1
|
Chen X, Fu W, Hu K, Yin G, Liu S, Zhu N, Zhao Y, Cui Z, Yuan X. Economic and environmental analysis: Straw biogas project operating at full load with dry yellow corn straw. BIORESOURCE TECHNOLOGY 2025; 426:132335. [PMID: 40044059 DOI: 10.1016/j.biortech.2025.132335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
Due to the unique straw raw materials in China, the current straw biogas project based on the "two-stage" process of wet anaerobic digestion still has problems such as deficient technology, low production capacity, and weak profitability. In this study, we improved the original process for the biogas project, aiming at increasing biogas yield and profit. The results show that the new process (NP) can effectively recover the "carbon" by anaerobic hydrolysis, solve the problems of scum and crust, and significantly improve the biomethane yield (141.3%-321.8%), net profit ($599,667-$772,004/year), and carbon emission reduction equivalent (2.7×107-4.6×107 kg CO2e/year). Based on the amount of dry yellow corn straw that can be collected annually for energy-oriented production, NP's potential economic and environmental value is estimated to be significant. This study provides reliable technical support for efficient utilization of agricultural resources and circular economy.
Collapse
Affiliation(s)
- Xiaotian Chen
- College of Agronomy and Biotechnology/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Wei Fu
- Derun (Wuchang) Biomass Development Co., LTD, Haerbin 150223, China
| | - Kai Hu
- Derun (Wuchang) Biomass Development Co., LTD, Haerbin 150223, China
| | - Guofeng Yin
- Derun (Wuchang) Biomass Development Co., LTD, Haerbin 150223, China
| | - Song Liu
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Na Zhu
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Yehua Zhao
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| | - Xufeng Yuan
- College of Agronomy and Biotechnology/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Bae I, Rhee C, Shin J, Cho K, Triolo JM, Shin SG. Insights into high ammonia-resistant syntrophic microbiomes and metabolic pathways during continuous anaerobic digestion of cow manure. BIORESOURCE TECHNOLOGY 2025; 422:132235. [PMID: 39956519 DOI: 10.1016/j.biortech.2025.132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Understanding microbial responses to ammonia is critical for defining thresholds and ensuring stable operation of anaerobic digestion (AD); however, an understanding of the microbiome's resistance mechanisms to high-total-ammonia-nitrogen (TAN) conditions remains limited. This study determined a TAN threshold of 7 g/L for continuous cow manure AD with increasing TAN levels. TAN was identified as the most critical factor influencing the AD performance, with CH4 production decreasing by > 50 % beyond this level. Additionally, a highly TAN-resistant syntrophic microbiome was identified through network analysis, highlighting key bacteria, Thauera phenolivorans and Fermentimons spp., alongside hydrogenotrophic methanogens. Interestingly, shifts were observed within the hydrogenotrophic methanogen community, transitioning from Methanoculleus bourgensis to Methanoculleus chikugoensis, Methanocorpusculum spp. and Methanobacterium spp. under high-TAN conditions. Significant metabolic pathways specific to high-TAN environments were identified, providing insights into their roles in sustained operation of AD. These findings highlight the performance limitations and functional redundancy under high-TAN conditions.
Collapse
Affiliation(s)
- Ilho Bae
- Department of Energy System Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Chaeyoung Rhee
- Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Juhee Shin
- Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Mi Triolo
- Department of Energy System Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea.
| | - Seung Gu Shin
- Department of Energy System Engineering, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea.
| |
Collapse
|
3
|
Cui Z, Li P, Pan X, Yuan Y, Li G, Jiao Y, Petracchini F, Hou T, He C. Achieving synergistic enhancement in the anaerobic digestion of corn straw by (CH 4 + CO 2) nanobubbles in conjunction with optimized particle sizes. BIORESOURCE TECHNOLOGY 2025; 418:131997. [PMID: 39701392 DOI: 10.1016/j.biortech.2024.131997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Nanobubbles (NBs) technology has been proven to promote methane production from anaerobic digestion (AD). In this study, the synergistic effects of (CH4 + CO2)-nanobubble water ((CH4 + CO2)-NBW) combined with varying particle sizes of corn straw on the AD were investigated. As findings, adding (CH4 + CO2)-NBW effectively promoted the methane production from AD of corn straw with different particle sizes. The maximum cumulative methane yield (186.42 mL/ g-volatile solids) was achieved in Group a with the addition of (CH4 + CO2)-NBW, representing a 16.89 % increase compared to the control. Furthermore, (CH4 + CO2)-NBW could enhance the enzymatic activity. The activities of β-glucosidase and coenzyme F420 were increased by 6.70 % and 11.48 %, respectively. The results of microbial community structure revealed that the addition of (CH4 + CO2)-NBW could improve the abundance of dominant bacteria (norank_JS1, norank_Aminicenantales, and Bacteroidetes_vadinHA17) and archaea (Methanomassiliicoccaceae, Methanobacteriaceae, and norank_Bathyarchaeia). This study provides new insights into the application of nanobubbles in the AD of biomass.
