cold stress compared with the control group. Plasma GLU, TG, CHO, and HDL contents, reflecting energy metabolism, were decreased to lower levels from 2 to 16 days post cold stress (dps). Histological and TUNEL detection in the liver demonstrated that the 14 °C and 7 °C cold stress caused severe morphological damage and cell apoptosis in a time-dependent manner. DEGs in the biosynthesis of fatty acids (Acsbg2, Acsl3, Acsl4, Acsl5, Mcat, and Acacb), as well as unsaturated fatty acids (Hsd17b12, Elovl7, Scd, and Baat), starch and sucrose metabolism (Pgm1, Pgm2, and Treh), and apoptosis (Ddit3, Gadd45a, Lmnb1, Tuba1c, Tnf, Tnfsf10, Fos, Itpr1, and Ctso) were discovered in the transcriptome under cold stress. The metabolomic data showed that metabolites, including chenodeoxycholic acid, oleoylethanolamide, uric acid, fructose 1,6-bisphosphate, CMP, and S-(Hydroxymethyl)-glutathione, were remarkably altered in the cold stress groups. Combined transcriptomic and metabolomic data revealed that pyrimidine metabolism, amino acid metabolism, and pyruvate metabolism were the most significant pathways regulated by the low-temperature exposure. Overall, this work suggests that 14 °C and 7 °C cold stress could induce obvious morphological damage and apoptosis in the liver at 4 dps. Moreover, energy metabolism and amino acid metabolism were the main signaling pathways in response to cold stress for P. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (L.J.)
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (L.J.)
| |
Collapse
|
2
|
Jerald I, Ravindran J, Babu MM. Fish in focus: Navigating organ damage assessment through analytical avenues - A comprehensive review. Toxicol Rep 2024; 13:101841. [PMID: 39717851 PMCID: PMC11665677 DOI: 10.1016/j.toxrep.2024.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Aquatic ecosystems, critical for biodiversity and food production, confront escalating threats from anthropogenic activities like pollution and climate change, impacting fish health. This review outlines various assays used to study organ damage in fish, ranging from traditional histopathology to advanced molecular and biochemical methods. The aim is to guide researchers in selecting suitable assays for their specific questions, considering the advantages and limitations of each technique. Covered methods include histopathological assessment, biomarker analysis, genotoxicity assays, oxidative stress indicators, and non-invasive imaging. The review explores their application in monitoring environmental stressors' impacts on fish organs, emphasizing emerging trends like omics technologies and non-destructive imaging for comprehensive assessments. These innovations hold promise for early detection and understanding the implications on fish populations and ecosystem health.
Collapse
Affiliation(s)
- Irine Jerald
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| | | | - Monica Muniendra Babu
- Department of Biotechnology, Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| |
Collapse
|
3
|
Pereira A, Marmelo I, Dias M, Silva AC, Grade AC, Barata M, Pousão-Ferreira P, Dias J, Anacleto P, Marques A, Diniz MS, Maulvault AL. Asparagopsis taxiformis as a Novel Antioxidant Ingredient for Climate-Smart Aquaculture: Antioxidant, Metabolic and Digestive Modulation in Juvenile White Seabream ( Diplodus sargus) Exposed to a Marine Heatwave. Antioxidants (Basel) 2024; 13:949. [PMID: 39199195 PMCID: PMC11351384 DOI: 10.3390/antiox13080949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The increasing frequency and duration of marine heatwaves (MHWs) due to climate change pose severe threats to aquaculture, causing drastic physiological and growth impairments in farmed fish, undermining their resilience against additional environmental pressures. To ensure sustainable production that meets the global seafood demand and animal welfare standards, cost-effective and eco-friendly strategies are urgently needed. This study explored the efficacy of the red macroalga Asparagopsis taxiformis on juvenile white seabream Diplodus sargus reared under optimal conditions and upon exposure to a MHW. Fish were fed with four experimental diets (0%, 1.5%, 3% or 6% of dried powdered A. taxiformis) for a prophylactic period of 30 days (T30) and subsequently exposed to a Mediterranean category II MHW for 15 days (T53). Biometric data and samples were collected at T30, T53 and T61 (8 days post-MHW recovery), to assess performance indicators, biomarker responses and histopathological alterations. Results showed that A. taxiformis supplementation improved catalase and glutathione S-transferase activities and reduced lipid peroxidation promoted by the MHW, particularly in fish biofortified with 1.5% inclusion level. No histopathological alterations were observed after 30 days. Additionally, fish biofortified with 1.5% A. taxiformis exhibited increased citrate synthase activity and fish supplemented with 1.5% and 3% showed improved digestive enzyme activities (e.g., pepsin and trypsin activities). Overall, the present findings pointed to 1.5% inclusion as the optimal dosage for aquafeeds biofortification with A. taxiformis, and confirmed that this seaweed species is a promising cost-effective ingredient with functional properties and great potential for usage in a climate-smart context.
