1
|
Sahu N, Maldhure A, Labhasetwar P. Management of cyanobacteria and cyanotoxins in drinking water: A comprehensive review on occurrence, toxicity, challenges and treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179260. [PMID: 40203743 DOI: 10.1016/j.scitotenv.2025.179260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
The synergistic effects of increased anthropogenic activities and climate change have intensified the frequency of cyanobacterial blooms in surface water bodies. These blooms pose significant health risks to humans and animals due to the release of cyanotoxins into the water. Conventional drinking water treatment plants (DWTPs) are often ineffective in removing cyanobacterial cells due to challenges such as electrostatic repulsion, hydrophilicity, and buoyancy. While excessive pre-oxidation can remove cyanobacteria, it may cause cell lysis, increase cyanotoxin concentration, and surpass various regulatory guidelines, posing additional risks of forming disinfection by-products (DBPs). Moderate pre-oxidation presents a viable alternative by effectively removing intact cyanobacterial cells. This review comprehensively analyses the occurrence, toxicity, associated challenges faced by DWTPs, and treatment approaches for cyanobacteria. Various moderate pre-oxidation processes for enhancing coagulation efficiency while preserving cell integrity are systematically summarized and critically discussed. The review also highlights the importance of holistic multi-barrier approaches, including prevention, corrections measures and water intake management for managing cyanobacterial contamination in drinking water treatment. It underscores the need for intensive research to develop affordable and effective solutions to ensure sustainable and safe drinking water provision.
Collapse
Affiliation(s)
- Nidhi Sahu
- Water Recourse Sub-vertical, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Atul Maldhure
- Water Recourse Sub-vertical, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research, Ghaziabad, India.
| | - Pawan Labhasetwar
- Water Recourse Sub-vertical, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| |
Collapse
|
2
|
Wang Z, Xiong J, Zhou J, Han Z. Algae removal and degradation of microcystins by UV-C system: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70049. [PMID: 40088081 DOI: 10.1002/wer.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 03/17/2025]
Abstract
Harmful algal blooms (HABs), driven by eutrophication, are a growing ecological threat, compromising water quality and ecosystem health through the release of toxic microcystins (MCs). These toxins pose significant risks to both aquatic life and human health. Among the emerging solutions, UV-C technology has gained attention for its efficiency in inhibiting algal growth and degrading MCs, offering a cost-effective and environmentally friendly approach with minimal secondary pollution. However, existing studies often overlook key aspects, including the variability in algae sensitivity to UV-C wavelengths, the stability of treatment across diverse aquatic conditions, and the toxicity of degradation byproducts. This review highlights the mechanisms underlying UV-C-based algae removal, explores its potential limitation, such as algal resistance, and compares its efficacy with other remediation methods. Notably, the lack of comprehensive research on wavelength-specific sensitivity and real-world application efficacy represents a significant knowledge gap. Further investigation into these areas is essential to optimize UV-C technology for mitigating HABs and improving water safety in eutrophic environments. PRACTITIONER POINTS: The choice of UV band should be adjusted to the algae species. The UV-C system, with limited studies and applications in natural water bodies, demonstrates instability. Combining UV-C with other technologies substantially enhances the efficiency of algal control. Future research should emphasize strategies to prevent the rapid release of microcystins (MCs) from this system due to cell lysis and extracellular release within a short time frame.
Collapse
Affiliation(s)
- Zhenyao Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Zhaolong Han
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
3
|
Al Haffar M, Fajloun Z, Azar S, Sabatier JM, Abi Khattar Z. Lesser-Known Cyanotoxins: A Comprehensive Review of Their Health and Environmental Impacts. Toxins (Basel) 2024; 16:551. [PMID: 39728809 PMCID: PMC11680425 DOI: 10.3390/toxins16120551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by Lyngbya and Nostoc, remain underexplored. These lesser-known toxins can cause various health issues in humans, including neurotoxicity, hepatotoxicity, and dermatotoxicity, each through distinct mechanisms. Moreover, recent studies have shown that cyanobacteria can be aerosolized and transmitted through the air over long distances, providing an additional route for human exposure to their harmful effects. However, it remains an area that requires much more investigation to accurately assess the health risks and develop appropriate public health guidelines. In addition to direct exposure to toxins, cyanobacteria can lead to harmful algal blooms, which pose further risks to human and wildlife health, and are a global concern. There is limited knowledge about these lesser-known cyanotoxins, highlighting the need for further research to understand their clinical manifestations and improve society's preparedness for the associated health risks. This work aims to review the existing literature on these underexplored cyanotoxins, which are associated with human intoxication, elucidate their clinical relevance, address significant challenges in cyanobacterial research, and provide guidance on mitigating their adverse effects.