Collapse
Affiliation(s)
- Zhiqiang Cui
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Pengfei Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaohui Pan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yongkang Yuan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Gang Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China; Henan University of Engineering, Zhengzhou 451191, Henan, China
| | - Francesco Petracchini
- National Research Council of Italy- Institute of Atmospheric Pollution Research, 29300 Rome, Italy
| | - Tingting Hou
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
4
|
Pavia MJ, Garber AI, Avalle S, Macedo-Tafur F, Tello-Espinoza R, Cadillo-Quiroz H. Functional insights of novel Bathyarchaeia reveal metabolic versatility in their role in peatlands of the Peruvian Amazon. Microbiol Spectr 2024; 12:e0038724. [PMID: 39540749 PMCID: PMC11619403 DOI: 10.1128/spectrum.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The decomposition of soil organic carbon within tropical peatlands is influenced by the functional composition of the microbial community. In this study, building upon our previous work, we recovered a total of 28 metagenome-assembled genomes (MAGs) classified as Bathyarchaeia from the tropical peatlands of the Pastaza-Marañón Foreland Basin (PMFB) in the Amazon. Using phylogenomic analyses, we identified nine genus-level clades to have representatives from the PMFB, with four forming a putative novel family ("Candidatus Paludivitaceae") endemic to peatlands. We focus on the Ca. Paludivitaceae MAGs due to the novelty of this group and the limited understanding of their role within tropical peatlands. Functional analysis of these MAGs reveals that this putative family comprises facultative anaerobes, possessing the genetic potential for oxygen, sulfide, or nitrogen oxidation. This metabolic versatility can be coupled to the fermentation of acetoin, propanol, or proline. The other clades outside Ca. Paludivitaceae are putatively capable of acetogenesis and de novo amino acid biosynthesis and encode a high amount of Fe3+ transporters. Crucially, the Ca. Paludivitaceae are predicted to be carboxydotrophic, capable of utilizing CO for energy generation or biomass production. Through this metabolism, they could detoxify the environment from CO, a byproduct of methanogenesis, or produce methanogenic substrates like CO2 and H2. Overall, our results show the complex metabolism and various lineages of Bathyarchaeia within tropical peatlands pointing to the need to further evaluate their role in these ecosystems. IMPORTANCE With the expansion of the Candidatus Paludivitaceae family by the assembly of 28 new metagenome assembled genomes, this study provides novel insights into their metabolic diversity and ecological significance in peatland ecosystems. From a comprehensive phylogenic and functional analysis, we have elucidated their putative unique facultative anaerobic capabilities and CO detoxification potential. This research highlights their crucial role in carbon cycling and greenhouse gas regulation. These findings are essential for resolving the microbial processes affecting peat soil stability, offering new perspectives on the ecological roles of previously underexplored and underrepresented archaeal populations.
Collapse
Affiliation(s)
- Michael J. Pavia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Arkadiy I. Garber
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sarah Avalle
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Franco Macedo-Tafur
- Laboratory of Soil Research, Research Institute of Amazonia’s Natural Resources, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
| | - Rodil Tello-Espinoza
- Laboratory of Soil Research, Research Institute of Amazonia’s Natural Resources, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
- School of Forestry, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
5
|
Chen X, Zang C, Xie Y, Wang K, Li Y, Lv R, Wen B, Cui Z, Yuan X. Porous hollow microspheres based on industrial solid waste enhance biomethane recovery from corn straw. BIORESOURCE TECHNOLOGY 2024; 412:131395. [PMID: 39216699 DOI: 10.1016/j.biortech.2024.131395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing production of industrial solid waste requires better disposal solutions. Porous hollow microspheres (PHM) are small inorganic materials with high surface area and adsorption capacity, but their potential for use in anaerobic digestion (AD) has not been explored. With PHM as additive, the effects of different industrial solid wastes (waste glass, steel slag, and fly ash) with different loadings (2 %-8 %), respectively, on the AD of corn straw were investigated in this study. The results showed that PHM could supplement trace elements and promote biofilm formation, which effectively shortened the lag period (25.00-60.87 %) and increased the methane yield (4.75 %-16.28 %). The 2 % PHM loading based on steel slag gave the highest methane yield (300.16 NmL/g VSadd). Microbial and PICRUSt2 analyses indicated that PHM enriched hydrolytic and acidogenic bacteria, increased the abundance of methanogenesis-related enzyme genes. This study provides a theoretical basis for the comprehensive utilization of coupled industrial and agricultural wastes.
Collapse
Affiliation(s)
- Xiaotian Chen
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Changchang Zang
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Yuting Xie
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Ke Wang
- Beijing Huaqi Eco-Tech Co., LTD, Beijing 102200, China
| | - Yang Li
- Beijing Huaqi Eco-Tech Co., LTD, Beijing 102200, China
| | - Ruifang Lv
- Beijing Huaqi Eco-Tech Co., LTD, Beijing 102200, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zongjun Cui
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Rodrigues CV, Camargo FP, Lourenço VA, Sakamoto IK, Maintinguer SI, Silva EL, Amâncio Varesche MB. Towards a circular bioeconomy to produce methane by co-digestion of coffee and brewery waste using a mixture of anaerobic granular sludge and cattle manure as inoculum. CHEMOSPHERE 2024; 357:142062. [PMID: 38636915 DOI: 10.1016/j.chemosphere.2024.142062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Coffee processing wastes, such as solid (pulp and husk) and wastewater, co-digested with industrial brewery wastewater, serve as excellent substrates for generating methane in the anaerobic digestion process. This study compared methane production using different compositions of cattle manure (CM) and granular sludge from an Upflow Anaerobic Sludge Blanket (UASB) reactor used in poultry wastewater treatment (GS). Four anaerobic batch reactors (500 mL) were assembled, A (50% CM and 50% GS), B (60% CM and 40% GS), C (70% CM and 30% of GS) and D (60% CM and 40% GS). Equal concentrations of substrates were added to all reactors: pulp and husk pretreated by hydrothermolysis (1 g L-1), coffee (10 g COD L-1) and brewery (1.5 g COD L-1) wastewaters. Assays A, B and C were supplemented with 2 g L-1 of yeast extract, except for assay D. The reactors were operated at 37 °C and pH 7.0. In assay B, the highest CH4 production of 759.15 ± 19.20 mL CH4 g-1 TS was observed, possibly favored by the synergistic interactions between cellulolytic bacteria Christensenellaceae_R-7_group and Methanosaeta archaea, as inferred by genes encoding enzymes related to acetoclastic methanogenesis (acetyl-CoA synthetase). Consequently, the electricity production potential of assay B (45614.08 kWh-1 year-1) could meet the energy demand of a farm producing coffee and beer, contributing to a positive energy balance concerning methane generation.