Collapse
Affiliation(s)
- Alícia Pereira
- IPMA—Portuguese Institute for the Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (I.M.); (A.C.S.); (A.C.G.); (M.B.); (P.P.-F.); (P.A.); (A.M.); (A.L.M.)
| | - Isa Marmelo
- IPMA—Portuguese Institute for the Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (I.M.); (A.C.S.); (A.C.G.); (M.B.); (P.P.-F.); (P.A.); (A.M.); (A.L.M.)
- UCIBIO REQUIMTE, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (M.D.); (M.S.D.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marta Dias
- UCIBIO REQUIMTE, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (M.D.); (M.S.D.)
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Faculty of Sciences, University of Lisbon (FCUL), 1749-016 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana Catarina Silva
- IPMA—Portuguese Institute for the Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (I.M.); (A.C.S.); (A.C.G.); (M.B.); (P.P.-F.); (P.A.); (A.M.); (A.L.M.)
| | - Ana Catarina Grade
- IPMA—Portuguese Institute for the Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (I.M.); (A.C.S.); (A.C.G.); (M.B.); (P.P.-F.); (P.A.); (A.M.); (A.L.M.)
| | - Marisa Barata
- IPMA—Portuguese Institute for the Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (I.M.); (A.C.S.); (A.C.G.); (M.B.); (P.P.-F.); (P.A.); (A.M.); (A.L.M.)
| | - Pedro Pousão-Ferreira
- IPMA—Portuguese Institute for the Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (I.M.); (A.C.S.); (A.C.G.); (M.B.); (P.P.-F.); (P.A.); (A.M.); (A.L.M.)
| | - Jorge Dias
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal;
| | - Patrícia Anacleto
- IPMA—Portuguese Institute for the Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (I.M.); (A.C.S.); (A.C.G.); (M.B.); (P.P.-F.); (P.A.); (A.M.); (A.L.M.)
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Faculty of Sciences, University of Lisbon (FCUL), 1749-016 Lisbon, Portugal
| | - António Marques
- IPMA—Portuguese Institute for the Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (I.M.); (A.C.S.); (A.C.G.); (M.B.); (P.P.-F.); (P.A.); (A.M.); (A.L.M.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Mário S. Diniz
- UCIBIO REQUIMTE, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (M.D.); (M.S.D.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana Luísa Maulvault
- IPMA—Portuguese Institute for the Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; (I.M.); (A.C.S.); (A.C.G.); (M.B.); (P.P.-F.); (P.A.); (A.M.); (A.L.M.)