Collapse
Affiliation(s)
- Molham Al Haffar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon; (M.A.H.); (S.A.)
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon;
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon; (M.A.H.); (S.A.)
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon; (M.A.H.); (S.A.)
| |
Collapse
|
4
|
Zhu Y, Ding J, Wang X, Wang X, Cao H, Teng F, Yao S, Lin Z, Jiang Y, Tao Y. Optimizing UVA and UVC synergy for effective control of harmful cyanobacterial blooms. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100455. [PMID: 39114557 PMCID: PMC11305005 DOI: 10.1016/j.ese.2024.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
Harmful cyanobacterial blooms (HCBs) pose a global ecological threat. Ultraviolet C (UVC) irradiation at 254 nm is a promising method for controlling cyanobacterial proliferation, but the growth suppression is temporary. Resuscitation remains a challenge with UVC application, necessitating alternative strategies for lethal effects. Here, we show synergistic inhibition of Microcystis aeruginosa using ultraviolet A (UVA) pre-irradiation before UVC. We find that low-dosage UVA pre-irradiation (1.5 J cm-2) combined with UVC (0.085 J cm-2) reduces 85% more cell densities compared to UVC alone (0.085 J cm-2) and triggers mazEF-mediated regulated cell death (RCD), which led to cell lysis, while high-dosage UVA pre-irradiations (7.5 and 14.7 J cm-2) increase cell densities by 75-155%. Our oxygen evolution tests and transcriptomic analysis indicate that UVA pre-irradiation damages photosystem I (PSI) and, when combined with UVC-induced PSII damage, synergistically inhibits photosynthesis. However, higher UVA dosages activate the SOS response, facilitating the repair of UVC-induced DNA damage. This study highlights the impact of UVA pre-irradiation on UVC suppression of cyanobacteria and proposes a practical strategy for improved HCBs control.
Collapse
Affiliation(s)
- Yinjie Zhu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| | - Jian Ding
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xuejian Wang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215300, China
| | - Fei Teng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| | - Shishi Yao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| | - Zhiru Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| | - Yuelu Jiang
- Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
- Tsinghua University-Kunming Joint Research Center for Dianchi Plateau Lake, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Tanzooei AM, Karimi J, Taghvaei H. Exploring non-thermal plasma technology for microalgae removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117127. [PMID: 39383825 DOI: 10.1016/j.ecoenv.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
The global population and economic development surge has substantially increased water demand, resulting in heightened sewage and pollutant generation, posing environmental hazards. Addressing this challenge necessitates the implementation of efficient and cost-effective water reclamation methods. Non-thermal plasma technology (NTP) has emerged as a promising solution, garnering attention for its superior efficiency compared to alternatives. While existing studies have predominantly focused on energy efficiency and pollutant removal, limited research has delved into the biological removal aspect, particularly concerning algae. This study utilized a dielectric barrier plasma diffuser to eliminate Spirulina microalgae (Spirulina platensis) from wastewater solutions, demonstrating higher algae removal and superior mass transfer compared to alternative plasma methods. The effect of sample volume, input voltage and power, flow rate, and initial solution concentration on the algae removal was investigated. Investigation of operational parameters revealed the best condition resulting in a 98 % removal rate and 20 g/kWh energy efficiency. The best conditions for the removal of Spirulina microalgae were considered in a sample volume of 50 mL, a voltage of 7.6 kV, a flow rate of 700 mL/min, and an initial solution concentration of 1280 mg/liter. Scanning Electron Microscope (SEM) images illustrated the impact of active species on cell structure, leading to the destruction of spiral form and loss of reproductive ability. The study underscores the potential of NTP for efficient algae removal and identifies key active species involved in the process. The removal of Spirulina microalgae was attributed to a combination of singlet oxygen (1O2), hydroxyl radicals, and ozone.
