1
|
Wang J, Li D, Zhao P, Zhang Z, Wang J, Shan S, Li S, Xu D, Yu H, Ma Q. Deciphering the treatment performance, microbial community responses, and behavior of antibiotic resistance genes in anaerobic sequencing batch reactors under graphene exposure. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1157-1168. [PMID: 40160148 DOI: 10.1039/d4em00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Graphene has garnered significant attention due to its unique and remarkable properties. The widespread application of graphene materials in numerous fields inevitably leads to their release into the environment. This study examines the long-term impacts of graphene on anaerobic sequencing batch reactors. The low-concentration graphene (5 mg L-1) exhibited a significant inhibitory effect on the removal of chemical oxygen demand, while the high-concentration group (100 mg L-1) was less affected. The transmission electron microscopy and Raman spectroscopy results demonstrated that the anaerobic sludge could attack graphene materials, and cell viability tests showed that high concentrations of graphene were more conducive to microbial attachment. High-throughput sequencing revealed significant alterations in the microbial community structure under graphene pressure. Methanobacterium and Actinomyces gradually became the dominant genera in the high-concentration group. Network analysis showed that graphene increased the complexity and interaction of microbial communities. Additionally, high-throughput qPCR analysis demonstrated that graphene influenced the dynamics of antibiotic resistance genes, with most exhibiting increased abundance over time, especially in the low-concentration group. Consequently, when considering the application of graphene in wastewater treatment, it is crucial to evaluate potential risks, including its effects on system performance and the likelihood of antibiotic resistance gene enrichment.
Collapse
Affiliation(s)
- Jingwei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Da Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Pan Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zi Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Jiaxin Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Shuang Shan
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Dan Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Hang Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Qiao Ma
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
2
|
Chen A, Wang B, Feng Q, Wang R. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117019. [PMID: 39317077 DOI: 10.1016/j.ecoenv.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.
Collapse
Affiliation(s)
- Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
3
|
Simeonova DD, Pollmann K, Bianco A, Lièvremont D. Graphene oxide and bacteria interactions: what is known and what should we expect? mSphere 2024; 9:e0071523. [PMID: 38197645 PMCID: PMC10826346 DOI: 10.1128/msphere.00715-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Graphene oxide (GO) and graphene-based materials (GBMs) have gained over the last two decades considerable attention due to their intrinsic physicochemical properties and their applications. Besides, a lot of concern regarding the potential toxicity of GBMs has emerged. One of the aspects of concern is the interactions between GBMs and different environmental compartments, especially indigenous microbial and, in particular, bacterial communities. Recent research showed that GO and GBMs impacted bacterial pure culture or bacterial communities; therefore, these interactions have to be further studied to better understand and assess the fate of these materials in the environment. Here, we present our opinion and hypotheses related to possible degradation mechanisms of GO that can be used by environmental bacteria. This work is the first attempt to deduce and summarize plausible degradation pathways of GO, from structurally similar recalcitrant and toxic compounds, such as polyaromatic hydrocarbons.
Collapse
Affiliation(s)
- Diliana D. Simeonova
- The Stephan Angeloff Institute of Microbiology, BAS, Atelier Pasteur, Sofia, Bulgaria
| | - Katrin Pollmann
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Dresden, Germany
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, ISIS, University of Strasbourg, Strasbourg, France
| | - Didier Lièvremont
- Chemistry and Biochemistry of Bioactive Molecules, University of Strasbourg/CNRS, UMR 7177, Strasbourg Institute of Chemistry, Strasbourg, France
| |
Collapse
|
4
|
Takahashi S, Hori K. Long-term continuous degradation of carbon nanotubes by a bacteria-driven Fenton reaction. Front Microbiol 2023; 14:1298323. [PMID: 38098651 PMCID: PMC10720723 DOI: 10.3389/fmicb.2023.1298323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Very few bacteria are known that can degrade carbon nanotubes (CNTs), and the only known degradation mechanism is a Fenton reaction driven by Labrys sp. WJW with siderophores, which only occurs under iron-deficient conditions. No useful information is available on the degradation rates or long-term stability and continuity of the degradation reaction although several months or more are needed for CNT degradation. In this study, we investigated long-term continuous degradation of oxidized (carboxylated) single-walled CNTs (O-SWCNTs) using bacteria of the genus Shewanella. These bacteria are widely present in the environment and can drive the Fenton reaction by alternating anaerobic-aerobic growth conditions under more general environmental conditions. We first examined the effect of O-SWCNTs on the growth of S. oneidensis MR-1, and it was revealed that O-SWCNTs promote growth up to 30 μg/mL but inhibit growth at 40 μg/mL and above. Then, S. oneidensis MR-1 was subjected to incubation cycles consisting of 21-h anaerobic and 3-h aerobic periods in the presence of 30 μg/mL O-SWCNTs and 10 mM Fe(III) citrate. We determined key factors that help prolong the bacteria-driven Fenton reaction and finally achieved long-term continuous degradation of O-SWCNTs over 90 d. By maintaining a near neutral pH and replenishing Fe(III) citrate at 60 d, a degraded fraction of 56.3% was reached. S. oneidensis MR-1 produces Fe(II) from Fe(III) citrate, a final electron acceptor for anaerobic respiration during the anaerobic period. Then, ·OH is generated through the Fenton reaction by Fe(II) and H2O2 produced by MR-1 during the aerobic period. ·OH was responsible for O-SWCNT degradation, which was inhibited by scavengers of H2O2 and ·OH. Raman spectroscopy and X-ray photoelectron spectroscopy showed that the graphitic structure in O-SWCNTs was oxidized, and electron microscopy showed that long CNT fibers initially aggregated and became short and isolated during degradation. Since Shewanella spp. and iron are ubiquitous in the environment, this study suggests that a Fenton reaction driven by this genus is applicable to the degradation of CNTs under a wide range of conditions and will help researchers develop novel methods for waste treatment and environmental bioremediation against CNTs.