- UCIBIO REQUIMTE, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; (M.D.); (M.S.D.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Amaral D, Filipe DM, Cavalheri TF, Vieira L, Magalhães RP, Belo I, Peres H, Ozório RODA. Solid-State Fermentation of Plant Feedstuff Mixture Affected the Physiological Responses of European Seabass ( Dicentrarchus labrax) Reared at Different Temperatures and Subjected to Salinity Oscillation. Animals (Basel) 2023; 13:393. [PMID: 36766282 PMCID: PMC9913833 DOI: 10.3390/ani13030393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
This study aimed to evaluate the effects of dietary inclusion of plant feedstuff mixture (PFM) pre-treated by solid-state fermentation (SSF) on the physiological responses of European seabass. For that purpose, two diets were formulated to contain: 20% inclusion level of non-fermented plant ingredients mixture (20Mix) and 20Mix fermented by A. niger in SSF conditions (20Mix-SSF). Seabass juveniles (initial body weight: 20.9 ± 3.3 g) were fed the experimental diets, reared at two different temperatures (21 and 26 °C) and subjected to weekly salinity oscillations for six weeks. Growth performance, digestive enzyme activities, humoral immune parameters, and oxidative stress indicators were evaluated. A reduction in weight gain, feed intake, and thermal growth coefficient was observed in fish fed the fermented diet (20Mix-SSF). Salinity oscillation led to an increase in weight gain, feed efficiency, daily growth index, and thermal growth coefficient, regardless of dietary treatment. Higher rearing temperatures also increased daily growth index. No dietary effect was observed on digestive enzymes activities, whereas rearing temperature and salinity oscillation modulated digestive enzyme activities. Oxidative stress responses were significantly affected by experimental diets, temperature, and salinity conditions. Catalase and glutathione peroxidase activities showed an interactive effect. Fish reared at 21 °C showed higher enzymatic activity when fed the 20Mix-SSF. Conversely, fish reared at 26 °C showed higher GPx activity when fed the 20Mix diet. Fish reared at 26 °C showed reduced peroxidase and lysozyme activities, while salinity fluctuation led to increased lysozyme activity and decreased ACH50 activity. ACH50 activity increased in fish fed the 20Mix-SSF. Overall, the dietary inclusion of PFM fermented by A. niger was unable to mitigate the impact of environmental stress on physiological performance in European seabass. In fact, fermented feed caused an inhibition of growth performances and an alteration of some physiological stress indicators.
Collapse
Affiliation(s)
- Diogo Amaral
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Diogo Moreira Filipe
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Thais Franco Cavalheri
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
| | - Lúcia Vieira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Rui Pedro Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, 4704-553 Braga, Portugal
| | - Helena Peres
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Rodrigo O. de A. Ozório
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), 4450-208 Porto, Portugal
| |
Collapse
|
5
|
Shahjahan M, Islam MJ, Hossain MT, Mishu MA, Hasan J, Brown C. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156910. [PMID: 35753474 DOI: 10.1016/j.scitotenv.2022.156910] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Global climate change due to anthropogenic activities affects the dynamics of aquatic communities by altering the adaptive capacities of their inhabitants. Analysis of blood provides valuable insights in the form of a comprehensive representation of the physiological and functional status of fish under various environmental and treatment conditions. This review synthesizes currently available information about blood biomarkers used in climate change induced stress responses in fish. Alterations in informative blood-based indicators are used to monitor the physiological fitness of individual fishes or entire populations. Specific characteristics of fish blood, such as serum and plasma metabolites, cell composition, cellular abnormalities, cellular and antioxidant enzymes necessitate adapted protocols, as well as careful attention to experimental designs and meticulous interpretation of patterns of data. Moreover, the sampling technique, transportation, type of culture system, acclimation procedure, and water quality must all be considered for valid interpretation of hemato-biochemical parameters. Besides, blood collection, handling, and storage time of blood samples can all have significant impacts on the results of a hematological analysis, so it is optimal to perform hemato-biochemical evaluations immediately after blood collection because long-term storage can alter the results of the analyses, at least in part as a result of storage-related degenerative changes that may occur. However, the scarcity of high-throughput sophisticated approaches makes fish blood examination studies promising for climate-driven stress responses in fish.
