1
|
Liu Z, Chen R, Li M, Yang S, Zhang J, Yuan S, Hou Y, Li C, Chen Y. Manganese-nitrogen co-doped biochar (MnN@BC) as particle electrode for three-dimensional (3D) electro-activation of peroxydisulfate: Active sites enhanced radical/non-radical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132089. [PMID: 37478592 DOI: 10.1016/j.jhazmat.2023.132089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
A novel manganese-nitrogen co-doped biochar (MnN@BC) was synthesized and used as particle electrodes in three-dimensional (3D) electro-activation of peroxydisulfate (PDS) for the degradation of refractory organic pollutants. All the spectroscopy (EDS, XRD, XPS, FTIR, and Raman) results indicated that Mn-N nanoclusters were successfully deposited and embedded in BC. The material appeared graphitized structure with more defects after Mn-N doping. MnN@BC in 3D electro-activation of PDS (E/MnN@BC/PDS) exhibited excellent performance in carbamazepine (CBZ) removal, with removal efficiency and degradation rates of 96.84% and 0.0582 min-1, respectively. Besides, MnN@BC was favorable for adsorption, electron transfer, and reactive oxidizing species (ROS) formation. MnN@BC had good recyclability in the E/MnN@BC/PDS system by the recycled experiments and characterization. Furthermore, quenching experiments, probe experiments, and electron paramagnetic resonance (EPR) analyses suggested that •OH and 1O2 were the main ROS in the E/MnN@BC/PDS system, and the non-radical oxidation take a key part. In addition, this system achieved excellent CBZ degradation under wide pH range of 3-11, had good tolerance to natural organic matter and inorganic ions, and was efficient to various water matrices and other refractory organic pollutants. These findings provided new insights into particle electrode design and mechanisms enhancement in electro-activated PDS systems.
Collapse
Affiliation(s)
- Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Renyu Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Mengyu Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shanshan Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Jiang Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yizhi Hou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Cong Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
2
|
Hao L, Zhang J, Liu J, Min Y, Chen C. Applications of Carbon-Based Materials in Activated Peroxymonosulfate for the Degradation of Organic Pollutants: A Review. CHEM REC 2023:e202300203. [PMID: 37639150 DOI: 10.1002/tcr.202300203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Indexed: 08/29/2023]
Abstract
In recent years, water pollution has posed a serious threat to aquatic organisms and humans. Advanced oxidation processes (AOPs) based on activated peroxymonosulfate (PMS) show high oxidation, good selectivity, wide pH range and no secondary pollution in the removal of organic pollutants in water. Carbon-based materials are emerging green catalysts that can effectively activate persulfates to generate radical and non-radical active species to degrade organic pollutants. Compared with transition metal catalysts, carbon-based materials are widely used in SR-AOPs because of their low cost, non-toxicity, acid and alkali resistance, large specific surface area, and scalable surface charge, which can be used for selective control of specific water pollutants. This paper mainly presents several carbon-based materials used to activate PMS, including raw carbon materials and modified carbon materials (heteroatom-doped and metal-doped), analyzes and summarizes the mechanism of activating PMS by carbon-based catalysts, and discusses the influencing factors (temperature, pH, PMS concentration, catalyst concentration, inorganic anions, inorganic cations and dissolved oxygen) in the activation process. Finally, the future challenges and prospects of carbon-based materials in water pollution control are also presented.
Collapse
Affiliation(s)
- Liangyun Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junkai Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jia Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuting Min
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chunguang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
3
|
Qi Y, Yu Y, Allam AA, Ajarem JS, Altoom NG, Dar AA, Tang X, Wang Z, Qu R. Comparative study on the removal of 1- naphthol and 2-naphthol by ferrate (VI): Kinetics, reaction mechanisms and theoretical calculations. CHEMOSPHERE 2023:139189. [PMID: 37307926 DOI: 10.1016/j.chemosphere.2023.139189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
In this study, the oxidation of 1-naphthol (1-NAP) and 2-T (2-NAP) by Fe(VI) was investigated. The impacts of operating factors were investigated through a series of kinetic experiments, including Fe(VI) dosages, pH and coexisting ions (Ca2+, Mg2+, Cu2+, Fe3+, Cl-, SO42-, NO3- and CO32-). Almost 100% elimination of both 1-NAP and 2-NAP could be achieved within 300 s at pH 9.0 and 25 °C. Cu2+ could significantly improve the degradation efficiency of 1-NAP and 2-NAP, but the impacts of other ions were negligible. The liquid chromatography-mass spectrometry was used to identify the transformation products of 1-NAP and 2-NAP in Fe(VI) system, and the degradation pathways were proposed accordingly. Electron transfer mediated polymerization reaction was the dominant transformation pathway in the elimination of NAP by Fe(VI) oxidation. After 300 s of oxidation, heptamers and hexamers were found as the final coupling products during the removal of 1-NAP and 2-NAP, respectively. Theoretical calculations demonstrated that the hydrogen abstraction and electron transfer reaction would easily occur at the hydroxyl groups of 1-NAP and 2-NAP, producing NAP phenoxy radicals for subsequent coupling reaction. Moreover, since the electron transfer reactions between Fe(VI) and NAP molecules were barrierless and could occur spontaneously, the theoretical calculation results also confirmed the priority of coupling reaction in Fe(VI) system. This work indicated that the Fe(VI) oxidation was an effective way for removing naphthol, which may help us understand the reaction mechanism between phenolic compounds with Fe(VI).