Collapse
Affiliation(s)
| | - Javad Karimi
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, Iran.
| | - Hamed Taghvaei
- Department of Chemical Engineering, Shiraz University, Shiraz 71345, Iran.
| |
Collapse
|
6
|
Wang L, Al-Dhabi NA, Huang X, Luan Z, Tang W, Xu Z, Xu W. Suitability of inorganic coagulants for algae-laden water treatment: Trade-off between algae removal and cell viability, aggregate properties and coagulant residue. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134314. [PMID: 38640668 DOI: 10.1016/j.jhazmat.2024.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/13/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Inorganic coagulants could effectively precipitate algae cells but might increase the potential risks of cell damage and coagulant residue. This study was conducted to critically investigate the suitability of polyaluminum (PAC), FeCl3 and TiCl4 for algae-laden water treatment in terms of the trade-off between algal substance removal, cell viability, and coagulant residue. The results showed that an appropriate increase in coagulant dosage contributed to better coagulation performance but severe cell damage and a higher risk of intracellular organic matter (IOM) release. TiCl4 was the most destructive, resulting in 60.85% of the algal cells presenting membrane damage after coagulation. Intense hydrolysis reaction of Ti salts was favorable for the formation of larger and more elongated, dendritic structured flocs than Al and Fe coagulants. TiCl4 exhibited the lowest residue level and remained in the effluents mainly in colloidal form. The study also identified charge neutralization, chemisorption, enmeshment, and complexation as the dominant mechanisms for algae water coagulation by metal coagulants. Overall, this study provides the trade-off analyses between maximizing algae substance removal and minimizing potential damage to cell integrity and is practically valuable to develop the most suitable and feasible technique for algae-laden water treatment.
Collapse
Affiliation(s)
- Lili Wang
- School of Water Conservancy and Environment, University of Jinan, No. 336 Nanxinzhuang Western Road, Jinan 250022, Shandong, PR China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Science, Chinese Academy of Science, No. 18 Shuangqing Road, Beijing 100085, PR China
| | - Zhiyuan Luan
- Jinan Environmental Research Institute, 25th Floor, Xinsheng Building, No. 1299 Xinluo Street, Jinan 250000, Shandong, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, No. 8 Lushan South Road, Changsha 410082, Hunan, PR China
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, No. 336 Nanxinzhuang Western Road, Jinan 250022, Shandong, PR China.
| | - Weiying Xu
- School of Water Conservancy and Environment, University of Jinan, No. 336 Nanxinzhuang Western Road, Jinan 250022, Shandong, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Science, Chinese Academy of Science, No. 18 Shuangqing Road, Beijing 100085, PR China.
| |
Collapse
|
7
|
Peng Q, Gong X, Jiang R, Yang N, Chen R, Dai B, Wang R. Performance and characterization of snail adhesive mucus as a bioflocculant against toxic Microcystis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115921. [PMID: 38183749 DOI: 10.1016/j.ecoenv.2023.115921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Toxic Microcystis blooms are widespread in aquatic bodies, posing major threats to aquatic and human life. Recently, bioflocculants have attracted considerable attention as a promising biomaterial for Microcystis management. In search of a novel organism that can produce an efficient bioflocculant for controlling harmful algae sustainably, the native gastropod Cipangopaludina chinensis was co-cultured continuously with toxic Microcystis under different initial algal cell densities. The bioflocculation effect of snail mucus on toxic Microcystis, microcystin removal, and toxin accumulation in snails was investigated. In addition, the properties of the adhesive mucus were characterized using microscopic, X-ray diffraction, infrared spectroscopy, and polysaccharide and proteome analyses. Microcystis cells were captured and flocculated by the snail mucus; removal efficiencies of up to 89.9% and 84.8% were achieved for microalgae and microcystin-leucine arginine (MC-LR), respectively, when co-cultured with C. chinensis for only one day. After nine-day exposure, less than 5.49 µg/kg DW microcystins accumulated in the snails, indicating safety for human consumption. The snail mucus contained 104.3 µg/mg protein and 72.7 µg/mg carbohydrate, which provide several functional groups beneficial for Microcystis bioflocculation. The main monosaccharide subunits of polysaccharides are galactose, galactosamine, glucosamine, fucose, glucose, and mannose. Most of them are key components of polysaccharides in many bioflocculants. Gene Ontology analysis indicated the protein enrichment in binding processes and catalytic activity, which may account for Microcystis bioflocculation via protein binding or enzymatic reactions. The findings indicate that native C. chinensis secretes adhesive mucus that can act as bioflocculant for toxic Microcystis from ambient water and can be an effective and eco-friendly tool for Microcystis suppression.