Collapse
Affiliation(s)
- Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Md Jakiul Islam
- Department of Fisheries Technology and Quality Control, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Moshiul Alam Mishu
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christopher Brown
- FAO-World Fisheries University Pilot Programme, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, South Korea
| |
Collapse
|
6
|
Xiao X, Tong Y, Wang D, Gong Y, Zhou Z, Liu Y, Huang H, Zhang B, Li H, You J. Spatial distribution of benthic toxicity and sediment-bound metals and arsenic in Guangzhou urban waterways: Influence of land use. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129634. [PMID: 36104897 DOI: 10.1016/j.jhazmat.2022.129634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The effects of land use on pollutant loads in sediments have been well documented; however, its influence on spatial variations in sediment toxicity remains largely unknown. In the present study, the toxicological effects of 17 sediments collected from Guangzhou waterways were evaluated using two benthic invertebrates (Chironomus dilutus and Hyalella azteca), along with quantification of heavy metals and arsenic in the sediments. The impacts of land-use configuration on sediment toxicity and occurrence of heavy metals and arsenic were analyzed. The sediments presented moderate lethality (<40 %) in the two test species and significantly altered their enzymatic activity, including the activities of oxidative stress biomarkers and acetylcholine esterase. Metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and arsenic were detected in all the sediments, with total concentrations ranging from 238 to 1019 mg/kg of dry weight. Both the toxicity and chemical results displayed spatially dependent patterns but were related to different land use types. Toxicity was most influenced by agricultural and aquacultural activities, while metal and arsenic pollution was most influenced by urban land areas. The present findings are expected to provide essential knowledge for developing strategies that reduce the chemical pollution and ecotoxicological risk in sediments.
Collapse
Affiliation(s)
- Xiangxiang Xiao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Yujun Tong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Dali Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China.
| | - Yongting Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Zhimin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Yuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Hongjie Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Baixin Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| |
Collapse
|
7
|
Stavrakidis-Zachou O, Lika K, Pavlidis M, Asaad MH, Papandroulakis N. Metabolic scope, performance and tolerance of juvenile European sea bass Dicentrarchus labrax upon acclimation to high temperatures. PLoS One 2022; 17:e0272510. [PMID: 35960751 PMCID: PMC9374223 DOI: 10.1371/journal.pone.0272510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
European sea bass is a species of great commercial value for fisheries and aquaculture. Rising temperatures may jeopardize the performance and survival of the species across its distribution and farming range, making the investigation of its thermal responses highly relevant. In this article, the metabolic scope, performance, and tolerance of juvenile E. sea bass reared under three high water temperatures (24, 28, 33°C), for a period of three months was evaluated via analysis of selected growth performance and physiological indicators. Effects on molecular, hormonal, and biochemical variables were analyzed along with effects of acclimation temperature on the metabolic rate and Critical Thermal maximum (CTmax). Despite signs of thermal stress at 28°C indicated by high plasma cortisol and lactate levels as well as the upregulation of genes coding for Heat Shock Proteins (HSP), E. sea bass can maintain high performance at that temperature which is encouraging for the species culture in the context of a warming ocean. Critical survivability thresholds appear sharply close to 33°C, where the aerobic capacity declines and the overall performance diminishes. European sea bass demonstrates appreciable capacity to cope with acute thermal stress exhibiting CTmax as high as 40°C for fish acclimated at high temperatures, which may indicate resilience to future heatwaves events.