Collapse
Affiliation(s)
- Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yao Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif G Altoom
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Afzal Ahmed Dar
- Department of Physics, Polytechnique Montreal, C.P. 6079, Succ Centre-ville, Montreal, QC H3C 3A7, Canada
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou, 213100, Jiangsu, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
4
|
Zheng Y, Wei Y, Fan J, Liu X, Zhu Z, Yang B. The Fe
0
/Fe
3
O
4
/Fe
3
C@hydrophilic Carbon Composite for LED Light‐Assisted, Improved Fenton‐Like Catalytic Activity for Dye Degradation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanping Zheng
- Department of Petrochemical Technology Lanzhou University of Technology Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou Yinchuan 730070 P.R. China
| | - Yunxia Wei
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Jinhu Fan
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Xianyu Liu
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Zhenhong Zhu
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control School of Chemistry Engineering Lanzhou City University. Lanzhou 730070 P.R. China
| | - Baoping Yang
- Department of Petrochemical Technology Lanzhou University of Technology Lanzhou 730070 P.R.China
| |
Collapse
|
5
|
Zhu Y, Ji S, Liang W, Li C, Nie Y, Dong J, Shi W, Ai S. A low-cost and eco-friendly powder catalyst: Iron and copper nanoparticles supported on biochar/geopolymer for activating potassium peroxymonosulfate to degrade naphthalene in water and soil. CHEMOSPHERE 2022; 303:135185. [PMID: 35660396 DOI: 10.1016/j.chemosphere.2022.135185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/08/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
A low-cost and environment-friendly biochar/geopolymer composite loaded with Fe and Cu nanoparticles (Fe-Cu@BC-GM) was prepared by impregnation-calcination using lignin and kaolin as precursors. SEM, FTIR and XRD analysis suggested that the Fe-Cu@BC-GM had a certain pore structure, rich functional groups and stable crystal structure. The obtained Fe-Cu@BC-GM was used as the catalyst of potassium peroxymonosulfate (PMS) for remediation of wastewater and soil polluted by naphthalene (NAP). Experimental results indicated that Fe-Cu@BC-GM exhibited outstanding catalytic performance, and the maximum degradation rate of NAP in water and soil reached 98.35% and 67.98% within 120 min, respectively. The XPS measurement confirmed the presence of successive Fe (Ⅲ)/Fe (Ⅱ) and Cu(Ⅱ)/Cu(Ⅰ) redox pairs cycles on the surface of Fe-Cu@BC-GM, which made Fe (Ⅲ) and Cu(Ⅰ) continuously generated Fe (Ⅱ) activating PMS to produce SO4·- and ·OH for the degradation of NAP. The effects of Fe-Cu@BC-GM/PMS system on plant toxicity were evaluated by analyzing the degradation intermediates and bioassay of mung bean. It was proved that the Fe-Cu@BC-GM/PMS system could degrade NAP into less toxic intermediates, and the seed germination rate, root and stem length of mung bean after soil remediation were not notably different from those of the uncontaminated soil. This work opened new prospect for the application of geopolymer in degradation of persistent organic pollutants (POPs) and provided a cost-effective option for the remediation of the persistent organic pollutants contaminated water and soil.
