1
|
Chowdhury S, Sattar KA, Rahman SM. Predicting few disinfection byproducts in the water distribution systems using machine learning models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3776-3794. [PMID: 39832095 DOI: 10.1007/s11356-025-35933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario. Data were collected tri-monthly (four times/year) following Ontario's regulatory requirements. Four common ML models-linear regressor (LR), random forest regressor (RFR), support vector regressor (SVR), and artificial neural networks with multiple folds cross-validation (ANN-MV) and single fold validation (ANN-SV)-were trained and tested using different datasets. R2 values for training datasets of THMs, HAAs, DCAN, and NDMA models ranged from 0.533 to 0.976, 0.560 to 0.980, 0.602 to 0.993, and 0.449 to 0.858, respectively. For testing datasets, R2 ranged from 0.517 to 0.939, 0.437 to 0.945, 0.565 to 0.973, and 0.517 to 0.718, respectively. Among THMs, HAAs, and DCAN, ANN-SV models were identified as the best, followed by the RFR model, whereas for NDMA, SVR was the superior model, followed by the LR model. Some models reliably predicted DBPs, suggesting they could replace costly sampling and experimental analysis for DBPs in the WDSs, thereby enhancing DBPs control in WDSs and reducing human exposure and associated risks.
Collapse
Affiliation(s)
- Shakhawat Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
- IRC CBM, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
| | - Karim Asif Sattar
- Research Engineer I, Interdisciplinary Research Center for Smart Mobility and Logistics. King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Syed Masiur Rahman
- Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Hosseinzadeh M, Postigo C, Porte C. Toxicity and underlying lipidomic alterations generated by a mixture of water disinfection byproducts in human lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170331. [PMID: 38278255 DOI: 10.1016/j.scitotenv.2024.170331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Complex mixtures of disinfection by-products (DBPs) are present in disinfected waters, but their mixture toxicity has been rarely described. Apart from ingestion, DBP exposure can occur through inhalation, which may lead to respiratory effects in highly exposed individuals. However, the underlying biological mechanisms have yet to be elucidated. This study aimed to investigate the toxicity of a mixture of 10 DBPs, including haloacetic acids and haloaromatics, on human alveolar A549 cells by assessing their cytotoxicity, genotoxicity, and impact on the cell lipidome. A DBP mixture up to 50 μM slightly reduced cell viability, induced the generation of reactive oxygen species (ROS) up to 3.5-fold, and increased the frequency of micronuclei formation. Exposure to 50 μM DBP mixture led to a significant accumulation of triacylglycerides and a decrease of diacylglycerides and phosphatidylcholines in A549 cells. Lipidomic profiling of extracellular vesicles (EVs) released in the culture medium revealed a marked increase in cholesterol esters, sphingomyelins, and other membrane lipids. Overall, these alterations in the lipidome of cells and EVs may indicate a disruption of lipid homeostasis, and thus, potentially contribute to the respiratory effects associated with DBP exposure.
Collapse
Affiliation(s)
- Mahboubeh Hosseinzadeh
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Avda. Severo Ochoa s/n, Granada 18071, Spain; Institute for Water Research (IdA), University of Granada, Ramón y Cajal 4, 18071 Granada, Spain
| | - Cinta Porte
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
3
|
Chowdhury S, Sattar KA, Rahman SM. Investigating bromide incorporation factor (BIF) and model development for predicting THMs in drinking water using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167595. [PMID: 37802353 DOI: 10.1016/j.scitotenv.2023.167595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Many disinfection byproducts (DBPs) in drinking water can pose cancer risks to humans while several DBPs including trihalomethanes are typically regulated. Although trihalomethanes are regulated, brominated fractions (bromodichloromethane, dibromochloromethane and bromoform) are more toxic to humans than the chlorinated ones (chloroform). To date, >100 models have been reported to predict DBPs. However, models to predict individual trihalomethanes are very limited, indicating the needs of such models. Various factors including natural organic matter (NOM), bromide ions (Br-), disinfectants (e.g., chlorine dose), pH, temperature and reaction time affect the formation and distribution of trihalomethanes in drinking water. In this study, NOM was fractionated into four groups based on the molecular weight (MW) cutoff values and their respective contributions to dissolved organic carbon (DOC), trihalomethanes and bromide incorporation factors (BIF) were investigated. Models were developed for predicting chloroform, bromodichloromethane, dibromochloromethane, bromoform and trihalomethanes. Three machine learning techniques: Support Vector Regressor (SVR), Random Forest Regressor (RFR) and Artificial Neural Networks (ANN) were adopted for training and testing the models. The normalized BIFs were in the ranges of 0.08-0.16 and 0.07-0.15 per mg/L of DOC for pH 6.0 and 8.5 respectively. The BIFs were higher for lower pH and MW values while increase of bromide to chlorine ratios increased BIFs. The models showed excellent predictive performances in training (R2 = 0.889-0.998) and testing (R2 = 0.870-0.988) datasets. The SVR and RFR models showed the best performances with lower RMSE and MAE in most cases. These models can be used to better control different trihalomethanes in drinking water to maintain regulatory compliance, and to minimize the risks to humans.