Collapse
Affiliation(s)
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Wang J, Shan S, Li D, Zhang Z, Ma Q. Long-term influence of chloroxylenol on anaerobic microbial community: Performance, microbial interaction, and antibiotic resistance gene behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165330. [PMID: 37419339 DOI: 10.1016/j.scitotenv.2023.165330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The use of antibacterial and disinfection products is increasing in recent years. Para-chloro-meta-xylenol (PCMX), a widely used antimicrobial agent, has been detected in various environments. Herein, the impacts of PCMX with long-term exposure on anaerobic sequencing batch reactors were investigated. The high concentration (50 mg/L, GH group) PCMX severely inhibited the nutrient removal process, and the low concentration group (0.5 mg/L, GL group) slightly affected the removal efficiency which was recovered after 120 days of adaptation compared to the control group (0 mg/L, GC group). Cell viability tests indicated that PCMX inactivated the microbes. A significant reduction in bacterial α-diversity was observed in the GH but not the GL group. The microbial communities were shifted upon PCMX exposure, among which Olsenella, Novosphingobium, and Saccharibacteria genera incertae Sedis became the predominant genera in the GH groups. Network analyses showed that PCMX significantly reduced the complexity and interactions of the microbial communities, consistent with the negative impacts on bioreactor performance. Real-time PCR analysis indicated that PCMX affected the behavior of antibiotic resistance genes (ARGs), and the relationship between ARGs and bacterial genera gradually became complicated after long-term exposure. Most detected ARGs decreased on Day 60 but increased on Day 120 especially in the GL group, implying the potential risk of environment-relevant concentration of PCMX in the ecosystems. This study provides new insights into the understanding of the impacts and risks of PCMX on wastewater treatment processes.
Collapse
Affiliation(s)
- Jingwei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shuang Shan
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Da Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
6
|
Metasecretome and biochemical analysis of consortium PM-06 during the degradation of nixtamalized maize pericarp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Pikula K, Johari SA, Golokhvast K. Colloidal Behavior and Biodegradation of Engineered Carbon-Based Nanomaterials in Aquatic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4149. [PMID: 36500771 PMCID: PMC9737966 DOI: 10.3390/nano12234149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based nanomaterials (CNMs) have attracted a growing interest over the last decades. They have become a material commonly used in industry, consumer products, water purification, and medicine. Despite this, the safety and toxic properties of different types of CNMs are still debatable. Multiple studies in recent years highlight the toxicity of CNMs in relation to aquatic organisms, including bacteria, microalgae, bivalves, sea urchins, and other species. However, the aspects that have significant influence on the toxic properties of CNMs in the aquatic environment are often not considered in research works and require further study. In this work, we summarized the current knowledge of colloidal behavior, transformation, and biodegradation of different types of CNMs, including graphene and graphene-related materials, carbon nanotubes, fullerenes, and carbon quantum dots. The other part of this work represents an overview of the known mechanisms of CNMs' biodegradation and discusses current research works relating to the biodegradation of CNMs in aquatic species. The knowledge about the biodegradation of nanomaterials will facilitate the development of the principals of "biodegradable-by-design" nanoparticles which have promising application in medicine as nano-carriers and represent lower toxicity and risks for living species and the environment.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St., Sanandaj 66177-15175, Iran
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
8
|
Shen S, Sun W, Yang K, Gao H, Lin D. Biotransformation of 2D Nanomaterials through Stimulated Bacterial Respiration-Produced Extracellular Reactive Oxygen Species: A Common but Overlooked Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5508-5519. [PMID: 35420416 DOI: 10.1021/acs.est.1c08481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biotransformation of 2D nanomaterials is still poorly understood, although their environmental fates are becoming an increasing concern with their broad applications. Here, we found that Ti3C2Tx nanosheets, a typical 2D nanomaterial, could be oxidized by reactive oxygen species (ROS) produced by both Gram-negative (Escherichia coli and Shewanella oneidensis) and Gram-positive (Bacillus subtilis) bacteria, with the formation of titanium dioxide (TiO2) on the nanosheet surfaces and impairment of structural integrity. Specifically, Ti3C2Tx nanosheets stimulated bacterial respiration Complex I, leading to increased generation of extracellular O2•- and the formation of H2O2 and •OH via Fenton-like reactions, which intensified the oxidation of the nanosheets. Surface modifications with KOH and hydrazine (HMH), especially HMH, could limit bacterial oxidation of the nanosheets. These findings reveal a common but overlooked process in which oxygen-respiring bacteria are capable of oxidizing 2D nanosheets, providing new knowledge for environmental fate evaluation and future design of functional 2D nanomaterials.