Collapse
Affiliation(s)
- Caroline Varella Rodrigues
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Vitor Alves Lourenço
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Sandra Imaculada Maintinguer
- Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), 2527 10 Street, Rio Claro, SP, 13500230, Brazil
| | - Edson Luiz Silva
- Center of Exact Sciences and Technology, Department of Chemical Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP CEP, 13565905, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| |
Collapse
|
7
|
Wu N, Ma Y, Yu X, Wang X, Wang Q, Liu X, Xu X. Black soldier fly larvae bioconversion and subsequent composting promote larval frass quality during pig and chicken manure transformation process. BIORESOURCE TECHNOLOGY 2024; 402:130777. [PMID: 38701978 DOI: 10.1016/j.biortech.2024.130777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
This research systematically assessed the changes in carbon, nitrogen and microbial profiling during pig and chicken manure transformation by black soldier fly larvae (BSFL) and subsequent composting process. BSFL had higher conversion efficiency for chicken manure. The pH, phosphorus and potassium contents in fresh BSFL frass increased than raw manure, but conductivity, total-/nitrate-/ammonium-nitrogen decreased. After BSFL conversion, pig manure had a larger nitrogen loss (25 %) while chicken manure had a larger carbon loss (32 %). During subsequent composting, the indicator changes (e.g. humus, ammonium nitrogen) in frass composts basically remained stable after 20-30 days. Compared to natural composts, frass composts had higher humification degree, cellulase activities, and more cellulose-degrading bacteria. Subsequent composting further reduced potential pathogens (reduced by 98.9 %-99.7 % than raw manure), and elevated the aromaticity and humification of frass. The findings gave an insight into the maturation management of manure-sourced insect frass.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Ye Ma
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaohui Yu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaobo Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Qing Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Xu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
8
|
Shen Y, Zhang X, Ye M, Zha X, He R. Effects of Fe-modified digestate hydrochar at different hydrothermal temperatures on anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2024; 395:130393. [PMID: 38301942 DOI: 10.1016/j.biortech.2024.130393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Hydrothermal carbonization temperature is a key factor in controlling the physico-chemical properties of hydrochar and affecting its function. In this study, effects of hydrochar and Fe-modified hydrochar (Fe-HC) prepared at 180 °C (180C-Fe), 220 °C (220C-Fe) and 260 °C (260C-Fe) on anaerobic digestion (AD) performance of swine manure was investigated. Among the three Fe-HCs, 220C-Fe had the highest amount of Fe and Fe2+ on the surface. The relative methane production of control reached 174 %-189 % in the 180C-Fe and 220C-Fe treatments between days 11 and 12. The degradation efficiency of swine manure was highest in the 220C-Fe treatment (61.3 %), which was 14.8 % higher than in the control. Fe-HC could act as an electron shuttle, stimulate the coenzyme F420 formation, increase the relative abundance of Methanosarcina and promote electron transport for acetotrophic methanogenesis in the AD. These findings are helpful for designing an efficient process for treating swine manure and utilizing digestate.
Collapse
Affiliation(s)
- Yan Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xin Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Ye
- Hangzhou Institute of Ecological and Environmental Sciences, Hangzhou 310005, China
| | - Xianghao Zha
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, College of Chemistry and Environmental Science, Kashi University, Kashi 844000, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
9
|
Li J, Huang C. Anaerobic co-digestion of corn straw, sewage sludge and fresh leachate: Focusing on synergistic/antagonistic effects and microbial mechanisms. BIORESOURCE TECHNOLOGY 2024; 395:130414. [PMID: 38310978 DOI: 10.1016/j.biortech.2024.130414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Effects of sewage sludge (SS) and fresh leachate (FL) addition on corn straw (CS) digestion and underlying mechanisms were investigated. Co-digestion of CS, SS and FL significantly increased cumulative methane production by 7.2-61.1%. Further analysis revealed that co-digestion acted mainly on slowly degradable substrates and exerted dual effects on methane production potential, which was closely related to the volatile solids (VS) content. Antagonistic effects of co-digestion resulted from the dominance of norank_c_Bathyarchaeia, a mixotrophic methanogen that may generate methane inefficiently and consume existing methane. The synergistic enhancement of methane production (0.7-12.7%) was achieved in co-digestion with 33.5-45.5% of total VS added as SS and FL. Co-digestion with more balanced nutrients and higher buffering capacity enriched Actinobacteriota, Firmicutes, and Synergistota, thereby facilitating the substrate degradation. Furthermore, the predominant acetoclastic methanogens, increased hydrogenotrophic methanogens, and decreased methylotrophic methanogens in the digester combined to prompt the synergy.
Collapse
Affiliation(s)
- Jiaxiang Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Chuan Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
10
|
Choi G, Kan E. Effects of perfluorooctanoic acid and perfluorooctane sulfonic acid on microbial community structure during anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 393:129999. [PMID: 37980946 DOI: 10.1016/j.biortech.2023.129999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are recalcitrant organic pollutants, which accumulate widely in aquatic and solid matrices. Anaerobic digestion (AD) is one of possible options to manage organic wastes containing PFASs, however, the impacts of different types of PFAS on AD remains unclear. This study aimed to critically investigate the effects of two representative PFAS compounds, i.e., perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), on the AD performance and microbial community structure. 100 mg/L of both PFOA and PFOS considerably inhibited the AD performance and changed the microbial community structure. Especially, PFOA was more toxic to bacterial and archaeal activity than PFOS, which was reflected in AD performance. In addition, the sulfonic acid group in PFOS affected the changes in microbial community structure by inducing abundant sulfate reducing bacteria (i.e., Desulfobacterota). This study provides a significant reference to the response of AD system on different PFAS types and dosage.
Collapse
Affiliation(s)
- Gyucheol Choi
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center' Texas A&M University, TX 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center' Texas A&M University, TX 77843, USA; Department of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, TX 76401, USA.
| |
Collapse
|
11
|
Hassa J, Tubbesing TJ, Maus I, Heyer R, Benndorf D, Effenberger M, Henke C, Osterholz B, Beckstette M, Pühler A, Sczyrba A, Schlüter A. Uncovering Microbiome Adaptations in a Full-Scale Biogas Plant: Insights from MAG-Centric Metagenomics and Metaproteomics. Microorganisms 2023; 11:2412. [PMID: 37894070 PMCID: PMC10608942 DOI: 10.3390/microorganisms11102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The current focus on renewable energy in global policy highlights the importance of methane production from biomass through anaerobic digestion (AD). To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies become more important. In this study, metagenomes and metaproteomes were used for metagenomically assembled genome (MAG)-centric analyses to investigate a full-scale biogas plant consisting of three differentially operated digesters. Microbial communities were analyzed regarding their taxonomic composition, functional potential, as well as functions expressed on the proteome level. Different abundances of genes and enzymes related to the biogas process could be mostly attributed to different process parameters. Individual MAGs exhibiting different abundances in the digesters were studied in detail, and their roles in the hydrolysis, acidogenesis and acetogenesis steps of anaerobic digestion could be assigned. Methanoculleus thermohydrogenotrophicum was an active hydrogenotrophic methanogen in all three digesters, whereas Methanothermobacter wolfeii was more prevalent at higher process temperatures. Further analysis focused on MAGs, which were abundant in all digesters, indicating their potential to ensure biogas process stability. The most prevalent MAG belonged to the class Limnochordia; this MAG was ubiquitous in all three digesters and exhibited activity in numerous pathways related to different steps of AD.