Collapse
Affiliation(s)
- Shakhawat Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; IRC for Construction and Building Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Karim Asif Sattar
- Research Engineer I, IRC - Smart Mobility & Logistics, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Syed Masiur Rahman
- Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Pérez-Albaladejo E, Pinteño R, Aznar-Luque MDC, Casado M, Postigo C, Porte C. Genotoxicity and endocrine disruption potential of haloacetic acids in human placental and lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162981. [PMID: 36963690 DOI: 10.1016/j.scitotenv.2023.162981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Chlorination of water results in the formation of haloacetic acids (HAAs) as major disinfection byproducts (DBPs). Previous studies have reported some HAAs species to act as cytotoxic, genotoxic, and carcinogenic. This work aimed at further exploring the toxicity potential of the most investigated HAAs (chloroacetic (CAA), bromoacetic (BAA), iodoacetic (IAA) acid) and HAAs species with high content of bromine (tribromoacetic acid (TBAA)), and iodine in their structures (chloroiodoacetic (CIAA) and diiodoacetic acid (DIAA)) to human cells. Novel knowledge was generated regarding cytotoxicity, oxidative stress, endocrine disrupting potential, and genotoxicity of these HAAs by using human placental and lung cells as in vitro models, not previously used for DBP assessment. IAA showed the highest cytotoxicity (EC50: 7.5 μM) and ability to generate ROS (up to 3-fold) in placental cells, followed by BAA (EC50: 20-25 μM and 2.1-fold). TBAA, CAA, DIAA, and CIAA showed no significant cytotoxicity (EC50 > 250 μM). All tested HAAs decreased the expression of the steroidogenic gene hsd17b1 up to 40 % in placental cells, and IAA and BAA (0.01-1 μM) slightly inhibited the aromatase activity. HAAs also induced the formation of micronuclei in A549 lung cells after 48 h of exposure. IAA and BAA showed a non-significant increase in micronuclei formation at low concentrations (1 μM), while BAA, CAA, CIAA and TBAA were genotoxic at exposure concentrations above 10 μM (100 μM in the case of DIAA). These results point to genotoxic and endocrine disruption effects associated with HAA exposure at low concentrations (0.01-1 μM), and the usefulness of the selected bioassays to provide fast and sensitive responses to HAA exposure, particularly in terms of genotoxicity and endocrine disruption effects. Further studies are needed to define thresholds that better protect public health.
Collapse
Affiliation(s)
| | - Raquel Pinteño
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Marta Casado
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva s/n, Granada 18071, Spain; Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Institute for Water Research, University of Granada, C/ Ramón y Cajal 4, Granada, 18071, Spain.