Collapse
Affiliation(s)
- Shuyi Shen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Weining Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
9
|
Roskova Z, Skarohlid R, McGachy L. Siderophores: an alternative bioremediation strategy? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153144. [PMID: 35038542 DOI: 10.1016/j.scitotenv.2022.153144] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/15/2023]
Abstract
Siderophores are small molecular weight iron scavengers that are mainly produced by bacteria, fungi, and plants. Recently, they have attracted increasing attention because of their potential role in environmental bioremediation. Although siderophores are generally considered to exhibit high specificity for iron, they have also been reported to bind to various metal and metalloid ions. This unique ability allows siderophores to solubilise and mobilise heavy metals and metalloids from soil, thereby facilitating their bioremediation. In addition, because of their redox nature, they can mediate the production of reactive oxygen species (ROS), and thus promote the biodegradation of organic contaminants. The aim of this review is to summarise the existing knowledge on the developed strategies of siderophore-assisted bioremediation of metals, metalloids, and organic contaminants. Additionally, this review also includes the biosynthesis and classification of microbial and plant siderophores.
Collapse
Affiliation(s)
- Zuzana Roskova
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Radek Skarohlid
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic.
| |
Collapse
|
10
|
Yang Y, Ghatge S, Ko Y, Yoon Y, Ahn JH, Kim JJ, Hur HG. Non-specific degradation of chloroacetanilide herbicides by glucose oxidase supported Bio-Fenton reaction. CHEMOSPHERE 2022; 292:133417. [PMID: 34954194 DOI: 10.1016/j.chemosphere.2021.133417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Bio-Fenton reaction supported by glucose oxidase (GOx) for producing H2O2 was applied to degrade persistent chloroacetanilide herbicides in the presence of Fe (Ⅲ)-citrate at pH 5.5. There were pH decrease to 4.3, the production of 8 mM H2O2 and simultaneous consumption to produce •OH radicals which non-specifically degraded the herbicides. The degradation rates followed the order acetochlor ≈ alachlor ≈ metolachlor > propachlor ≈ butachlor with the degradation percent of 72.8%, 73.4%, 74.0%, 47.4%, and 43.8%, respectively. During the Bio-Fenton degradation, alachlor was dechlorinated and filtered into catechol via the production of intermediates formed through a series of hydrogen atom abstraction and hydrogen oxide radical addition reactions. The current Bio-Fenton reaction leading to the production of •OH radicals could be applied for non-specific oxidative degradation to various persistent organic pollutants under in-situ environmental conditions, considering diverse microbial metabolic systems able to continuously supply H2O2 with ubiquitous Fe(II) and Fe(III) and citrate.