Collapse
Affiliation(s)
- Orestis Stavrakidis-Zachou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
- * E-mail:
| | - Konstadia Lika
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Michail Pavlidis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Mohamed H. Asaad
- Beacon Development, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| |
Collapse
|
8
|
Dawood MAO, Noreldin AE, Sewilam H. Blood biochemical variables, antioxidative status, and histological features of intestinal, gill, and liver tissues of African catfish (Clarias gariepinus) exposed to high salinity and high-temperature stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56357-56369. [PMID: 35338459 PMCID: PMC9374635 DOI: 10.1007/s11356-022-19702-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/09/2022] [Indexed: 05/05/2023]
Abstract
African catfish is a freshwater species with a high ability to resist brackish water conditions, but heat stress may impair the health status of fish. Thus, the impact of varying levels of water salinity (0, 4, 8, and 12 ppt) was investigated on the growth performance, survival rate, and blood biochemistry of African catfish (average weight: 180.58 ± 2.8 g and average length: 38 ± 1.2 cm) for 4 weeks; then, fish were stressed with high temperature (32 °C) for 72 h. The growth performance and survival rate were markedly higher in fish reared in 0, 4, and 8 ppt than fish in 12 ppt (p < 0.05). Before heat stress, the superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) activities, and malondialdehyde (MDA) levels were markedly increased in fish stressed with 12-ppt salinity (p < 0.05). After heat stress, all groups showed a marked increased SOD, CAT, GSH, and MDA levels than fish before heat stress in the same manner (p < 0.05). Furthermore, fish in the 12 ppt group showed severe intestinal, gill, and liver histological features. The levels of blood glucose and cortisol were markedly increased in fish exposed with 8 and 12 ppt than 0 ppt gradually either before or after heat stress (p < 0.05). The highest values of ALT, AST, urea, creatinine, and the lowest total protein, albumin, and globulin were observed in fish reared in 12 ppt. Significant salinity and heat stress interactions were seen on the ALT, AST, urea, creatinine, total protein, albumin, and globulin values (p < 0.05). The integrated multi-biomarker response (IBR) results showed marked differences among the groups and increased gradually before and after heat stress, with the highest IBR in 12 ppt. In conclusion, growing African catfish in high salinity (12 ppt) hampered the growth performance and health status while the heat stress improved the antioxidative status vis-a-vis increased lipid peroxidation along with higher stress-related markers in expressed both blood and tissue.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt.
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hani Sewilam
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt.
- Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
9
|
Dawood MAO, Alkafafy M, Sewilam H. The antioxidant responses of gills, intestines and livers and blood immunity of common carp (Cyprinus carpio) exposed to salinity and temperature stressors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:397-408. [PMID: 35171388 PMCID: PMC9005402 DOI: 10.1007/s10695-022-01052-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/20/2022] [Indexed: 05/14/2023]
Abstract
Aquaculture activity is affected by various environmental factors, including water salinity and high temperatures. The present study investigated the impact of using varying water salinity (0, 5, 10, 15 and 20 ppt) on the growth behavior, immune responses and antioxidative responses of common carp. Fish were raised under optimal conditions except for water salinity for 8 weeks; fish were then subjected to high-temperature stress (32 °C) for 48 h. The results indicated a reduced final weight (FBW), weight gain (WG), specific growth rate (SGR), condition factor (CF), feed intake and feed efficiency ratio (FER) in common carp reared in 15 and 20 ppt (p < 0.05). The lowest FBW, WG, SGR, CF, feed intake and FER values were observed in fish reared in 20 ppt water salinity (p < 0.05). In gills, the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were markedly decreased, but malondialdehyde (MDA) levels increased in fish challenged with 15 and 20 ppt before they were subjected to heat stress (p < 0.05). After heat stress, the SOD, CAT and GPx were decreased, and the MDA increased in fish reared in varying salinity levels (p < 0.05). Before heat stress, the intestinal SOD, CAT and GPx markers were decreased by 15 and 20 ppt, while the MDA level was increased by 15 and 20 ppt (p < 0.05). Generally, heat stress lowered the SOD, CAT and GPx activity in the intestines and liver tissues but increased MDA levels in common carp stressed by varying salinity levels (p < 0.05). The most decreased lysozyme activity, SOD, CAT and GPx and increased MDA levels were observed in common carp exposed to 20 ppt before and after heat stress (p < 0.05). After heat stress, fish exposed to 15 and 20 ppt had lower NBT than the remaining groups, and fish exposed to 20 ppt had the lowest values (p < 0.05). Overall, the heat stress markedly suppressed the antioxidant and immune responses of common carp reared in hypersalinity conditions.
