1
|
Cheng X, Zhao X, Lin J, Zhang S, Wang Z, Huang H, Wang K, Chen J. Rotation Culture of Macroalgae Based on Photosynthetic Physiological Characteristics of Algae. BIOLOGY 2024; 13:459. [PMID: 38927339 PMCID: PMC11200767 DOI: 10.3390/biology13060459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Seaweed farming has made outstanding contributions to food supply and the restoration of the ecological environment despite the limitations in production and ecological effects due to the current intensive farming of single algae species. These limitations can be overcome by selecting suitable algal species based on their physiological characteristics and by constructing a large-scale seaweed rotation model. This study carried out a trial culture in aquaculture sea areas, and performed in situ monitoring of the environmental conditions and physiological characteristics of Saccharina japonica, Hizikia fusiformis, and Gracilariopsis lemaneiformis. Additionally, a comparative analysis of the three macroalgae at different times was conducted to determine their response characteristics to environmental factors. The results showed that: (1) The three macroalgae had varying light tolerance. The effective quantum yield of Hizikia fusiformis and Gracilariopsis lemaneiformis remained unchanged during the changes in light environment, while that of Saccharina japonica first decreased and then recovered. (2) The relative electron transport rates of the three macroalgae were significantly different under different temperature conditions. Hizikia fusiformis and Saccharina japonica exhibited the highest relative electron transport rates (70.45 and 106.75, respectively) in May (20.3 °C). Notably, Gracilariopsis lemaneiformis demonstrated good growth and exhibited the highest relative electron transport rate (93.07) in September (27.5 °C). These findings collectively support the feasibility of establishing a macroalgae rotation model. Based on the combined environmental conditions of the seas in Shandong, Zhejiang, and Fujian, a macroalgae rotation model was proposed. The application of this model in the construction of artificial seaweed farms in marine ranches can provide a stable output of large-scale seaweed production and ecological benefits.
Collapse
Affiliation(s)
- Xiaopeng Cheng
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (X.Z.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Xu Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (X.Z.)
| | - Jun Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (X.Z.)
| | - Shouyu Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (X.Z.)
| | - Zhenhua Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (X.Z.)
| | - Hong Huang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (X.Z.)
| | - Kai Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (X.Z.)
| | - Jianqu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; (X.C.); (X.Z.)
| |
Collapse
|
2
|
Chen Z, Zhang Y, Wu X, Chen L, Li X, Wang G. UV-B radiation increased the sensitivity of Tibetan soil cyanobacterium Loriellopsis cavernicola to the herbicide glyphosate. CHEMOSPHERE 2023:139141. [PMID: 37285984 DOI: 10.1016/j.chemosphere.2023.139141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The high concentrations of herbicide and UV-B radiation are two stresses for Tibetan soil microorganisms, but there is limited information about the combined effects of herbicide and UV-B radiation on their levels of stress. In this study, the Tibetan soil cyanobacterium Loriellopsis cavernicola was used to investigate the combined inhibitory effect of the herbicide glyphosate and UV-B radiation on the cyanobacterial photosynthetic electron transport through an analysis of the photosynthetic activity, photosynthetic pigments, chlorophyll fluorescence and antioxidant system activity. The results demonstrated that treatment with herbicide or UV-B radiation and the combination of both stresses caused a decrease in the photosynthetic activity, interfered with the photosynthetic electron transport, and caused the accumulation of oxygen radicals and the degradation of photosynthetic pigments. In contrast, the combined treatment of glyphosate and UV-B radiation had a synergistic effect, i.e., the sensitivity of cyanobacteria to glyphosate increased in the presence of UV-B radiation, which caused the photosynthesis of cyanobacteria to have a greater impact. Since cyanobacteria are the primary producers of soil ecosystems, a high intensity of UV-B radiation in the plateau areas could enhance the inhibition of glyphosate on cyanobacteria, which could affect the ecological health and sustainable development of plateau soils.
