1
|
Gao Y, Luo Y, Pan Z, Zeng Z, Fan W, Hu J, Zhang Z, Ma J, Zhou Y, Ma J. Comparative study of Fe(II)/sulfite, Fe(II)/PDS and Fe(II)/PMS for p-arsanilic acid treatment: Efficient organic arsenic degradation and contrasting total arsenic removal. WATER RESEARCH 2024; 249:120967. [PMID: 38070343 DOI: 10.1016/j.watres.2023.120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
As a widely used feed additives, p-arsanilic acid (p-AsA) frequently detected in the environment poses serious threats to aquatic ecology and water security due to its potential in releasing more toxic inorganic arsenic. In this work, the efficiency of Fe(II)/sulfite, Fe(II)/PDS and Fe(II)/PMS systems in p-AsA degradation and simultaneous arsenic removal was comparatively investigated for the first time. Efficient p-AsA abatement was achieved in theses Fe-based systems, while notable discrepancy in total arsenic removal was observed under identical acidic condition. By using chemical probing method, quenching experiments, isotopically labeled water experiments, p-AsA degradation was ascribed to the combined contribution of high-valent Fe(IV) and SO4•-in these Fe(II)-based system. In particular, the relative contribution of Fe(IV) and SO4•- in the Fe(II)/sulfite system was highly dependent on the molar ratio of [Fe(II)] and [sulfite]. Negligible arsenic removal was observed in the Fe(II)/sulfite and Fe(II)/PDS systems, while ∼80% arsenic was removed in the Fe(II)/PMS system under identical acidic condition. This interesting phenomenon was due to that ferric precipitation only occurred in the Fe(II)/PMS system. As(V) was further removed via adsorption onto the iron precipitate or the formation of ferric arsenate-sulfate compounds, which was confirmed by particle diameter measurements, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Through tuning solution pH, complete removal of total arsenic could achieve in all three systems. Among these three Fe-based technologies, the hybrid oxidation-coagulation Fe(II)/PMS system demonstrated potential superiority for arsenic immobilization by not requiring pH adjustment for coagulation and facilitating the in-situ generation of ferric arsenate-sulfate compounds with comparably low solubility levels like scorodite. These findings would deepen the understanding of these three Fe-based Fenton-like technologies for decontamination in water treatment.
Collapse
Affiliation(s)
- Yuan Gao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yun Luo
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhao Pan
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhu Zeng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenxia Fan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyu Hu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhong Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ma
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Sun Y, Xu Y, Wu H, Hou J. A critical review on BDE-209: Source, distribution, influencing factors, toxicity, and degradation. ENVIRONMENT INTERNATIONAL 2024; 183:108410. [PMID: 38160509 DOI: 10.1016/j.envint.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used polybrominated diphenyl ether, BDE-209 is commonly used in polymer-based commercial and household products. Due to its unique physicochemical properties, BDE-209 is ubiquitous in a variety of environmental compartments and can be exposed to organisms in various ways and cause toxic effects. The present review outlines the current state of knowledge on the occurrence of BDE-209 in the environment, influencing factors, toxicity, and degradation. BDE-209 has been detected in various environmental matrices including air, soil, water, and sediment. Additionally, environmental factors such as organic matter, total suspended particulate, hydrodynamic, wind, and temperature affecting BDE-209 are specifically discussed. Toxicity studies suggest BDE-209 may cause systemic toxic effects on living organisms, reproductive toxicity, embryo-fetal toxicity, genetic toxicity, endocrine toxicity, neurotoxicity, immunotoxicity, and developmental toxicity, or even be carcinogenic. BDE-209 has toxic effects on organisms mainly through epigenetic regulation and induction of oxidative stress. Evidence regarding the degradation of BDE-209, including biodegradation, photodegradation, Fenton degradation, zero-valent iron degradation, chemical oxidative degradation, and microwave radiation degradation is summarized. This review may contribute to assessing the environmental risks of BDE-209 to help develop rational management plans.
Collapse
Affiliation(s)
- Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
3
|
Liang J, Liu H, Zou M, Tao X, Zhou J, Dang Z, Lu G. Degradation efficiency and mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by thermally activated persulfate system. CHEMOSPHERE 2023; 325:138396. [PMID: 36931399 DOI: 10.1016/j.chemosphere.2023.138396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) as a typical brominated flame retardant (BFR) have attracted worldwide attention due to the high environmental risk and resistance to conventional remediation processes. In this study, thermally activated persulfate (TAP) process was applied to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is the most toxic and representative PBDEs in e-waste dismantling sites. Impact factors such as PDS dosage, heating temperature, and initial pH were evaluated. Results showed that BDE-47 can be 100% degraded within 180 min under the condition of PDS:BDE-47 = 1000:1, 60 °C, and pH = 7. Quenching experiments combined with EPR analysis further proved the important role of SO4·- in oxidating BDE-47. According to high-resolution mass spectrometry (HRMS) analysis, only one oxidation product of low toxicity was detected during the oxidation process. Theoretical calculations further revealed that the oxidation process mainly involved radical attack at C-Br bond, cleavage of C-Br bond, and fission of ether bond, and HSO4· may also play an important role in BDE-47 degradation in TAP system. In addition, TAP system exhibited universality as all selected PBDE congeners can be degraded, and the degradation rate of PBDEs was greatly affected by the number of substituted Br atoms in a negative trend. Overall, these findings indicate that TAP can be applied as an effective method for removal of PBDEs, and we provide a new insight for the practical application of TAP technology in BDE-47 degradation from experimental and theoretical aspects.