Collapse
Affiliation(s)
- Qin Peng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Xinyue Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Ruixin Jiang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Na Yang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Ruiting Chen
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Binglin Dai
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Rui Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, China; College of Life Science, Sichuan Normal University, Chengdu 610041, China.
| |
Collapse
|
8
|
Wang L, Zhang X, Zhang X, Hu X, Yang J, Zhang H. Mechanism analysis of a novel natural cationic modified dextran flocculant and its application in the treatment of blue algal blooms. Int J Biol Macromol 2024; 254:128002. [PMID: 37949280 DOI: 10.1016/j.ijbiomac.2023.128002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Blue algae, a type of harmful microalgae, are responsible for causing harmful algal blooms that result in severe environmental issues. To address this problem, a biopolysaccharide-based flocculant was developed for treating blue algae blooms. This flocculant was created by modifying high molecular weight dextran using the natural cationic monomer betaine (Dex-Bet), making it environmentally friendly. Various techniques were used to characterize the prepared Dex-Bet flocculant, including infrared spectroscopy (FTIR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The effectiveness of the Dex-Bet flocculant was evaluated using kaolin-simulated wastewater. The results showed that the treated supernatant had a transmittance of up to 98.25 %. Zeta potential analysis revealed that the main mechanisms of flocculation were charge neutralization, charge patching, and adsorption bridging. The application of Dex-Bet in treating blue-green algae resulted in a maximum removal rate of 98.2 %. This study provides a potential flocculant for blue algae bloom treatment.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China
| | - Xinyu Zhang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China
| | - Xin Zhang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China
| | - Xueqin Hu
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China
| | - Jingwen Yang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China.
| | - Hongbin Zhang
- School of Food and biological engineering, HeFei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
9
|
Dai Q, Shan J, Deng X, Yang H, Chen C, Zhao Y. The characteristics of H6 against Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7702-7711. [PMID: 38170350 DOI: 10.1007/s11356-023-31616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Algal bloom caused by Microcystis aeruginosa has always been the focus of attention; microbial algal control has the advantages of significant effect, low investment cost, and environmental friendliness; the use of microbial technology to inhibit the bloom has a broad prospect for development. In this study, a strain of Enterobacterium algicidal bacteria screened from a river was used to study the algicidal characteristics against Microcystis aeruginosa using SEM, 3-D EEM and zeta potential. The results showed that the optimal dosage (v/v) of the strain was 5% and the removal rate of algal cells was 70% after 7 days. When the algal density was OD680nm = 0.3, the removal rate of algal cells reached 83% after 7 days. In the pH range of 5 ~ 11, the removal rate of algal cells was 70 ~ 80% after 7 days. Algicidal bacteria H6 is mainly indirect algae lysis and is supplemented by direct algae lysis. Algicidal bacteria H6 removes algicidal substances by secreting high temperature resistant algicidal substances and algicidal products are humic acids. Algicidal bacterium H6 was a strain of Enterobacterium with good algicidal effect in a wide pH range, which enriched the bacterial resources in the control of cyanobacteria bloom in water. The high temperature resistance of the algae-soluble substance secreted by the algae-soluble substance provided convenience for the subsequent preparation and application of bacterial powder.
Collapse
Affiliation(s)
- Qunwei Dai
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Jing Shan
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xinshuang Deng
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Huixian Yang
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Chuntan Chen
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yulian Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
10
|
Zheng N, Lin X, Huang P, Liu Y, Bartlam M, Wang Y. Tea polyphenols inhibit blooms caused by eukaryotic and prokaryotic algae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115531. [PMID: 37778238 DOI: 10.1016/j.ecoenv.2023.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
With changes in global climate, blooms are becoming more frequent and difficult to control. Therefore, the selection of algal suppressor agents with effective inhibition and environmental safety is of paramount importance. One of the main treatment strategies is to inhibit the release of harmful algal toxins. Tea polyphenols (TP) are natural products that have been widely used in medicine, the environment, and other fields due to their antibacterial and antioxidant properties. To investigate their potential application in the treatment of algal blooms, TP were applied to three different microalgae. TP exhibited strong inhibitory effects towards all three microalgae. They stimulate the accumulation of ROS in algal cells, leading to lipid peroxidation and subsequent damage to the cell membrane, resulting in the rupture and necrosis of Cyclotella sp. and Chlorella vulgaris cells. Remarkably, it was observed that lower concentrations of TP exhibited the ability to induce apoptosis in M. aeruginosa cells without causing any structural damage. This outcome is particularly significant as it reduces the potential risk of microcystin release resulting from cell rupture. Overall, blooms dominated by different algae can be treated by adjusting the concentration of TP, a new algal suppressor, indicating strong potential treatment applications.