Collapse
Affiliation(s)
- Yifan Zhu
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Shanguo Ji
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Wenxu Liang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Changyu Li
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Yongxin Nie
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Jing Dong
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Weijie Shi
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| |
Collapse
|
6
|
Zhu Q, Gao H, Sun Y, Xiang Y, Liang X, Ivanets A, Li X, Su X, Lin Z. Highly efficient adsorption of chromium on N, S-codoped porous carbon materials derived from paper sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155312. [PMID: 35439513 DOI: 10.1016/j.scitotenv.2022.155312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The synergistic effect of heteroatoms is a viable method to enhance the adsorption performance of heavy metal onto carbon-based materials. However, the high cost, complex operation and a lot of pollution from the synthesis process have limited its development. Herein, a facile two-step pyrolysis method is used to prepare in situ N and S doped porous biochar from paper mill sludge for the removal of Cr(VI) from aqueous environment. The NSC-450 sample prepared under the optimum conditions has a large specific surface area of 3336.7 m2 g-1, an average pore size of 2.56 nm and a total pore volume of 2.10 cm3 g-1, manifesting the excellent adsorption capacity of 356.25 mg g-1 for Cr(VI). The adsorption of Cr(VI) by NSC-450 is consistent with the Langmuir isotherm and pseudo-second-order model, suggesting a spontaneous and endothermic chemisorption process. The analysis results show that the NH, graphitic nitrogen and thiophene structures have a positive effect on converting a large amount of Cr(VI) to Cr(III) by synergistic reduction, indicating obviously facilitating Cr(VI) removal compared to other sites. Therefore, in this material, the strong adsorption mechanism is mainly reductive complexation. Moreover, the effects of real water quality, anions, cations and fulvic acid on the adsorption behavior of Cr(VI) onto the NSC-450 were further investigated. The results demonstrate that the chromium removal rate remains above 82% even in actual electroplating wastewater, suggesting NSC-450 has great practical application prospect. This work offered a feasible method for high-value utilization of sludge, but also provided a novel perspective for the future design of heteroatom-doped carbon materials for promoting to eliminate hexavalent chromium from water environment.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Huiqin Gao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yiwei Sun
- China-Singapore International Joint Research Institute (CSIRI), Guangzhou 510006, China
| | - Yujia Xiang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xiangjing Liang
- Guangzhou Haitao Environmental Protection Technology Company Limited, Guangzhou, Guangdong 511340, China
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, Surganova St., 9/1, 220072 Minsk, Belarus
| | - Xiaoqin Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zhang Lin
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
7
|
Chen W, He D, Huang J, Zhu K, Lei L, He H, Ai Y. One-step synthesis of novel Fe/Fe3O4 embedded in N-doped graphite-like carbon nanosheets with the entangled CNTs to activate peroxymonosulfate for bisphenol a degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Xu W, Liu X, Cai J, Xue T, Tang K. Synthesis of reusable cyclodextrin polymers for removal of naphthol and naphthylamine from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22106-22121. [PMID: 34778912 DOI: 10.1007/s11356-021-17234-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
As one group of important naphthalene derivatives, naphthol and naphthylamine are diffusely employed as dye intermediates. The presence of naphthol and naphthylamine in water systems may pose risks to the environment and public health due to their carcinogenicity. In this study, four mesoporous polymers prepared by β-cyclodextrin derivatives and tetrafluoroterephthalonitrile were obtained and applied to adsorbing 1-naphthylamine, 2-naphthylamine, 1-naphthol, and 2-naphthol from water. The impact of adsorption time, initial concentration of naphthol and naphthylamine, and temperature on the adsorption efficiency of the four polymers were explored separately. The four polymers present fast adsorption kinetics toward naphthol and naphthylamine, attaining 93 ~ 100% of adsorption equilibrium uptake for 1-naphthol, 1-naphthylamine, 2-naphthylamine in 15 min, and 87 ~ 90% of equilibrium uptake for 2-naphthol in 15 min. The kinetics could be depicted well by the pseudo-second-order kinetic model. The adsorption isotherms of the four polymers toward naphthol and naphthylamine accord with the Redlich-Peterson or Sips model. The maximum adsorption capacities of 1-naphthylamine, 2-naphthylamine, 1-naphthol, and 2-naphthol are 189.9 mg/g, 82.8 mg/g, 137.7 mg/g, and 88.7 mg/g, respectively. The adsorption ratio increases fast with reducing the initial concentration of naphthol and naphthylamine, and the adsorption ratio of naphthol and naphthylamine in 5 mg/L can achieve over 95% in 25 °C. In addition, the four polymers can be effortlessly regenerated by a gentle and simple washing procedure with little reduction in performance. The adsorption performance of the four polymers toward the four naphthalene derivatives can be improved by increasing the adsorption temperature. In conclusion, the prepared β-cyclodextrin polymers exhibit rapid water treatment in removing the four low-concentration naphthalene derivatives with convenient regeneration and good reusability.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Xiang Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Jianzhe Cai
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Tiemeng Xue
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China.