Collapse
Affiliation(s)
- Julia Hassa
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Tom Jonas Tubbesing
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Irena Maus
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Robert Heyer
- Multidimensional Omics Data Analyses Group, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany
- Multidimensional Omics Data Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Dirk Benndorf
- Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, Postfach 1458, 06366 Köthen, Germany
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Mathias Effenberger
- Bavarian State Research Center for Agriculture, Institute for Agricultural Engineering and Animal Husbandry, Vöttinger Straße 36, 85354 Freising, Germany
| | - Christian Henke
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Benedikt Osterholz
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Michael Beckstette
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Alexander Sczyrba
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Andreas Schlüter
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| |
Collapse
|
12
|
Kim S, Lee C, Kim J, Young Kim J. Feasibility of thermal hydrolysis pretreatment to reduce hydraulic retention time of anaerobic digestion of cattle manure. BIORESOURCE TECHNOLOGY 2023:129308. [PMID: 37311528 DOI: 10.1016/j.biortech.2023.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the potential of thermal hydrolysis pretreatment (THP) to reduce the hydraulic retention times (HRTs) in the anaerobic digestion (AD) of cattle manure (CM). The AD with THP (THP AD) outperformed the control AD by over 1.4 times in terms of methane yield and volatile solid removal, even under the same HRT conditions. Remarkably, even when the THP AD was operated with an HRT of 13.2 d, it performed better than the control AD operated with an HRT of 36.0 d. In THP AD, there was a shift in the dominant archaeal genus responsible for methane generation from Methanogranum (at HRT of 36.0 - 13.2 d) to Methanosaeta (at HRT of 8.0 d). However, decreasing HRT, and applying THP resulted in reduced stability, accompanied by increased inhibitory compounds, and changes in the microbial community. Further confirmation is required to assess the long-term stability of THP AD.
Collapse
Affiliation(s)
- Seunghwan Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changmin Lee
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junhyeon Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Young Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
13
|
Li Y, Wang S, Dong R, Li X. A large cathode surface area promotes electromethanogenesis at a proper external voltage in a single coaxial microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161721. [PMID: 36682571 DOI: 10.1016/j.scitotenv.2023.161721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) is currently encountering constraints on electromethanogenesis. The electrode configuration modification can be a simple yet efficient way to improve electromethanogenesis. This study evaluated two coaxial electrode configurations (large anode and small cathode: A10C1; small anode and large cathode: A1C10) using carbon felt as the electrode material. At an external voltage of 1.7 V, CH4 content was found exclusively higher in A1C10 (11 % and 13 % higher for acetate-fed and cow manure-fed, respectively) than that of the control reactors. Consequently, CH4 production was 13 % and 29 % higher in acetate-fed and CM-fed A1C10, respectively. The strengthened electromethanogenesis was attributed to the enrichment of interspecies hydrogen transfer microbes (i.e., Mesotoga and Bathyarchaeia). The coaxial configuration with a large cathode surface area demonstrated a viable stereotype in MEC-AD for improved waste treatment and energy recovery.
Collapse
Affiliation(s)
- Yu Li
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Siqi Wang
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Renjie Dong
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Xin Li
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China.
| |
Collapse
|
14
|
Eliasson KA, Singh A, Isaksson S, Schnürer A. Co-substrate composition is critical for enrichment of functional key species and for process efficiency during biogas production from cattle manure. Microb Biotechnol 2022; 16:350-371. [PMID: 36507711 PMCID: PMC9871532 DOI: 10.1111/1751-7915.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cattle manure has a low energy content and high fibre and water content, limiting its value for biogas production. Co-digestion with a more energy-dense material can improve the output, but the co-substrate composition that gives the best results in terms of degree of degradation, gas production and digestate quality has not yet been identified. This study examined the effects of carbohydrate, protein and fat as co-substrates for biogas production from cattle manure. Laboratory-scale semi-continuous mesophilic reactors were operated with manure in mono-digestion or in co-digestion with egg albumin, rapeseed oil, potato starch or a mixture of these, and chemical and microbiological parameters were analysed. The results showed increased gas yield for all co-digestion reactors, but only the reactor supplemented with rapeseed oil showed synergistic effects on methane yield. The reactor receiving potato starch indicated improved fibre degradation, suggesting a priming effect by the easily accessible carbon. Both these reactors showed increased species richness and enrichment of key microbial species, such as fat-degrading Syntrophomonadaceae and families known to include cellulolytic bacteria. The addition of albumin promoted enrichment of known ammonia-tolerant syntrophic acetate- and potential propionate-degrading bacteria, but still caused slight process inhibition and less efficient overall degradation of organic matter in general, and of cellulose in particular.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Simon Isaksson
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenterSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
15
|
Utilization of nanoparticles for biogas production focusing on process stability and effluent quality. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
One of the most important techniques for converting complex organic waste into renewable energy in the form of biogas and effluent is anaerobic digestion. Several issues have been raised related to the effectiveness of the anaerobic digestion process in recent years. Hence nanoparticles (NPs) have been used widely in anaerobic digestion process for converting organic wastes into useful biogas and effluent in an effective way. This review addresses the knowledge gaps and summarizes recent researchers’ findings concentrating on the stability and effluent quality of the cattle manure anaerobic digestion process using single and combinations nanoparticle. In summary, the utilization of NPs have beneficial effects on CH4 production, process optimization, and effluent quality. Their function, as key nutrient providers, aid in the synthesis of key enzymes and co-enzymes, and thus stimulate anaerobic microorganism activities when present at an optimum concentration (e.g., Fe NPs 100 mg/L; Ni NPs 2 mg/L; Co NPs 1 mg/L). Furthermore, utilizing Fe NPs at concentrations higher than 100 mg/L is more effective at reducing H2S production than increasing CH4, whereas Ni NPs and Co NPs at concentrations greater than 2 mg/L and 1 mg/L, respectively, reduce CH4 production. Effluent with Fe and Ni NPs showed stronger fertilizer values more than Co NPs. Fe/Ni/Co NP combinations are more efficient in enhancing CH4 production than single NPs. Therefore, it is possible to utilize NPs combinations as additives to improve the effectiveness of anaerobic digestion.
Article highlights
Single NPs (e.g., Fe, Ni, and Co NPs) in low concentrations are more effective in increasing CH4 production than reducing H2S production.