Collapse
Affiliation(s)
- Zixu Chen
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Yixiao Zhang
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Science, Tibet University, Lasha, 850000, China
| | - Xinguo Wu
- School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Lanzhou Chen
- School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Xiaoyan Li
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China.
| | - Gaohong Wang
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Science, Tibet University, Lasha, 850000, China.
| |
Collapse
|
3
|
Dabravolski SA, Isayenkov SV. Metabolites Facilitating Adaptation of Desert Cyanobacteria to Extremely Arid Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:3225. [PMID: 36501264 PMCID: PMC9736550 DOI: 10.3390/plants11233225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Desert is one of the harshest environments on the planet, characterized by exposure to daily fluctuations of extreme conditions (such as high temperature, low nitrogen, low water, high salt, etc.). However, some cyanobacteria are able to live and flourish in such conditions, form communities, and facilitate survival of other organisms. Therefore, to ensure survival, desert cyanobacteria must develop sophisticated and comprehensive adaptation strategies to enhance their tolerance to multiple simultaneous stresses. In this review, we discuss the metabolic pathways used by desert cyanobacteria to adapt to extreme arid conditions. In particular, we focus on the extracellular polysaccharides and compatible solutes biosynthesis pathways and their evolution and special features. We also discuss the role of desert cyanobacteria in the improvement of soil properties and their ecological and environmental impact on soil communities. Finally, we summarize recent achievements in the application of desert cyanobacteria to prevent soil erosion and desertification.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Osipovskogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
4
|
Zhu Q, Wu L, Li G, Li X, Zhao C, Du C, Wang F, Li W, Zhang L. A novel of transforming wastewater pollution into resources for desertification control by sand-consolidating cyanobacteria, Scytonema javanicum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13861-13872. [PMID: 33200387 DOI: 10.1007/s11356-020-11553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Cultivation of desert cyanobacteria in wastewater can lead to the optimal redistribution of regional resources and is likely to solve two global problems, i.e., wastewater pollution and desertification. However, the potential of using wastewater instead of traditional artificial culture media to cultivate sand-consolidating cyanobacteria for desert management is not well understood. This study compares undistilled and distilled wastewater with an artificial culture medium (BG110) to explore the potential of wastewater as a replacement culture medium for Scytonema javanicum. The results show that the photosynthetic activity (Fv/Fm) of S. javanicum was inhibited in the undistilled wastewater and was lower than that in distilled water and the culture medium. The lowest Chl-a concentration and the highest concentration in BG110 were found in distilled wastewater. However, there was no difference in the biomass (dry weight) between the undistilled wastewater and BG110 at the end of the experiment. After long-term dry storage of the biomass collected after cultivation, there was no difference in the photosynthetic recovery between S. javanicum cultivated in undistilled wastewater and that cultivated in BG110. Accordingly, although wastewater depressed the Chl-a content, it did not affect the biomass accumulation and subsequent photosynthetic recovery after long-term storage. The results reveal the significant potential of cultivating sand-consolidating cyanobacterium in wastewater and using this technology as a new nutrient redistribution method in human settlements and desert areas.
Collapse
Affiliation(s)
- Qiuheng Zhu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Guowen Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Zhao
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caili Du
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fan Wang
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lieyu Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
5
|
Degradation of Nitrogen, Phosphorus, and Organic Matter in Urban River Sediments by Adding Microorganisms. SUSTAINABILITY 2021. [DOI: 10.3390/su13052580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reducing and remediating endogenous sediment pollution in urban rivers using appropriate microbiological remediation technology is regarded as a safe, effective, and environmentally sustainable mechanism. In this study, the pollutant removal efficiency of three microorganism types at different dosages was studied in the laboratory. To optimize the microbial restoration scheme, a comprehensive analysis of their effectiveness in removing total nitrogen (TN), total phosphorus (TP), total organic matter (OM), and polycyclic aromatic hydrocarbons (PAHs) was conducted, and associated structural changes in the sediment bacteria were analyzed. The results showed that using nitrifying bacteria and Bacillus as microbial agents resulted in superior removal efficiencies of TN and TP in sediments, whereas yeast was not as effective. The removal rates of TN reached 27.65% and 20.88% when 5 mg nitrifying bacteria and 10 mg Bacillus respectively, were used. A comparative analysis showed that nitrifying bacteria exhibited a better TN removal effect; however, Bacillus exhibited a better TP removal effect. The results of high-throughput sequencing revealed no significant changes to the microbial community structures when optimal microorganisms or beneficial microorganisms that thrive using OM as a source of C and energy were added. This study provides insights into the processes and mechanisms involved in the microorganism degradation of black and odorous sediment, and the results can be used as a basis for developing endogenous pollution control policies and methods for urban rivers.
Collapse
|