Collapse
Affiliation(s)
- Ningning Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaowen Lin
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pan Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin 300350, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Melo Rocha MA, Clemente A, Amorim Santos A, da Silva Melo J, J Pestana C, A Lawton L, Capelo-Neto J. In situ H 2O 2 treatment of blue-green algae contaminated reservoirs causes significant improvement in drinking water treatability. CHEMOSPHERE 2023; 333:138895. [PMID: 37187381 DOI: 10.1016/j.chemosphere.2023.138895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The evaluation of water quality improvement brought about by in situ treatment of eutrophic water bodies, especially those used for human supply is a challenging task since each water system responds differently. To overcome this challenge, we applied exploratory factor analysis (EFA) to understand the effects of using hydrogen peroxide (H2O2) on eutrophic water used as a drinking water supply. This analysis was used to identify the main factors that described the water treatability after exposing blue-green algae (cyanobacteria) contaminated raw water to H2O2 at both 5 and 10 mg L-1. Cyanobacterial chlorophyll-a was undetectable following the application of both concentrations of H2O2 after four days, while not causing relevant changes to green algae and diatoms chlorophyll-a concentrations. EFA demonstrated that the main factors affected by both H2O2 concentrations were turbidity, pH, and cyanobacterial chlorophyll-a concentration, which are important variables for a drinking water treatment plant. The H2O2 caused significant improvement in water treatability by decreasing those three variables. Finally, the use of EFA was demonstrated to be a promising tool in identifying which limnological variables are most relevant concerning the efficacy of water treatment, which in turn can make water quality monitoring more efficient and less costly.
Collapse
Affiliation(s)
| | - Allan Clemente
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Allan Amorim Santos
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jessica da Silva Melo
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
12
|
Hou C, Cheng X, Zhang X, Zhu X, Xu J, Luo X, Wu D, Liang H. Effect of ferrous-activated calcium peroxide oxidation on forward osmosis treatment of algae-laden water: Membrane fouling mitigation and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160100. [PMID: 36370779 DOI: 10.1016/j.scitotenv.2022.160100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Forward osmosis (FO) is a high-efficiency and low-energy consumption way for algae-laden water treatment, whereas membrane fouling is still an unavoidable problem in its practical application. In this work, a strategy of ferrous-activated calcium peroxide (Fe(II)/CaO2) was proposed to control FO membrane fouling in the purification of algae-laden water. With the treatment of Fe(II)/CaO2, the aggregation of algal contaminants was promoted, the cell viability and integrity were well preserved, and the fluorescent organics were efficiently removed. With respect to the fouling of FO membrane, the flux decline was generally alleviated, and the flux recovery was promoted to varying degrees under different process conditions. It could be revealed through the extended Derjaguin-Landau-Verwey-Overbeek theory that the adhesion of contaminants and membrane surfaces was reduced by Fe(II)/CaO2 treatment. The interface morphologies and functional groups of membrane verified that Fe(II)/CaO2 could mitigate the fouling by reducing the amount of algal contaminants adhering to the FO membrane. The co-coagulation of in-situ Fe(III) together with Ca(OH)2, as well as the oxidation of •OH were the main mechanisms for fouling mitigation. In sum, the Fe(II)/CaO2 process could effectively improve the efficiency of FO for algae-laden water treatment, and has broad application prospects.
Collapse
Affiliation(s)
- Chengsi Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Xinyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
13
|
Zhang X, Xu W, Ren P, Li W, Yang X, Zhou J, Li J, Li Z, Wang D. Effective removal of diatoms (Synedra sp.) by pilot-scale UV/chlorine-flocculation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Du X, Zhi X, Li B, Wang Z, Luo Y, Qu F. Boron doped diamond electro-oxidation coupled with ultrafiltration for Microcystis aeruginosa and Microcystins removal in offshore environment: the significance of in-situ generation of chloramine and membrane fouling mitigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Song W, Li J, Zhang X, Fu C, Wang Z, Wang Z. Algae-containing raw water treatment and by-products control based on ClO 2 preoxidation-assisted coagulation/precipitation process. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3837-3851. [PMID: 34713368 DOI: 10.1007/s10653-021-01055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Eutrophication has become a great concern in recent years with the algae blooms in source water resulting in a serious threat posing to the safety of drinking water. Chlorine dioxide (ClO2) has been served as an alternative oxidant for preoxidation or disinfection during drinking water treatment process due to its high oxidation efficiency and low risk of organic by-products formation. However, the generation of inorganic by-products including chlorite (ClO2-) and chlorate (ClO3-) has become a potential problem when applied in drinking water treatment. In this study, ClO2 preoxidation-assisted coagulation/precipitation process was applied to improve the raw water quality, especially algae, turbidity, chemical oxygen demand (CODMn), and UV254, and explore the formation mechanisms of inorganic by-products. It was found that the polymeric aluminum chloride (PAC) and ClO2 have shown the best raw water treatment performance with the optimal dosage of 10 mg/L and 0.8 mg/L, respectively. Moreover, the initial pH also has exhibited a notable influence on pollutants treatment and by-products generation. Due to the adverse influence of algae and natural organic matters (NOM) and the generation of by-products, it was significant to investigate their inhibition effect on the water quality and the production of ClO2- and ClO3- in the ClO2 preoxidation-assisted coagulation/precipitation process. Moreover, it was applicable of this process to apply for the algae-containing raw water (calculated as Chl.a lower than 50 μg/L) treatment with the ClO2 dosage of less than 0.8 mg/L to achieve optimum treatment performance and minimum by-products generation.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Ji Li
- School of Civil and Environmental Engineering, Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Caixia Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhuoyue Wang
- School of Civil and Environmental Engineering, Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
16
|
Nie Y, Wang Z, Wang W, Zhou Z, Kong Y, Ma J. Bio-flocculation of Microcystis aeruginosa by using fungal pellets of Aspergillus oryzae: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129606. [PMID: 35863225 DOI: 10.1016/j.jhazmat.2022.129606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Algal blooms caused by eutrophication are global phenomena that seriously threaten the sustainable use of freshwater resources. Traditional water treatment chemicals often typically lead to high levels of residue and cause damage to the morphology of algal cells. This study investigated an eco-friendly fungal bio-flocculant, Aspergillus oryzae, to remove the representative microalgae (Microcystis aeruginosa). Furthermore, it explored crucial flocculation parameters, adsorption kinetics, and thermodynamics of microalgae using A. oryzae. Accordingly, a flocculation efficiency of >95% was achieved when the fungus was cultured for six days, flocculant dosage was 11 g/L, rotation speed was 100 rpm, temperature was 25 °C, flocculation time was 5 h, and pH ranged between 4.0 and 9.0. KEGG analysis based on the genomic data, and chemical composition analysis revealed that proteins and polysaccharides were the major components of metabolites. Zeta potential analysis, scanning electron microscopy, three-dimensional fluorescence, X-ray spectroscopy, and infrared spectroscopy, electrostatic attraction revealed that electrostatic attraction promoted the destabilization and aggregation of microalgae. Additionally, hyphal surface adsorption and chemisorption from extracellular proteins and exopolysaccharides aided in the removal of microalgae. Therefore, fungi-based bio-flocculants have the potential to remove microalgae in a simple, effective, and eco-friendly manner without the complex extraction of extracellular metabolites.
Collapse
Affiliation(s)
- Yong Nie
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Zimin Wang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhengyu Zhou
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Yanli Kong
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Jiangya Ma
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
| |
Collapse
|
17
|
Lv Z, Zhang H, Liang J, Zhao T, Xu Y, Lei Y. Microalgae removal technology for the cold source of nuclear power plant: A review. MARINE POLLUTION BULLETIN 2022; 183:114087. [PMID: 36084612 DOI: 10.1016/j.marpolbul.2022.114087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 07/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In the past three decades, nuclear energy has gained much attention as carbon-free electricity. Due to the supply of cooling water in nuclear power plant, large amount of waste heat will increase the water temperature, promote the microalgae and cyanobacteria propagation and increase the chance of red tide. Excess phytoplankton of cool source will result in abnormal operation of cooling system, even core overheating and nuclear leakage. Consequently, it is very important to remove microalgae and cyanobacteria from cold source of nuclear power plants. This review summarizes the formation mechanism and monitoring methods of red tide, compares the advantages and disadvantages of traditional microalgae removal technology including physical, chemical and biological methods. Furthermore, the improved electrochemical method and micro-nano bubble method are introduced in detail. Their combination is considered to be a low-cost, efficient and environmentally-friendly technology to prevent and control red tides for cold source of nuclear power plant.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Hong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China.