Collapse
Affiliation(s)
- Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - He Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Jin Q, Zhan Y, Tao D, Wang T, Khim JS, He Y. Removing emerging e-waste pollutant DTFPB by synchronized oxidation-adsorption Fenton technology. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130587. [PMID: 37055950 DOI: 10.1016/j.jhazmat.2022.130587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
Liquid crystal monomers (LCMs), an emerging group of organic pollutants related to electronic waste, have been frequently detected from various environmental matrices, including landfill leachate. The persistence of LCMs requires robust technology for remediation. The objectives of this study were to evaluate the feasibility, performance and mechanism of the remediation of a typical LCM 4-[difluoro(3,4,5-trifluorophenoxy)methyl]- 3,5-difluoro-4'-propylbiphenyl (DTFPB) via synchronized oxidation-adsorption (SOA) Fenton technology and verify its application in DTFPB-contaminated leachate. The SOA Fenton system could effectively degrade 93.5% of DTFPB and 5.6% of its total organic carbon (TOCDTFPB) by hydroxyl radical oxidation (molar ratio of Fe2+ to H2O2 of 1/4 and pH 2.5-3.0) following a pseudo-first-order model under 0.378 h-1. Additionally, synchronized adsorption of DTFPB and its degradation intermediates by in situ resultant ferric particles via hydrophobic interaction, complexation, and coprecipitation contributed to almost 100% of DTFPB and 33.4% of TOCDTFPB removal. Three possible degradation pathways involving eight products were proposed, and hydrophobic interactions might drive the adsorption process. It was first confirmed that the SOA Fenton system exhibited good performance in eliminating DTFPB and byproducts from landfill leachate. This study provides new insights into the potential of the Fenton process for the treatment of emerging LCMs contamination in wastewater.
Collapse
Affiliation(s)
- Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Yuting Zhan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Danyang Tao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Tieyu Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
5
|
Wu N, Liu M, Tian B, Wang Z, Sharma VK, Qu R. A Comparative Study on the Oxidation Mechanisms of Substituted Phenolic Pollutants by Ferrate(VI) through Experiments and Density Functional Theory Calculations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022. [PMID: 36241607 DOI: 10.1021/acs.est.2c06491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, the oxidation of five phenolic contaminants by ferrate(VI) was comparatively investigated to explore the possible reaction mechanisms by combined experimental results and theoretical calculations. The second-order rate constants were positively correlated with the energy of the highest occupied molecular orbital. Considering electronic effects of different substituents, the easy oxidation of phenols by ferrate(VI) could be ranked as the electron-donating group (-R) > weak electron-withdrawing group (-X) > strong electron-withdrawing group (-(C═O)-). The contributions of reactive species (Fe(VI), Fe(V)/(IV), and •OH) were determined, and Fe(VI) was found to dominate the reaction process. Four main reaction mechanisms including single-oxygen transfer (SOT), double-oxygen transfer (DOT), •OH attack, and electron-transfer-mediated coupling reaction were proposed for the ferrate(VI) oxidation process. According to density functional theory calculation results, the presence of -(C═O)- was more conducive for the occurrence of DOT and •OH attack reactions than -R and -X, while the tendency of SOT for different substituents was -R > -(C═O)- > -X and that of e--transfer reaction was -R > -X > -(C═O)-. Moreover, the DOT pathway was found in the oxidation of all four substituted phenols, indicating that it may be a common reaction mechanism during the ferrate(VI) oxidation of phenolic compounds.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| | - Bingru Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| | - Virender K Sharma
- Program of Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas77843, United States
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, P. R. China
| |
Collapse
|
6
|
Liu M, Wu N, Tian B, Zhou D, Yan C, Huo Z, Qu R. Experimental and theoretical study on the degradation of Benzophenone-1 by Ferrate(VI): New insights into the oxidation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127877. [PMID: 34883381 DOI: 10.1016/j.jhazmat.2021.127877] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of Benzophenone-1 (BP-1) by ferrate (Fe(VI)) was systemically investigated in this study. Neutral pH and high oxidant dose were favorable for the reaction, and the second order rate constant was 1.03 × 103 M-1·s-1 at pH = 7.0 and [Fe(VI)]0:[BP-1]0 = 10:1. The removal efficiency of BP-1 was enhanced by cations (K+, Ca2+, Mg2+, Cu2+, and Fe3+), while inhibited by high concentrations of anions (Cl- and HCO3-) and low concentrations of humic acid. Moreover, intermediates were identified by LC-MS, and five dominating reaction pathways were predicted, involving single hydroxylation, dioxygen transfer, bond breaking, polymerization and carboxylation. Theoretical calculations showed the dioxygen transfer could occur by Fe(VI) attacking the CC double-bond in benzene ring of BP-1 to form a five-membered ring intermediate, which was hydrolyzed twice followed by H-abstraction to generate the dihydroxy-added product directly from the parent compound. Dissolved CO2 or HCO3- might be fixed to produce carboxylated products, and Cl- led to the formation of two chlorinated products. In addition, the toxicity assessments showed the reaction reduced the environmental risk of BP-1. This work illustrates Fe(VI) could remove BP-1 in water environments efficiently, and the newly proposed dioxygen transfer mechanism herein may contribute to the development of Fe(VI) chemistry.