| |
Collapse
|
9
|
He D, Zhu K, Huang J, Shen Y, Lei L, He H, Chen W. N, S co-doped magnetic mesoporous carbon nanosheets for activating peroxymonosulfate to rapidly degrade tetracycline: Synergistic effect and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127569. [PMID: 34741936 DOI: 10.1016/j.jhazmat.2021.127569] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Heteroatoms doped carbon materials are widely used in the advanced oxidation process (AOPs) to remove organic pollutants in water due to the synergies effect between different heteroatoms. In this study, a novel kind of N, S co-doped magnetic mesoporous carbon nanosheets (Fe@NS-C) was prepared by simple one-step pyrolysis. Further, the influence of doping amount of S (L-methionine) and N (melamine) on catalytic activity was studied, the optimized sample Fe@NS-C-2-12/PMS showed a satisfying degradation ( 91.07%) for high concentrations of tetracycline (80 mg/L TC) in 10 min, which was attributed to the proper ratio of S content to N content (S(at.%)/ N(at.%)= 0.2097) in the sample could better play its synergistic effect by XPS analysis. The Fe@NS-C-2-12/ PMS system also exhibited satisfactory degradation effects in a wide pH range (3-10) and the existence of inorganic ions and humic acid. Then, the degradation mechanisms were mainly through the non-radical pathway (1O2 and electron transfer) and the major active sites were pyridinic N compared to thiophene S, CO, and Fe-Nx. This study could inspire the design of high-performance active and low-cost heteroatomic doping nano-magnetic catalysts for PMS-based waste treatment.
Collapse
Affiliation(s)
- Dongdong He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Ke Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Yaqian Shen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Lele Lei
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Hongmei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Wenjin Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, PR China.
| |
Collapse
|
10
|
Li C, Zhu Y, Zhang T, Nie Y, Shi W, Ai S. Iron nanoparticles supported on N-doped carbon foam with honeycomb microstructure: An efficient potassium peroxymonosulfate activator for the degradation of fluoranthene in water and soil. CHEMOSPHERE 2022; 286:131603. [PMID: 34325259 DOI: 10.1016/j.chemosphere.2021.131603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
A promising technology was developed for the remediation of fluoranthene (FLT) contaminated water and soil. Specifically, iron nanoparticles supported on N-doped carbon foam (Fe@CF-N) was synthesized by in-situ impregnation and a unique calcination process using pine cone as the precursor. The obtained Fe@CF-N was used as an activator of potassium peroxymonosulfate (PMS) to degrade FLT in water and soil. According to experimental results, Fe@CF-N had a three-dimensional network structure with a large specific surface area of 249.0 m2 g-1, displaying excellent catalytic performance. The maximum removal efficiency of FLT in water and soil reached 81.83% and 78.12% within 180 min, respectively. After four consecutive degradation cycles, the removal efficiency of FLT in water was still 55%. Electron spin resonance (ESR) measurements showed that hydroxyl radicals (·OH), sulfate radical (SO4-·) and 1O2 were the major reactive oxygen species (ROS). A series of low molecular weight intermediates were generated during the FLT degradation progress, such as C6H6O3 and C3H8O2. The effect of Fe@CF-N/PMS system on the phytotoxicity was evaluated via bioassay based on peas. The results indicated that seed germination rate and root shoot elongation of remediated soil by Fe@CF-N/PMS system were not significantly different from those of noncontaminated soil. This study provided a cost-effective remediation option for PAHs contaminated water and soil.
Collapse
Affiliation(s)
- Changyu Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Yifan Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Ting Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Yongxin Nie
- College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Weijie Shi
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| |
Collapse
|
11
|
Electrochemical/Peroxymonosulfate/NrGO-MnFe2O4 for Advanced Treatment of Landfill Leachate Nanofiltration Concentrate. WATER 2021. [DOI: 10.3390/w13040413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A simple one-pot method was used to successfully embed manganese ferrite (MnFe2O4) nanoparticles on the nitrogen-doped reduced graphene oxide matrix (NrGO), which was used to activate peroxymonosulfate to treat the landfill leachate nanofiltration concentration (LLNC) with electrochemical enhancement. NrGO-MnFe2O4 and rGO-MnFe2O4 were characterized by various means. This indicates that nitrogen-doped could induce more graphene oxide (GO) spall and reduction to produce more active centers, and was favorable for uniformly loading MnFe2O4 particles. The comparison between electrochemical/peroxymonosulfate/NrGO-MnFe2O4 (EC/PMS/NrGO-MnFe2O4) system and different catalytic systems shows that electrochemical reaction, NrGO and MnFe2O4 can produce synergies, and the chemical oxygen demand (COD) removal rate of LLNC can reach 72.89% under the optimal conditions. The three-dimensional (3D-EEM) fluorescence spectrum shows that the system has a strong treatment effect on the macromolecules with intense fluorescence emission in LLNC, such as humic acid, and degrades into substances with weak or no fluorescence characteristics. Gas chromatography-mass spectrometry (GC-MS) indicates that the complex structure of refractory organic compounds can be simplified, while the simple small molecular organic compounds can be directly mineralized. The mechanism of catalytic degradation of the system was preliminarily discussed by the free radical quenching experiment. Therefore, the EC/PMS/NrGO-MnFe2O4 system has significant application potential in the treatment of refractory wastewater.
Collapse
|