Optimal Fe, Ni, and Co NP concentrations enhance anaerobic digestion process performance.
Addition of Fe, Ni, and Co NPs above tolerated concentration causes irreversible inhibition in anaerobic digestion.
Effluent with Fe, Ni, and Co NPs showed stronger fertilizer values.
Nanoparticle combinations are more effective for increasing the CH4 production than signal NPs.
Collapse
|
16
|
Yin F, Dong H, Zhang W, Wang S, Cao Q, Lian T. Antibiotic removal potential for low greenhouse gas emission process of anaerobic digestion (AD) producing volatile fatty acids (VFAs). BIORESOURCE TECHNOLOGY 2022; 360:127540. [PMID: 35777636 DOI: 10.1016/j.biortech.2022.127540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the antibiotic of sulfachloropyridazine (SCP) reduction and its effects on volatile fatty acids (VFAs) accumulation and microbial community structures during the process of anaerobic digestion (AD) producing VFA. Results showed that initial SCP concentrations have a positive correlation with reduction of SCP and accumulation of VFAs. The removal rates of SCP were 22.21%, 30.00%, 39.31% and 42.59% and the maximum production of VFAs were 3947, 6180, 6462 and 6032 mg/L for initial SCP concentrations of 25, 50, 75 and 100 mg/kg·TS, respectively. SCP only altered bacterial composition by hastening growth of specific bacterial taxa, but didn't increase bacterial α-diversity.
Collapse
Affiliation(s)
- Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China.
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| | - Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, PR China
| |
Collapse
|
17
|
Zhang H, Zhang L, Tao R, Hu J, Chu G. Nitrapyrin Addition Mitigated CO 2 Emission from a Calcareous Soil Was Closely Associated with Its Effect on Decreasing Cellulolytic Fungal Community Diversity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5299-5309. [PMID: 35452238 DOI: 10.1021/acs.jafc.1c08020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Application of nitrification inhibitors (NIs) has been widely used to inhibit nitrification and reduce N2O emissions. However, the impacts of NI addition on soil carbon transformation and carbon-degrading microbial communities have not been well explored. Here, a microcosm experiment was carried out, and four treatments were designed: (i) unfertilized control, (ii) urea alone, (iii) urea plus cattle manure, and (iv) urea plus cattle manure with nitrapyrin. The influence of nitrapyrin on soil CO2 emissions, carbon-degrading extracellular enzyme activities, and the abundance and diversity of the cbhI community was investigated. Compared to the treatment of urea plus cattle manure, nitrapyrin significantly decreased cumulative CO2 emissions by 51.8%. Moreover, cbhI community gene copies and their α-diversities (P < 0.05) were also significantly reduced by nitrapyrin application. A partial least squares path model showed that CO2 emission was positively associated with cbhI community α-diversity but negatively associated with nitrapyrin addition. We conclude that the mitigation of soil CO2 emissions by nitrapyrin can be ascribed to its effects on decreasing of cellulose-degrading gene community diversity. Our findings provide new insights into the side-effects of nitrapyrin on abating CO2 emission.
Collapse
Affiliation(s)
- Hanjie Zhang
- College of Life Science, Shaoxing University, Zhejiang 312000, P. R. China
| | - Licun Zhang
- College of Life Science, Shaoxing University, Zhejiang 312000, P. R. China
- Oasis Eco-agriculture Key Laboratory Xinjiang Production and Construction Group/Department of Resources and Environmental Science, Agronomy College, Shihezi University, Shihezi 832000, P. R. China
| | - Rui Tao
- College of Life Science, Shaoxing University, Zhejiang 312000, P. R. China
| | - Juanjuan Hu
- Oasis Eco-agriculture Key Laboratory Xinjiang Production and Construction Group/Department of Resources and Environmental Science, Agronomy College, Shihezi University, Shihezi 832000, P. R. China
| | - Guixin Chu
- College of Life Science, Shaoxing University, Zhejiang 312000, P. R. China
| |
Collapse
|
18
|
Shi J, Li H, Jiang Z, Wang C, Sun L, Wang S. Impact of substrate digestibility on microbial community stability in methanogenic digestors: The mechanism and solution. BIORESOURCE TECHNOLOGY 2022; 352:127103. [PMID: 35378285 DOI: 10.1016/j.biortech.2022.127103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the temporal dynamics of digestion efficiency and community stability in digesters fed with waste activated sludge (WAS), straw (STR-AD), food waste (FW-AD) and mixture of straw-and-food waste (STR-FW-AD). Results showed that carbon removals of recalcitrant substrates (i.e., 48.2 ± 3.9% in WAS-AD and 57.8 ± 4.9% in STR-AD) were lower than that of labile substrates (i.e., 70.7 ± 4.0% in FW-AD). Nonetheless, carbon removal of recalcitrant substrates was largely improved through co-digestion (70.3 ± 3.2% in STR-FW-AD). In contrast to monopoly communities (e.g., the highly enriched Paludibacter) fed with the labile substrates, recalcitrant substrates supported highly diverse communities. Accordingly, the medians of negative/positive cohesions of communities in WAS-AD, STR-AD, STR-FW-AD and FW-AD decreased from 0.86 to 0.63, suggesting their decreasing community stability. Microbial source tracking analyses showed the major contribution of the STR-AD community to the co-digestion community. This study provided unprecedented mechanistic insight into stability improvement of substrate co-digestion on the methanogenic digestion microbiome.
Collapse
Affiliation(s)
- Jiangjian Shi
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Haocong Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Zekai Jiang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Lianpeng Sun
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
19
|
Wei Y, Gao Y, Yuan H, Chang Y, Li X. Effects of organic loading rate and pretreatments on digestion performance of corn stover and chicken manure in completely stirred tank reactor (CSTR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152499. [PMID: 34968582 DOI: 10.1016/j.scitotenv.2021.152499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The performance, system stability, and microbial community response in anaerobic co-digestion (AcoD) of corn stover (CS) and chicken manure (CM) were investigated by running completely stirred tank reactor (CSTR) under controlled organic loading rate (OLR). Prior to anaerobic digestion (AD), potassium hydroxide (KOH) or liquid fraction of digestate (LFD) was applied to pretreat CS, respectively. The results showed that the daily biogas production (DBP) in co-digestion showed a gradual increasing trend with an increase in the OLR from 65 g TS·L-1 to 100 g TS·L-1. The daily methane production per g volatile solids (DMP-VS) in co-digestion increased by 23.0%-27.1%, 18.7%-18.8%, and 17.5%-18.0% at the OLRs of 65, 80, and 100 g TS·L-1, respectively, upon pretreatment with KOH or LFD, as compared to that in co-digestion CSTR without any pretreatment. In addition, all co-digestion CSTRs were operated in stable state. Approximately half of the total carbon in the substrates was recovered in the form of a biogas product, with the carbon mass balance being impacted by the OLR as well as pretreatment. The diversity as well as function of the microbial community varied in response to different OLRs and pretreatment methods. The majority of bacterial genera were strongly correlated with operational parameters. The study indicates that management of OLR and selection of proper pretreatment method could enhance the efficiency and productivity of CS and CM co-digestion in CSTR.