Collapse
Affiliation(s)
- Mahmoud A. O. Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Hani Sewilam
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
- Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Effects of Different Temperatures on the Antibacterial, Immune and Growth Performance of Crucian Carp Epidermal Mucus. FISHES 2021. [DOI: 10.3390/fishes6040066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fish is one of the important sources of energy and protein, and proper water temperature is key to successful fish breeding. The authors of this study evaluated crucian carp growth, mucus antibacterial properties, and immune indicators at 17, 21, 24, 27, and 31 °C. The results indicated that in the range of 17–31 °C, the resistance of epidermal mucus to Vibrio harveyi decreased with temperature rising. At 24 and 27 °C, the activities of lysozyme and catalase significantly increased; alkaline phosphatase activity, superoxide dismutase activity, and total protein concentration first increased and then decreased with rising temperature; the highest values were observed at 24 °C, with increases of 56.55%, 26.64%, and 44.52%, respectively, compared to those under the 17 °C treatment. When the treatment reached 27 °C, the temperature had an effect on the growth and antibacterial properties of crucian carp, and the activities of alkaline phosphatase and superoxide dismutase were significantly reduced. At temperatures of 17–24 °C, the survival rate of crucian carp could reach more than 93%, and at the temperature of 24 °C, the specific growth rate reached the highest value of 43.29%. Therefore, the most favorable temperature for the long-term breeding of crucian carp was found to be 24 °C. This study provides a favorable experimental basis for the establishment of intelligent aquaculture systems and the setting of water environment parameters.
Collapse
|
11
|
Dawood MAO, Noreldin AE, Sewilam H. Long term salinity disrupts the hepatic function, intestinal health, and gills antioxidative status in Nile tilapia stressed with hypoxia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112412. [PMID: 34119925 DOI: 10.1016/j.ecoenv.2021.112412] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 05/22/2023]
Abstract
In aquaculture, fish are stressed with several factors involved in impacting the growth rate and health status. Although Nile tilapia can resist brackish water conditions, hypoxia status may impair the health condition of fish. Nile tilapia were exposed to salinity water at 0, 10, and 20‰ for four weeks then the growth behavior was checked. The results showed meaningfully lowered growth rate, feed utilization, and survival rate when fish kept in 20‰ for four weeks. Then fish were subdivided into six groups (factorial design, 2 × 3) in normoxia (DO, 6 mg/L) and hypoxia (DO, 1 mg/L) conditions for 24 h. High salinity (10 and 20‰) combined with hypoxia stress-induced inflammatory features in the intestines, gills, and livers of fish. The activities of SOD, CAT, and GPX were increased in the intestines, gills, and livers of fish grown in 10 and 20‰ and exposed with hypoxia stress. Fish grown in 20‰ and stressed with hypoxia had the highest ALT, AST, and ALP levels (p < 0.05) among the groups. The highest transcription levels of Il-8, Il-1β, Ifn-γ, Tnf-α, and Caspase-3 genes and the lowest level of Il-10 gene were observed in fish exposed with 20‰ and hypoxia. The outputs of Integrated Biomarker Response (IBR) showed marked differences between fish groups with varied values. The lowest IBR was observed in fish reared in fresh water and normoxia, while the highest IBR was seen in the group of fish reared in 20‰ and hypoxia conditions (p < 0.05). These results confirm that Nile tilapia can tolerate 10‰ in normoxia but 20‰ salinity combined with hypoxia results in oxidative stress, apoptosis, and inflammatory features in the intestines, gills, and livers. The obtained results indicate that hypoxia can affect the performances of Nile tilapia reared in brackish or high-water salinity leading to severe economic loss. Further future studies are required to understand the impact of different water salinities with hypoxia in the short term and long-term periods on the productivity of Nile tilapia.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835 Cairo, Egypt; Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt.