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
5
|
Li J, Chen J, Hu Z, Li X, Li M, Wang Y, Zhang Z, Liang X. Overlooked inorganic DBPs in trichloroisocyanuric acid (TCCA) disinfected indoor swimming pool: Evidences from concentration, cytotoxicity, and human health risk. CHEMOSPHERE 2023:139061. [PMID: 37247674 DOI: 10.1016/j.chemosphere.2023.139061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Trichloroisocyanuric acid (TCCA) is a popular disinfectant for swimming pools in China. However, the occurrence and importance of regulated disinfection byproducts (DBPs) in TCCA-disinfected swimming pools are less understood. This study analyzed 12 regulated DBPs (4 trihalomethanes (THMs), 5 haloacetic acid (HAAs), bromate, chlorate, and chlorite) in 85 swimming pool water samples and 17 input tap water samples from one swimming pool for 17 days continuously. Considering water temperature, pH, free chlorine, total chlorine, and urea, approximately 88%, 49%, 97%, 55%, and 97% of swimming pool water samples were within the water quality limits for China. Total concentrations of THMs, HAAs, and inorganic DBPs of 20.4-42.2, 82.0-229, and 100-729 μg/L in the swimming pool, and 16.6-28.3, 8.2-12.8, and 64.4-95.6 μg/L in the tap water, indicating inorganic DBPs are the dominant swimming pool and drinking water pollutants. Cancer risk values of regulated DBPs in swimming pools and input tap water are 2.7E-05 and 8.1E-05, respectively, and exceed the US EPA's threshold (1.0E-06). The non-cancer risk is below the US EPA's threshold. Following TCCA disinfection, the concentration and calculated cytotoxicity of regulated DBPs had a 3.6-fold and 1.9-fold increase, respectively. Inorganic DBPs contribute to the calculated concentration and cancer risks of DBPs in swimming pools and tap water at sufficient concentrations warranting regulation. This study provides data on 12 regulated DBPs in TCCA-disinfected indoor swimming pools, highlighting the importance of inorganic DBPs from evidences of concentration, cytotoxicity, and cancer risk for the first time.
Collapse
Affiliation(s)
- Jiafu Li
- School of Public Health, Soochow University, Suzhou, 215000, China.
| | - Jingsi Chen
- School of Public Health, Soochow University, Suzhou, 215000, China
| | - Zhiyong Hu
- School of Public Health and Management, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
| | - Xinyu Li
- School of Public Health, Soochow University, Suzhou, 215000, China
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011 China
| | - Yuan Wang
- Center for Disease Control and Prevention of Kunshan, Kunshan, 215301 China
| | - Zengli Zhang
- School of Public Health, Soochow University, Suzhou, 215000, China.
| | - Xiaojun Liang
- Center for Disease Control and Prevention of Kunshan, Kunshan, 215301 China.
| |
Collapse
|
6
|
Peng F, Lu Y, Dong X, Wang Y, Li H, Yang Z. Advances and research needs for disinfection byproducts control strategies in swimming pools. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131533. [PMID: 37146331 DOI: 10.1016/j.jhazmat.2023.131533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The control of disinfection byproducts (DBPs) in swimming pools is of great significance due to the non-negligible toxicity and widespread existence of DBPs. However, the management of DBPs remains challenging as the removal and regulation of DBPs is a multifactorial phenomenon in pools. This study summarized recent studies on the removal and regulation of DBPs, and further proposed some research needs. Specifically, the removal of DBPs was divided into the direct removal of the generated DBPs and the indirect removal by inhibiting DBP formation. Inhibiting DBP formation seems to be the more effective and economically practical strategy, which can be achieved mainly by reducing precursors, improving disinfection technology, and optimizing water quality parameters. Alternative disinfection technologies to chlorine disinfection have attracted increasing attention, while their applicability in pools requires further investigation. The regulation of DBPs was discussed in terms of improving the standards on DBPs and their preccursors. The development of online monitoring technology for DBPs is essential for implementing the standard. Overall, this study makes a significant contribution to the control of DBPs in pool water by updating the latest research advances and providing detailed perspectives.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Xuelian Dong
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
7
|