Collapse
Affiliation(s)
- Yufang Wei
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China; State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yuan Gao
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Hairong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Yanqing Chang
- WELLE Environmental Group Co., Ltd., No. 156, Hanjiang Road, Xinbei District, Changzhou, Jiangsu 213125, PR China
| | - Xiujin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
20
|
Braga Nan L, Trably E, Santa-Catalina G, Bernet N, Delgenes JP, Escudie R. Microbial community redundance in biomethanation systems lead to faster recovery of methane production rates after starvation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150073. [PMID: 34517312 DOI: 10.1016/j.scitotenv.2021.150073] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The Power-to-Gas concept corresponds to the use of the electric energy surplus to produce H2 by water electrolysis, that can be further converted to methane by biomethanation. However, the fluctuant production of renewable energy sources can lead to discontinuous H2 injections into the reactors, that may interfere with the adaptation of the microbial community to high H2 partial pressures. In this study, the response of the microbial community to H2 and organic feed starvation was evaluated in in-situ and ex-situ biomethanation. The fed-batch reactors were fed with acetate or glucose and H2, and one or four weeks of starvation periods were investigated. Methane productivity was mostly affected by the four-week starvation period. However, both in-situ and ex-situ biomethanation reactors recovered their methane production rate after starvation within approximately one-week of normal operation, while the anaerobic digestion (AD) reactors did not recover their performances even after 3 weeks of normal operation. The recovery failure of the AD reactors was probably related to a slow growth of the syntrophic and methanogen microorganisms, that led to a VFA accumulation. On the contrary, the faster recovery of both biomethanation reactors was related to the replacement of Methanoculleus sp. by Methanobacterium sp., restoring the methane production in the in-situ and ex-situ biomethanation reactors. This study has shown that biomethanation processes can respond favourably to the intermittent H2 addition without compromising their CH4 production performance.
Collapse
Affiliation(s)
- L Braga Nan
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - E Trably
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - G Santa-Catalina
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - N Bernet
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - J-P Delgenes
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France
| | - R Escudie
- INRAE, Univ. Montpellier, LBE, 102 AV. des Etangs, 11100 Narbonne, France.
| |
Collapse
|
21
|
Energy and Economic Balance between Manure Stored and Used as a Substrate for Biogas Production. ENERGIES 2022. [DOI: 10.3390/en15020413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the study is to draw attention to the fact that reducing methane and nitrous oxide emissions as a result of traditional manure storage for several months in a pile is not only a non-ecological solution, but also unprofitable. A solution that combines both aspects—environmental and financial—is the use of manure as a substrate for a biogas plant, but immediately—directly after its removal from the dairy barn. As part of the case study, the energy and economic balance of a model farm with dairy farming for the scenario without biogas plant and with a biogas plant using manure as the main substrate in methane fermentation processes was also performed. Research data on the average emission of ammonia and nitrous oxide from 1 Mg of stored manure as well as the results of laboratory tests on the yield of biogas from dairy cows manure were obtained on the basis of samples taken from the farm being a case study. The use of a biogas installation would allow the emission of carbon dioxide equivalent to be reduced by up to 100 Mg per year. In addition, it has been shown that the estimated payback period for biogas installations is less than 5 years, and with the current trend of increasing energy prices, it may be even shorter—up to 4 years.
Collapse
|
22
|
Xie Z, Cao Q, Chen Y, Luo Y, Liu X, Li D. The biological and abiotic effects of powdered activated carbon on the anaerobic digestion performance of cornstalk. BIORESOURCE TECHNOLOGY 2022; 343:126072. [PMID: 34626759 DOI: 10.1016/j.biortech.2021.126072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
To comprehensively evaluate the biological and abiotic influence of powdered activated carbon (PAC) on the anaerobic digestion of cornstalk, mesophilic and thermophilic digestion were conducted. Adding PAC (10 g/L) under thermophilic system obtained the maximum cellulose degradation rate and methane yield (MY), which were 57.47% and 128.19 L/kg VS. However, adding same dose of PAC at mesophilic system decreased the MY by 8.16% while increased the cellulose degradation rate and methane production rate by 6.48% and 17.92%. Under mesophilic conditions, the enhancement of PAC was owing to the enrichment of cellulolytic microorganisms, improvement of the syntrophic process and direct interspecies electron transfer. The lower methane yield was attributed to the adsorption of carbon source by PAC and CH4 consumption by Norank_c_Bathyarchaeia. The good performance of thermophilic system was owing to the lower adsorption capability of PAC, absence of Norank_c_Bathyarchaeia, and concentrated carbon flow to methane.
Collapse
Affiliation(s)
- Zhijie Xie
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qin Cao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yichao Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiping Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xiaofeng Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
23
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
24
|
Xie Z, Meng X, Ding H, Cao Q, Chen Y, Liu X, Li D. The synergistic effect of rumen cellulolytic bacteria and activated carbon on thermophilic digestion of cornstalk. BIORESOURCE TECHNOLOGY 2021; 338:125566. [PMID: 34298332 DOI: 10.1016/j.biortech.2021.125566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
To explore the bioaugmentation of rumen cellulolytic bacteria (RCB) and activated carbon (AC) on thermophilic digestion of cornstalk, biochemical methane potential tests were carried out. Adding RCB or AC can improve methane production, while simultaneous existence of AC (10 g/L) and RCB (5%) obtained the best performance. The maximum cellulose degradation rate, methane production rate and methane yield were 66.92%, 32.2 L/(kgVS·d), and 144.9 L/kgVS, which increased by 30.23%, 51.17%, and 20.35% compared with control group. The cellulolytic and fermentative bacteria (Hydrogenispora), syntrophic acetate-oxidizing bacteria (norank_o_MBA03), and hydrogenotrophic Methanothermobacter were crucial for thermophilic digestion of cornstalk. The enhancement of AC was due to the enrichment of Hydrogenispora and Methanothermobacter, while RCB can increase the abundance of cellulolytic bacteria (Halocella and norank_o_M55-D21) and mixotrophic Methanosarcina. The synergetic effect of AC and RCB owing to the enriched cellulolytic bacteria, the enhanced syntrophic acetate oxidation and the concentrated carbon metabolic flow to methane.