Collapse
Affiliation(s)
- Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Bingru Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Chao Yan
- School of the Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210023, Jiangsu, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
7
|
Tian B, Wu N, Pan X, Wang Z, Yan C, Sharma VK, Qu R. Ferrate(VI) oxidation of bisphenol E-Kinetics, removal performance, and dihydroxylation mechanism. WATER RESEARCH 2022; 210:118025. [PMID: 34991014 DOI: 10.1016/j.watres.2021.118025] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol E (bis (4-hydroxyphenyl) ethane, BPE), as a typical endocrine disrupting chemical, is commonly detected in source water and drinking water, which poses potential risks to human health and ecological environment. This paper investigated the removal of BPE by ferrate(VI) (FeVIO42-, Fe(VI)) in water. Under the optimal condition of [Fe(VI)]0:[BPE]0 = 10:1 and pH = 8.0, a removal efficiency of 99% was achived in 180 s. Sixteen intermediates of BPE were detected, and four possible reaction pathways were proposed, which mainly involved the reaction modes of double-oxygen and single-oxygen transfer, bond breaking, carboxylation and polymerization. The double-oxygen transfer mechanism, different from traditional mechanisms, was newly proposed to illustrate the direct generation of di-hydroxylated products from parent BPE, which was demonstrated by theoretical calculations for its rationality. Significantly, NO2-, HCO3-, Cu2+, and humic acid, constituents of water promoted the removal of BPE. Additionally, samples from river, tap water, synthetic wastewater, and secondary effluent were tested to explore the feasibility of Fe(VI) oxidation for treating BPE in water. It was found that 99% of BPE was degraded within 300 s in these waters except for synthetic wastewater. The toxicity of BPE and its intermediates was evaluated by ECOSAR program, and the results showed that Fe(VI) oxidation decreased the toxicity of reaction solutions. These findings demonstrated that the Fe(VI) oxidation process was an efficient and green method for the treatment of BPE, and the new insights into the double-oxygen transfer mechanism aid to understand the reaction mechanisms of organic pollutants oxidized by Fe(VI).
Collapse
Affiliation(s)
- Bingru Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chao Yan
- School of the Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Virender K Sharma
- Program of Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
8
|
Yu Y, Qi Y, Li C, Cao W, Chen J, Qu R, Zhou D, Wang Z. Ferrate (VI)-mediated transformation of diethyl phthalate (DEP) in soil: Kinetics, degradation mechanisms and theoretical calculation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118053. [PMID: 34455297 DOI: 10.1016/j.envpol.2021.118053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Diethyl phthalate (DEP), as a kind of universally used plasticizer, has aroused considerable public concern owing to its wide detection, environmental stability, and potential health risks. In this work, the highly efficient removal of DEP by ferrate (VI) (Fe(VI)) was systematically explored in soil environment. The effects of the oxidant dosages, soil types, as well as the presence of coexisting cations and anions in tested soil on DEP removal were evaluated. When the dosage of Fe(VI) was 20 mM, complete removal of DEP (50 μg/g) was achieved in the tested soil after 2 min of reaction. Furthermore, the removal rate of DEP was closely related to the soil types, and the degradation rates were decreased obviously in red soil (RS), black soil (BS) and paddy soil (PS), probably due to the acidic condition and high content of organic matters. Moreover, the presence of Ca2+, Mg2+ and Al3+ in soil can inhibit the removal of DEP by Fe(VI), while SO42- has an slightly promotion effect. Six oxidation intermediates were detected in the reaction process of DEP, product analysis revealed that the transformation of DEP was mainly through two pathways, including hydrolysis and hydroxylation reactions, which were probably mediated by oxygen atom transfer process of Fe(VI). Based on the frontier electron density theory calculation, two ester groups of DEP were prone to be attacked by Fe(VI), and the hydroxyl addition tended to occur at the para-position of one of the ester groups on the benzene ring. This study provides a novel approach for phthalate esters removal from soil using Fe(VI) oxidation and shows new insights into the oxidation mechanisms.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Wanming Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing, 210023, PR China.
| |
Collapse
|