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Hani Sewilam
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835 Cairo, Egypt; Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
12
|
Chang CH, Mayer M, Rivera-Ingraham G, Blondeau-Bidet E, Wu WY, Lorin-Nebel C, Lee TH. Effects of temperature and salinity on antioxidant responses in livers of temperate (Dicentrarchus labrax) and tropical (Chanos Chanos) marine euryhaline fish. J Therm Biol 2021; 99:103016. [PMID: 34420648 DOI: 10.1016/j.jtherbio.2021.103016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/12/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
Temperature and salinity are abiotic factors that affect physiological responses in aquaculture species. The European sea bass (Dicentrarchus labrax) is a temperate species that is generally farmed at 18 °C in seawater (SW). In the wild, its incursions in shallow habitats such as lagoons may result in hyperthermal damage despite its high thermal tolerance. Meanwhile, the milkfish (Chanos chanos), a tropical species, is generally reared at 28 °C, and in winter, high mortality usually occurs under hypothermal stress such as cold snaps. This study compared changes in hepatic antioxidant enzymes (superoxide dismutase, SOD; and catalase, CAT) in these two important marine euryhaline aquaculture species in Europe and Southeast Asia, respectively, under temperature challenge combined with hypo-osmotic (fresh water, FW) stress. After a four-week hyper- or hypo-thermal treatment, hepatic SOD activity was upregulated in both species reared in SW and FW, indicating enhanced oxidative stress in European sea bass and milkfish. The expression profiles of sod isoforms suggested that in milkfish, the increase in reactive oxygen species (ROS) was mainly at the cytosol level, leading to increased sod1 expression. In European sea bass, however, no obvious difference was found between the expression of sod isoforms at different temperatures. A lower expression of sod2 was observed in FW compared to SW in the latter species. Moreover, no significant change was observed in the mRNA expression and activity of CAT in the livers of these two species under the different temperature treatments, with the exception of the lower CAT activity in milkfish challenged with SW at 18 °C. Taken together, our results indicated that the antioxidant responses were not changed under long-term hypoosmotic challenge but were enhanced during the four-week temperature treatments in livers of both the temperate and tropical euryhaline species.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Marie Mayer
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), Montpellier, France
| | | | | | - Wen-Yi Wu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | | | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
13
|
Stathopoulou P, Berillis P, Vlahos N, Nikouli E, Kormas KA, Levizou E, Katsoulas N, Mente E. Freshwater-adapted sea bass Dicentrarchus labrax feeding frequency impact in a lettuce Lactuca sativa aquaponics system. PeerJ 2021; 9:e11522. [PMID: 34141483 PMCID: PMC8180194 DOI: 10.7717/peerj.11522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of this study is to investigate the effect of three daily fish feeding frequencies, two, four and eight times per day (FF2, FF4, and FF8, respectively) on growth performance of sea bass (Dicentrarchus labrax)and lettuce plants (Lactuca sativa) reared in aquaponics. 171 juvenile sea bass with an average body weight of 6.80 ± 0.095 g were used, together with 24 lettuce plants with an average initial height of 11.78 ± 0.074 cm over a 45-day trial period. FF2 fish group showed a significantly lower final weight, weight gain and specific growth rate than the FF4 and FF8 groups. Voluntary feed intake was similar for all the three feeding frequencies treatmens (p > 0.05). No plant mortality was observed during the 45-day study period. All three aquaponic systems resulted in a similar leaf fresh weight and fresh and dry aerial biomass. The results of the present study showed that the FF4 or FF8 feeding frequency contributes to the more efficient utilization of nutrients for better growth of sea bass adapted to fresh water while successfully supporting plant growth to a marketable biomass.