Collapse
Affiliation(s)
- Zhijie Xie
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianghui Meng
- College of Engineering, Northeast Agricultural University, No. 600, Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, PR China
| | - Hongxia Ding
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Cao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichao Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Engineering, Northeast Agricultural University, No. 600, Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, PR China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Xu Z, Qi C, Zhang L, Ma Y, Li J, Li G, Luo W. Bacterial dynamics and functions for gaseous emissions and humification in response to aeration intensities during kitchen waste composting. BIORESOURCE TECHNOLOGY 2021; 337:125369. [PMID: 34139565 DOI: 10.1016/j.biortech.2021.125369] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
This study revealed bacteria dynamics and functions for gaseous emissions and humification during kitchen waste composting under different aeration intensities (i.e. 0.24, 0.36, and 0.48 L kg-1 DM min-1) using high-throughput sequencing with Functional Annotation of Prokaryotic Taxa. Results show that aeration increase restrained bacteria (e.g. Lactobacillus and Acinetobacter) for fermentation, nitrate reduction, and sulphur/sulphate respiration, but enriched thermophilic bacteria (e.g. Thermomonospora and Thermobifida) for aerobic chemohetertrophy, xylanolysis, cellulolysis, and methylotrophy. Thus, high aeration intensity (i.e. above 0.36 L kg-1 DM min-1) effectively alleviated the emission of greenhouse gases and hydrogen sulphide, and meanwhile facilitated the production of humus precursors and ammonia. Nevertheless, humification was limited by the conclusion of composting under high aeration conditions due to the consumption of humus precursors for bacterial activity. Thus, aeration intensity should be regulated at different stages indicated by temperature to balance gaseous emissions and humification during kitchen waste composting.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jungang Li
- Beijing Solid Waste Treatment Company Limited, Beijing Environmental Sanitation Engineering Group Limited, Beijing 101100, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Lu Y, Yuan H, Zuo X, Chang Y, Li X. Biomethane Yield, Physicochemical Structures, and Microbial Community Characteristics of Corn Stover Pretreated by Urea Combined with Mild Temperature Hydrotherm. Polymers (Basel) 2021; 13:polym13132207. [PMID: 34279351 PMCID: PMC8272243 DOI: 10.3390/polym13132207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
The corn stover (CS)’s compact structure makes it challenging for microorganisms to use in anaerobic digestion (AD). Therefore, improving CS biodegradability has become a key focus in AD studies. Methods are being targeted at the pretreatment of CS, combining advanced urea with mild temperature hydrotherm pretreatment to study its effect on promoting the AD process of CS. The biomethane yield, physicochemical structure, and microbial community characteristics were investigated. CS samples were assigned into groups differed by a range of pretreatment times (from 24 to 96 h) and set at a temperature of 50 °C with a 2% urea addition. Results revealed that the 72-h group obtained the highest biomethane yield of 205 mL/g VS−1, volatile solid (VS) and total solid (TS) removal rates of 69.3% and 47.7%, which were 36.7%, 25.3% and 27.5% higher than those of untreated one, respectively. After conducting several analyses, results confirmed the pretreatment as a method for altering CS microstructures benefits biomethane production. The most resounding differences between pretreated and untreated groups were observed within a microbial community, an integral factor for improved AD performance. This study serves to confirm that this specific pretreatment is an effective method for enhancing biomethane production in CS.
Collapse
Affiliation(s)
- Yao Lu
- Beijing Engineering Center for Pollution Control and Resource Recovery, Beijing University of Chemical Technology, Beijing 100029, China; (Y.L.); (H.Y.); (X.Z.)
| | - Hairong Yuan
- Beijing Engineering Center for Pollution Control and Resource Recovery, Beijing University of Chemical Technology, Beijing 100029, China; (Y.L.); (H.Y.); (X.Z.)
| | - Xiaoyu Zuo
- Beijing Engineering Center for Pollution Control and Resource Recovery, Beijing University of Chemical Technology, Beijing 100029, China; (Y.L.); (H.Y.); (X.Z.)
| | - Yanqing Chang
- WELLE Environmental Group Co., Ltd., Changzhou 213125, China;
| | - Xiujin Li
- Beijing Engineering Center for Pollution Control and Resource Recovery, Beijing University of Chemical Technology, Beijing 100029, China; (Y.L.); (H.Y.); (X.Z.)
- Correspondence:
| |
Collapse
|
27
|
Li Y, Zhao J, Zhang Z. Implementing metatranscriptomics to unveil the mechanism of bioaugmentation adopted in a continuous anaerobic process treating cow manure. BIORESOURCE TECHNOLOGY 2021; 330:124962. [PMID: 33740585 DOI: 10.1016/j.biortech.2021.124962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effect of bioaugmentation on microbial community and function in a continuous anaerobic process treating lignocellulosic cow manure. One reactor (Rb) received bioaugmentation dosage for a certain period (d100-d170) and stopped afterward (d170-d220), while the same applied to the control (Rc) except sterilized bioaugmentation dosage was introduced. Samples were taken on day130, 170 and 220 from both reactors for metatranscriptomic analysis. The results underlined the promotive effect of bioaugmentation on indigenous microorganisms regarding hydrolysis and methanogenesis. Bioaugmentation contributed to the enrichment of Clostridium, Cellvibrio, Cellulomonas, Bacillus, Fibrobacter, resulting in enhanced cellulase activity (Rb: 0.917-1.081; Rc: 0.551-0.677). Moreover, bioaugmentation brought Rb the prosperity of uncultured_ Bathyarchaeia, a prominent archaeal group responsible for the improved methyl-coenzyme M reductase activity, thus accelerated methanogenesis. Unique metabolic pathways (autotrophic carbon fixation and methanogenesis) in uncultured_ Bathyarchaeia broadened the horizon of its fundamental role as acetogens and methanogens in anaerobic digestion.