Chowdhury S. Evaluation and strategy for improving the quality of desalinated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65947-65962. [PMID: 37093380 DOI: 10.1007/s11356-023-27180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Seawater desalination is practiced in many coastal countries, which is accepted as clean water by the general populations. The untreated seawater reported high concentrations of bromide (50,000 - 80,000 µg/L) and iodide (21 - 60 µg/L) ions, which are reduced to non-detectable levels during thermal desalination while the concentrations of bromide and iodide ions were reduced to 250-600 µg/L and < 4-16 µg/L, respectively during reverse osmosis processes. During the treatment and/or disinfection, many brominated and iodinated disinfection byproducts (Br-DBPs and I-DBPs) are formed in desalinated water, some of which are genotoxic and cytotoxic to the mammalian cells and possible/probable human carcinogens. In this paper, DBPs' formation in desalinated and blended water from source to tap, toxicity to the mammalian cells, their risks to humans and the strategies to control DBPs were investigated. The lifetime excess cancer risks from groundwater, and desalinated and blended water sourced DBPs were 4.15 × 10-6 (4.72 × 10-7 - 1.30 × 10-5), 1.75 × 10-5 (2.58 × 10-6 - 5.25 × 10-5) and 2.59 × 10-5 (4.02 × 10-6 - 8.35 × 10-5) respectively, indicating higher risks from desalinated and blended water (2.56 and 4.51 times respectively) than groundwater systems. Few emerging DBPs in desalinated/blended water showed higher cyto- and genotoxicity in the mammalian cells. The findings were compared with safe drinking water standards and strategies to produce cleaner desalinated water were demonstrated.
Collapse
Affiliation(s)
- Shakhawat Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
- Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
8
|
Zhang D, Dong S, Chen L, Xiao R, Chu W. Disinfection byproducts in indoor swimming pool water: Detection and human lifetime health risk assessment. J Environ Sci (China) 2023; 126:378-386. [PMID: 36503764 DOI: 10.1016/j.jes.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 06/17/2023]
Abstract
Quantification of regulated and emerging disinfection byproducts (DBPs) in swimming pool water, as well as the assessment of their lifetime health risk are limited in China. In this study, the occurrence of regulated DBPs (e.g., trihalomethanes, haloacetic acids) and emerging DBPs (e.g., haloacetonitriles, haloacetaldehydes) in indoor swimming pool water and the corresponding source water at a city in Eastern China were determined. The concentrations of DBPs in swimming pool water were 1-2 orders of magnitude higher than that in source water. Lifetime cancer and non-cancer risks of DBPs stemming from swimming pool water were also estimated. Inhalation and dermal exposure were the most significant exposure routes related to swimming pool DBP cancer and non-cancer risks. For the first time, buccal and aural exposure were considered, and were proven to be important routes of DBP exposure (accounting for 17.9%-38.9% of total risk). The cancer risks of DBPs for all swimmers were higher than 10-6 of lifetime exposure risk recommended by United States Environmental Protection Agency, and the competitive adult swimmers experienced the highest cancer risk (7.82 × 10-5). These findings provide important information and perspectives for future efforts to lower the health risks associated with exposure to DBPs in swimming pool water.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shengkun Dong
- Southern Laboratory of Ocean Science and Engineering, Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Kelly-Coto DE, Gamboa-Jiménez A, Mora-Campos D, Salas-Jiménez P, Silva-Narváez B, Jiménez-Antillón J, Pino-Gómez M, Romero-Esquivel LG. Modeling the formation of trihalomethanes in rural and semi-urban drinking water distribution networks of Costa Rica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32845-32854. [PMID: 35020142 DOI: 10.1007/s11356-021-18299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Chlorination is one of the most important stages in the treatment of drinking water due to its effectiveness in the inactivation of pathogenic organisms. However, the reaction between chlorine and natural organic matter (NOM) generates harmful disinfection by-products (DBPs), such as trihalomethanes (THMs). In this research, drinking water quality data was collected from the distribution networks of 19 rural and semi-urban systems that use water sources as springs, surfaces, and a mixture of both, in three provinces of Costa Rica from April 2018 to September 2019. Twelve models were developed from four data sets: all water sources, spring, surface, and a mixture of spring and surface waters. Linear, logarithmic, and exponential multivariate regression models were developed for each data set to predict the concentration of total trihalomethanes (TTHMs) in the distribution networks. Concentrations of TTHMs were found between < 0.20 and 91.31 µg/L, with chloroform being the dominant species accounting for 62% of TTHMs on average. Turbidity, free residual chlorine, total organic carbon (TOC), dissolved organic carbon (DOC), and ultraviolet absorbance at 254 nm (UV254) showed a significant correlation with TTHMs. In all the data sets the linear models presented the best goodness-of-fit and were moderately robust. Four models, the best of each data set, were validated with data from the same systems, and, according to the criteria of R2, standard error (SE), mean square error (MSE), and mean absolute error (MAE), spring water and mixed spring/surface water models showed a satisfactory level of explanation of the variability of the data. Moreover, the models seem to better predict TTHM concentrations below 30 µg/L. These models were satisfactory and could be useful for decision-making in drinking water supply systems.