Collapse
Affiliation(s)
- Paraskevi Stathopoulou
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Panagiotis Berillis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Nikolaos Vlahos
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.,Department of Animal Production, Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, Mesolonghi, Greece
| | - Eleni Nikouli
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Konstantinos A Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Nikolaos Katsoulas
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Eleni Mente
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
14
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
15
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
16
|
Islam MJ, Slater MJ, Kunzmann A. What metabolic, osmotic and molecular stress responses tell us about extreme ambient heatwave impacts in fish at low salinities: The case of European seabass, Dicentrarchus labrax. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141458. [PMID: 32829272 DOI: 10.1016/j.scitotenv.2020.141458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Unprecedented shifts in temperature and precipitation patterns in recent decades place multiple abiotic stressors on the fish. In teleosts, metabolic, osmoregulatory, and molecular potential as tolerance responses to extreme ambient heatwave events at different salinities are poorly understood. The study was performed to evaluate the physio-biochemical stress responses and acclimation potential of European seabass, Dicentrarchus labrax maintained at four different salinities followed by an extreme ambient heatwave exposure. Fish were kept at 32, 12, 6, and 2 psu for 35 days followed by a simulated extreme ambient heatwave (33 °C) exposure for 10 days. Fish growth performances, physio-biochemical and molecular responses were recorded. Fish acclimated at 32 and 2 psu exhibited significantly (p < 0.05) decreased growth performance. Serum [Na+] and [Cl-] ions were significantly lowered (p < 0.05) in 32 psu fish on day 10 of heatwave exposure. While serum glucose, triglycerides, and protein tended to decrease during the extreme ambient heatwave exposure, lactate content increased significantly (p < 0.05) in 32 psu fish on day 10. In 32 and 2 psu fish, serum metabolic enzymes, and cortisol levels increased significantly (p < 0.05) during the extreme heatwave exposure. On days 5 and 10, HSP70 mRNA was significantly (p < 0.05) upregulated in kidneys and gills of 32 and 2 psu fish, while Igf1 showed downregulation. In gills of 2 psu fish, ATPase Na+/K+-α1 and NKCC1 expression decreased significantly (p < 0.05) in 2 psu, in contrast, significant upregulation was observed at 32 psu fish during extreme ambient heatwave exposure. On days 5 and 10, cystic fibrosis transmembrane conductance (CFTR) upregulation was significantly lower (p < 0.05) in 32 and 2 psu fish. Results suggest that European seabass held at 12 and 6 psu water fare better physiological fitness during the tested extreme ambient heatwave event (33 °C), providing possible insights into options for future aquaculture management in a warming environment.
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Faculty of Biology and Chemistry (FB 02), University of Bremen, 28359 Bremen, Germany.
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| |
Collapse
|
17
|
Fish Rescue during Streamflow Intermittency May Not Be Effective for Conservation of Rio Grande Silvery Minnow. WATER 2020. [DOI: 10.3390/w12123371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streamflow intermittency can reshape fish assemblages and present challenges to recovery of imperiled species. During streamflow intermittency, fish can be subjected to a variety of stressors, including exposure to crowding, high water temperatures, and low dissolved oxygen, resulting in sublethal effects or mortality. Rescue of fishes is often used as a conservation tool to mitigate the negative impacts of streamflow intermittency. The effectiveness of such actions is rarely evaluated. Here, we use multi-year water quality data collected from isolated pools during rescue of Rio Grande silvery minnow Hybognathus amarus, an endangered minnow. We examined seasonal and diel water quality patterns to determine if fishes are exposed to sublethal and critical water temperatures or dissolved oxygen concentrations during streamflow intermittency. Further, we determined survival of rescued Rio Grande silvery minnow for 3–5 weeks post-rescue. We found that isolated pool temperatures were much warmer (>40 °C in some pools) compared to upstream perennial flows, and had larger diel fluctuations, >10 °C compared to ~5 °C, and many pools had critically low dissolved oxygen concentrations. Survival of fish rescued from isolated pools during warmer months was <10%. Reactive conservation actions such as fish rescue are often costly, and in the case of Rio Grande silvery minnow, likely ineffective. Effective conservation of fishes threatened by streamflow intermittency should focus on restoring natural flow regimes that restore the natural processes under which fishes evolved.
Collapse
|