Collapse
Affiliation(s)
- Yu Li
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Zhenhua Zhang
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
28
|
Enhanced Biogas Production by Ligninolytic Strain Enterobacter hormaechei KA3 for Anaerobic Digestion of Corn Straw. ENERGIES 2021. [DOI: 10.3390/en14112990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignin-feeding insect gut is a natural ligninolytic microbial bank for the sustainable conversion of crop straw to biogas. However, limited studies have been done on highly efficient microbes. Here, an efficient ligninolytic strain Enterobacter hormaechei KA3 was isolated from the gut microbiomes of lignin-feeding Hypomeces squamosus Fabricius, and its effects on lignin degradation and anaerobic digestion were investigated. No research has been reported. Results showed that strain KA3 had better lignin-degrading ability for corn straw with a higher lignin-degrading rate (32.05%) and lignin peroxidase activity (585.2 U/L). Furthermore, the highest cumulative biogas yield (59.19 L/kg-VS) and methane yield (14.76 L/kg-VS) were obtained for KA3 inoculation, which increased by 20% and 31%, respectively, compared to CK. Higher removal rates of COD, TS, and vs. of 41.6%, 43.11%, and 66.59% were also found. Moreover, microbial community diversity increased as digestion time prolonged in TG, and bacteria were more diverse than archaea. The dominant genus taxon, for methanogens, was Methanosate in TG, while in CK was Methanosarcina. For bacteria, dominant taxa were similar for all groups, which were Solibacillus and Clostridium. Therefore, strain KA3 improved the methane conversion of the substrate. This study could provide a new microbial resource and practical application base for lignin degradation.
Collapse
|
29
|
Techno-Economic Assessment of On-Farm Anaerobic Digestion System Using Attached-Biofilm Reactor in the Dairy Industry. SUSTAINABILITY 2021. [DOI: 10.3390/su13042063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, a techno-economic assessment of an on-farm biogas system using an anaerobic biofilm reactor utilizing cow manure as a fermentation substrate was evaluated. A projection model was developed using Microsoft Excel software with three outputs, the size and dimension of a bioreactor, experimental microbial kinetic studies, and the economic studies based on the experimental results. Characterization analysis of cow manure wastewater showed the total solid (TS), total volatile solid (TVS), total carbohydrate (TC), chemical oxygen demand (COD), and pH values which were 10.95 g/L, 8.65 g/L, 6.65 g/L, 57.80 g/L, and 7, respectively. Using the modified Gompertz equation for the microbial studies, it was found that, at 37 °C and 20 days hydraulic retention time (HRT), the biogas yield was 934.54 mL/gVS, the volume of biogas produced was 11.28 m3/d, and 22.56 kWh of electricity was generated. The Gompertz prediction helps to determine the optimal HRT for the system so that the microorganisms are at their optimum stage to produce biogas. The economic analysis was done, and the results illustrated that, when the rate of cow manure produced was at 55 L/day.cow, the net present value (NPV) was RM 611,936.09, with a 13% internal rate of return (IRR), 0.14 return on investment (ROI), and 7.02 years of payback period (PP). By developing a techno-economic assessment that included all the necessary parameters such as sizing of the bioreactor, microbial kinetic studies, and economics of the plant, farmers could easily implement the system into their farms. This model showed that the anaerobic digestion system utilizing an attached biofilm with cow manure as a fermentation inoculum and substrate was applicable on an industrial scale to generate electricity and reutilize to the farm, at the same time generating additional income from the production of fertilizer.
Collapse
|
30
|
Li Y, Zhao J, Krooneman J, Euverink GJW. Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142940. [PMID: 33348487 DOI: 10.1016/j.scitotenv.2020.142940] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
Cow manure represents a surplus manure waste in agricultural food sectors, which requires proper disposal. Anaerobic digestion, in this regard, has raised global interest owing to its apparent environmental benefits, including simultaneous waste diminishment and renewable energy generation. However, dedicated intensifications are necessary to promote the degradation of recalcitrant lignocellulosic components of cow manure. Hence, this manuscript presents a review of how to exploit cow manure in anaerobic digestion through different incentives extensively at lab-scale and full-scale. These strategies comprise 1) co-digestion; 2) pretreatment; 3) introduction of additives (trace metals, carbon-based materials, low-cost composites, nanomaterials, and microbial cultures); 4) innovative systems (bio-electrochemical fields and laser irradiation). Results imply that co-digestion and pretreatment approaches gain the predominance on promoting the digestion performance of cow manure. Particularly, for the co-digestion scenario, the selection of lignin-poor co-substrate is highlighted to produce maximum synergy and pronounced removal of lignocellulosic compounds of cow manure. Mechanical, thermal, and biological (composting) pretreatments generate mild improvement at laboratory-scale and are proved applicable in full-scale facilities. It is noteworthy that the introduction of additives (Fe-based nanomaterials, carbon-based materials, and composites) is acquiring more attention and shows promising full-scale application potential. Finally, bio-electrochemical fields stand out in laboratory trials and may serve as future reactor modules in agricultural anaerobic digestion installations treating cow manure.
Collapse
Affiliation(s)
- Yu Li
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Janneke Krooneman
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Gert Jan Willem Euverink
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
31
|
Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects. ENERGIES 2020. [DOI: 10.3390/en13226058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although cow manure is a valuable natural fertilizer, it is also a source of extreme greenhouse gas emissions, mainly methane. For this reason, this study aims to determine the impact of investments in a biogas plant on the energy and economic aspects of the operation of a dairy farm. A farm with a breeding size of 600 livestock units (LSU) was adopted for the analysis. In order to reach the paper’s aim, the analysis of two different scenarios of dairy farm functioning (conventional–only milk production, and modern–with biogas plant exploitation) was conducted. The analysis showed that the investment in biogas plant operations at a dairy farm and in using cow manure as one of the main substrates is a more profitable scenario compared to traditional dairy farming. Taking into account the actual Polish subsidies for electricity produced by small biogas plants, the scenario with a functioning biogas plant with a capacity of 500 kW brings €332,000/a more profit compared to the conventional scenario, even when taking into account additional costs, including the purchase of straw to ensure a continuous operation of the installation. Besides, in the traditional scenario, building a biogas plant allows for an almost complete reduction of greenhouse gas emissions during manure storage.
Collapse
|