Collapse
Affiliation(s)
- Daniel Enrique Kelly-Coto
- Environmental Engineering Licentiate Program, School of Chemistry, Instituto Tecnológico de Costa Rica, P.O. Box 159, Cartago, Costa Rica.
| | - Alejandra Gamboa-Jiménez
- Environmental Analysis Laboratory, School of Environmental Sciences, National University, P.O. Box 86-3000, Heredia, Costa Rica
| | - Diana Mora-Campos
- Environmental Analysis Laboratory, School of Environmental Sciences, National University, P.O. Box 86-3000, Heredia, Costa Rica
| | - Pablo Salas-Jiménez
- Environmental Analysis Laboratory, School of Environmental Sciences, National University, P.O. Box 86-3000, Heredia, Costa Rica
| | - Basilio Silva-Narváez
- Basic Sciences, National Technical University, P.O. Box 1902-4050, Alajuela, Costa Rica
| | - Joaquín Jiménez-Antillón
- Environmental Protection Research Center (CIPA), School of Chemistry Instituto Tecnológico de Costa Rica , P.O. Box 159, Cartago, Costa Rica
| | - Macario Pino-Gómez
- Environmental Protection Research Center (CIPA), School of Chemistry Instituto Tecnológico de Costa Rica , P.O. Box 159, Cartago, Costa Rica
| | - Luis Guillermo Romero-Esquivel
- Environmental Protection Research Center (CIPA), School of Chemistry Instituto Tecnológico de Costa Rica , P.O. Box 159, Cartago, Costa Rica
| |
Collapse
|
10
|
Occurrence of Disinfection By-Products in Swimming Pools in the Area of Thessaloniki, Northern Greece. Assessment of Multi-Pathway Exposure and Risk. Molecules 2021; 26:molecules26247639. [PMID: 34946721 PMCID: PMC8703401 DOI: 10.3390/molecules26247639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the occurrence of disinfection by-products (DBPs) (trihalomethanes (THMs), haloacetic acids (HAAs), halonitriles (HANs), halonitromethane (TCNM) and haloketones (HKs)) in different type of swimming pools in the area of Thessaloniki, northern Greece by employing the EPA methods 551.1 and 552.3. Moreover, general water quality parameters (pH, residual chlorine, dissolved organic carbon, UV254 absorption, total nitrogen, alkalinity and conductivity) were also measured. The concentrations of DBPs showed great variability among swimming pools as well as within the same pool between sampling campaigns. HAAs exhibited the highest concentrations followed by THMs, HANs, TCNM and HKs. Exposure doses for four age groups (3–<6 y, 6–<11 y, 11–<16 y and adults) were calculated. Route-specific exposures varied among DBPs groups. Inhalation was the dominant exposure route to THMs and TCNM (up to 92–95%). Ingestion and dermal absorption were the main exposure routes to HAAs (40–82% and 18–59%, respectively), depending on the age of swimmers. HANs contributed up to 75% to the calculated cytotoxicity of pool water. Hazard indices for different exposure routes were <1, suggesting non-carcinogenic risk. Inhalation posed the higher carcinogenic risk for THMs, whereas risk via oral and dermal routes was low. Ingestion and dermal contact posed the higher risk for HAAs. Risk management strategies that minimise DBPs exposure without compromising disinfection efficiency in swimming pools are necessary.
Collapse
|