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China.
| | - Tianyu Zhao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Yuena Xu
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Yinyuan Lei
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; Institute of Power Source and Science, Hebei University of Technology, Tianjin 300130, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
18
|
Lin JL, Nugrayanti MS, Karangan A. Effect of Al hydrates on minimization of disinfection-by-products precursors by coagulation with intensified pre-oxidation towards cyanobacteria-laden water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152251. [PMID: 34896494 DOI: 10.1016/j.scitotenv.2021.152251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Pre-oxidation is warranted to improve cyanobacteria removal and minimize disinfection by-products (DBPs) precursors for subsequent coagulation with polyaluminum chloride (PACl) in drinking water treatment. However, the reduction in DBP precursors strongly depends on the Al hydrates for PACl coagulation. This study aimed to investigate the effects of intensified NaOCl and ClO2 pre-oxidation on the removal of Microcystis aeruginosa (MA) and the corresponding halogenated DBP precursors by PACl coagulation with different Al hydrates. Two PACl coagulants, namely PACl-W with 51% monomeric Al and PACl-H with 71% polymeric Al, were used for FlocCAM jar test. The results have shown that the reductions in MA cell and algogenic organic matter (AOM) are more pronounced by sweep flocculation in PACl-W coagulation coupled with NaOCl pre-oxidation. In contrast, ClO2 pre-oxidation with PACl-H coagulation outperforms the floc formation and the reduction in each fluorescent DOM substance, especially for humic acid-like (HAL) substances reduction in response to charge neutralization. Regardless of pre-oxidation approach, PACl-H coagulation exhibits a superior reduction in carbonaceous DBP formation potential (C-DBPFP) comparative PACl-W coagulation, especially for intensified pre-oxidation (Cl2:DOC = 3:1). Intensified NaOCl pre-oxidation is effective to enhance DBPFP reduction in a similar way to ClO2 oxidation by coagulation with both PACl coagulants. In addition, it clearly demonstrates that the halogenated DBP precursors are well-correlated with UV254 absorbance on the basis of principal component analysis (PCA) inference. It is concluded that intensified NaOCl pre-oxidation is an alternative approach to ClO2 pre-oxidation for the minimization of DBP precursors in oxidation-coagulation processes for cyanobacteria-laden water treatment.
Collapse
Affiliation(s)
- Jr-Lin Lin
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, ROC; Center for Environmental Risk Management, College of Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, ROC.
| | - Mega Sidhi Nugrayanti
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, ROC
| | - Arthur Karangan
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, ROC
| |
Collapse
|
19
|
Han C, Ren J, Wang B, Wang Z, Yin H, Ke F, Xu D, Zhang L, Si X, Shen Q. Ignored effects of phosphite (P +III) on the growth responses of three typical algae species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118672. [PMID: 34896401 DOI: 10.1016/j.envpol.2021.118672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Nowadays, the ubiquitous distribution and increasing abundance of P+III in waterbodies have caused serious concerns regarding its bioavailability and potential toxicity. However, our knowledge on these issues is relatively limited. We addressed previously unknown effects of P+III on three dominate algae species i.e. Microcystic aeruginosa (M. aeruginosa), Chlorella pyrenoidesa (C. pyrenoidesa) and Cyclotella. sp in eutrophic waterbodies in China. Remarkable declines in biomass, specific growth rate and Chl-a of algae cells treated with 0.01-0.7 mg/L P+III as sole or an alternative P source were observed, indicating P+III had an inhibitory effect on the algal growth. Besides, the intracellular enzyme activities e.g superoxide dismutase (SOD) and malondialdehyde (MDA) were significantly increased with P+III stress. M. aeruginosa and Cyclotella. sp cells seemed to be more sensitive to P+III toxicity than C. pyrenoidesa since cell membrane suffered more serious stress and destruction. These findings combined, it confirmed P+III could not be utilized as bioavailable P, but had certain toxicity to the tested algae. It indicated that the increased P+III abundance in eutrophic waterbodies would accelerate the algal cell death, which could have a positive effect against algal blooms. Our results provide new insights into assessing the ecological risks of P+III in aquatic environments.
Collapse
Affiliation(s)
- Chao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jinghua Ren
- Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (arable), Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing, 210018, China
| | - Baoying Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Zhaode Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fan Ke
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Di Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoxia Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Qiushi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, PR China
| |
Collapse
|
20
|
Qi J, Ma B, Miao S, Liu R, Hu C, Qu J. Pre-oxidation enhanced cyanobacteria removal in drinking water treatment: A review. J Environ Sci (China) 2021; 110:160-168. [PMID: 34593187 DOI: 10.1016/j.jes.2021.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial bloom has many adverse effects on source water quality and drinking water production. The traditional water treatment process can hardly achieve satisfactory removal of algae cells. This review examines the impact of pre-oxidation on the removal of cyanobacteria by solid-liquid separation processes. It was reported that the introduction of chemical oxidants such as chlorine, potassium permanganate, and ozone in algae-laden water pretreatment could improve algae removal by the subsequent solid-liquid separation processes. However, over dosed oxidants can result in more serious water quality risks due to significant algae cell lysis and undesirable intracellular organic matter release. It was suggested that moderate pre-oxidation may enhance the removal of cyanobacteria without damaging algae cells. In this article, effects of moderate pretreatment on the solid-liquid separation processes (sedimentation, dissolved air flotation, and membrane filtration) are reviewed.