Collapse
Affiliation(s)
- Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sunil Ghatge
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yongseok Ko
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Younggun Yoon
- Bioremediation Team, National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Jae-Hyung Ahn
- Bioremediation Team, National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Jeong Jun Kim
- Bioremediation Team, National Institute of Agricultural Sciences, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
11
|
Ghatge S, Yang Y, Ko Y, Yoon Y, Ahn JH, Kim JJ, Hur HG. Degradation of sulfonated polyethylene by a bio-photo-fenton approach using glucose oxidase immobilized on titanium dioxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127067. [PMID: 34488097 DOI: 10.1016/j.jhazmat.2021.127067] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Polyethylene (PE) plastics are highly recalcitrant and resistant to photo-oxidative degradation due to its chemically inert backbone structure. We applied two novel reactions such as, Bio-Fenton reaction using glucose oxidase (GOx) enzyme alone and Bio-Photo-Fenton reaction using GOx immobilized on TiO2 nanoparticles (TiO2-GOx) under UV radiation, for (bio)degradation of pre-activated PE with sulfonation (SPE). From both the reactions, GC-MS analyses identified small organic acids such as, acetic acid and butanoic acid as a major metabolites released from SPE. In the presence of UV radiation, 21 fold and 17 fold higher amounts of acetic acid (4.78 mM) and butanoic acid (0.17 mM) were released from SPE after 6 h of reaction using TiO2-GOx than free GOx, which released 0.22 mM and 0.01 mM of acetic acid and butanoic acid, respectively. Our results suggest that (bio)degradation and valorization of naturally weathered and oxidized PE using combined reactions of biochemistry, photochemistry and Fenton chemistry could be possible.
Collapse
Affiliation(s)
- Sunil Ghatge
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yongseok Ko
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Younggun Yoon
- Bioremediation Team, National Institute of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jae-Hyung Ahn
- Bioremediation Team, National Institute of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jeong Jun Kim
- Bioremediation Team, National Institute of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
12
|
Enhanced whole-cell biotransformation of 3-chloropropiophenone into 1-phenyl-1-propanone by hydrogel entrapped Chlorella emersonii (211.8b). Biotechnol Lett 2021; 43:2259-2272. [PMID: 34665367 DOI: 10.1007/s10529-021-03194-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES This study focuses on dehalogenation of halogenated organic substrate (3-Chloropropiophenone) using both free and hydrogel entrapped microalgae Chlorella emersonii (211.8b) as biocatalyst. We aimed at successful immobilization of C. emersonii (211.8b) cells and to assess their biotransformation efficiency. RESULTS Aquasorb (entrapping material in this study) was found to be highly biocompatible with the cellular growth and viability of C. emersonii. A promising number of entrapped cells was achieved in terms of colony-forming units (CFUs = 2.1 × 104) per hydrogel bead with a comparable growth pattern to that of free cells. It was determined that there is no activity of hydrogenase that could transform 1-phenyl-2-propenone into 1-phenyl-1-propanone because after 12 h the ratio between two products (0.36 ± 0.02) remained constant throughout. Furthermore, it was found that the entrapped cells have higher biotransformation of 3-chloropropiophenone to 1-phenyl-1-propanone as compared to free cells at every interval of time. 1-phenyl-2-propenone was excluded from the whole-cell biotransformation as it was also found in the control group (due to spontaneous generation). CONCLUSION Hence, enhanced synthesis of 1-phenyl-1-propanone by entrapped Chlorella (211.8b) can be ascribed to either an enzymatic activity (dehalogenase) or thanks to the antioxidants from 211-8b, especially when they are in immobilized form. The aquasorb based immobilization of microalgae is highly recommended as an effective tool for exploiting microalgal potentials of biocatalysis specifically when free cells activities are seized due to stress.
Collapse
|
13
|
Wang J, Shan S, Ma Q, Zhang Z, Dong H, Li S, Diko CS, Qu Y. Fenton-like reaction driving the degradation and uptake of multi-walled carbon nanotubes mediated by bacterium. CHEMOSPHERE 2021; 275:129888. [PMID: 33662725 DOI: 10.1016/j.chemosphere.2021.129888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes (CNTs) have been widely studied because of their potential applications. The increasing applications of CNTs and less known of their environmental fates rise concerns about their safety. In this study, the biotransformation of multi-walled carbon nanotubes (MWCNTs) by Labrys sp. WJW was investigated. Within 16 days, qPCR analysis showed that cell numbers increased 4.92 ± 0.36 folds using 100 mg/L MWCNTs as the sole carbon source. The biotransformation of MWCNTs, which led to morphology and functional group change, was evidenced by transmission electron microscopy and X-ray photoelectron spectroscopy analyses. Raman spectra illustrated that more defects and disordered carbon appeared on MWCNTs during incubation. The underlying biotransformation mechanism of MWCNTs through an extracellular bacterial Fenton-like reaction was demonstrated. In this bacteria-mediated reaction, the OH production was induced by reduction of H2O2 involved a continuous cycle of Fe(II)/Fe(III). Bacterial biotransformation of MWCNTs will provide new insights into the understanding of CNTs bioremediation processes.
Collapse
Affiliation(s)
- Jingwei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shuang Shan
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Zhaojing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongsheng Dong
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Catherine Sekyerebea Diko
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|