Collapse
Affiliation(s)
- Jing Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyu Miao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Li D, Kang X, Chu L, Wang Y, Song X, Zhao X, Cao X. Algicidal mechanism of Raoultella ornithinolytica against Microcystis aeruginosa: Antioxidant response, photosynthetic system damage and microcystin degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117644. [PMID: 34426391 DOI: 10.1016/j.envpol.2021.117644] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Water eutrophication caused by harmful algal blooms (HABs) occurs worldwide. It causes huge economic losses and has serious and potentially life-threatening effects on human health. In this study, the bacterium Raoultella sp. S1 with high algicidal efficiency against the harmful algae Microcystis aeruginosa was isolated from eutrophic water. The results showed that Raoultella sp. S1 initially flocculated the algae, causing the cells to sediment within 180 min and then secreted soluble algicidal substances that killed the algal cells completely within 72 h. The algicidal activity was stable across the temperature range -85.0 to 85.0 °C and across the pH range 3.00-11.00. Scanning electron microscopy (SEM) revealed the crumpling and fragmentation of cells algal cells during the flocculation and lysis stages. The antioxidant system was activated under conditions of oxidative stress, causing the increased antioxidant enzymes activities. Meanwhile, the oxidative stress response triggered by the algicidal substances markedly increased the malondialdehyde (MDA) and glutathione (GSH) content. We investigated the content of Chl-a and the relative expression levels of genes related to photosynthesis, verifying that the algicidal compounds attack the photosynthetic system by degrading the photosynthetic pigment and inhibiting the expression of key genes. Also, the results of photosynthetic efficiency and relative electric transport rate confirmed that the photosynthetic system in algal cells was severely damaged within 24 h. The algicidal effect of Raoultella sp. S1 against Microcystis aeruginosa was evaluated by analyzing the physiological response and photosynthetic system impairment of the algal cells. The concentration of microcystin-LR (MC-LR) slightly increased during the process of algal cells ruptured, and then decreased below its initial level due to the biodegradation of Raoultella sp. S1. To further investigate the algicidal mechanism of Raoultella sp. S1, the main components in the cell-free supernatant was analyzed by UHPLC-TOF-MS. Several low-molecular-weight organic acids might be responsible for the algicidal activity of Raoultella sp. S1. It is concluded that Raoultella sp. S1 has the potential to control Microcystis aeruginosa blooms.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Kang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Linglong Chu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
22
|
Pal P, Corpuz AG, Hasan SW, Sillanpää M, Banat F. Microalgae harvesting using colloidal gas aphrons generated from single and mixed surfactants. CHEMOSPHERE 2021; 273:128568. [PMID: 33069437 DOI: 10.1016/j.chemosphere.2020.128568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Harmful algal blooms (HABs) caused by microalgae are becoming increasingly common and pose serious threats to human health, aquaculture, and marine environments and, therefore, their removal is becoming essential. Colloidal gas aphrons (CGAs), a recent technology adapted in flotation, showed promise in removing several contaminants from aqueous solutions. This study aimed to investigate the potency of CGAs in removing several microalgae strains (Spirulina platensis, Nannochloropsis oculata, and Chlorella vulgaris) from aqueous solutions. Surfactants, including cationic hexadecyl trimethyl ammonium bromide (HTAB), anionic sodium dodecylbenzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), and their mixes, were used to prepare stable CGAs. The effect of different environmental parameters like algae concentration, pH, and salinity, on removing Spirulina platensis was thoroughly investigated. Operating conditions, including surfactant type, flotation time, flowrate, and solution temperature, were optimized. At pH 5 and 50 °C, Spirulina platensis, Chlorella vulgaris, and mixed microalgae were fully removed using CGAs produced from cationic HTAB surfactant. About 95% removal of Nannochloropsis oculata was achieved using mixed surfactant CGAs. The results obtained from this work demonstrated the promising potential of CGAs produced from both single and mixed surfactants in harvesting various microalgae from aqueous media.
Collapse
Affiliation(s)
- Priyabrata Pal
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box: 127788, United Arab Emirates.
| | - Aiza Gay Corpuz
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box: 127788, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box: 127788, United Arab Emirates
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box: 127788, United Arab Emirates.
| |
Collapse
|