1
|
Yuan S, Zhang J, Yu X, Zhu X, Zhang N, Yuan S, Wang Z. Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:978-988. [PMID: 39807585 DOI: 10.1021/acs.est.4c10047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated. The interaction mechanism between typical components of HA and active silica was evaluated by molecular dynamics simulations. We find that the addition of HA alleviated the significant decrease in water flux, with recoveries surpassing 60% and 80% at 10 and 20 ppm of HA, respectively. Quantum chemical calculations indicate that the presence of HA greatly raised the free-energy barriers of silica polymerization compared to the system without HA (489.7 vs 45.1 kJ mol-1). Moreover, the interaction between HA molecules and silica significantly weakened the diffusion capacity of silica scale in water (diffusion coefficient from 1.04 × 10-5 to 0.08 × 10-5 cm2 s-1), consequently decreasing the likelihood of contact between silica scale and the hydrophobic membrane. Finally, a neural network analysis model for the HA and silica interaction was developed to design effective inhibitors for silica polymerization. Overall, this study develops nanoscale modeling and simulations to understand how HA inhibits silica scaling in membrane processes, guiding the formation of new approaches to enhance MD performance.
Collapse
Affiliation(s)
- Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xinmeng Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xiaohui Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Zheng L, Wu Q, Ulbricht M, Zhong H, Duan N, Van der Bruggen B, Wei Y. Contrasting mixed scaling patterns and mechanisms of nanofiltration and membrane distillation. WATER RESEARCH 2024; 258:121671. [PMID: 38749186 DOI: 10.1016/j.watres.2024.121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 06/16/2024]
Abstract
Oriented towards the pressing needs for hypersaline wastewater desalination and zero liquid discharge (ZLD), the contrasting mixed scaling of thermal-driven vacuum membrane distillation (VMD) and pressure-driven nanofiltration (NF) were investigated in this work. Bulk crystallization was the main mechanism in VMD due to the high salinity and temperature, but the time-independent resistance by the adsorption of silicate and organic matter dominated the initial scaling process. Surface crystallization and the consequent pore-blocking were the main scaling mechanisms in NF, with the high permeate drag force, hydraulic pressure, and cross-flow rate resulting in the dense scaling layer mainly composed of magnesium-silica hydrate (MSH). Silicate enhanced NF scaling with a 75% higher initial flux decline rate attributed to the MSH formation and compression, but delayed bulk crystallization in VMD. Organic matter presented an anti-scaling effect by delaying bulk crystallization in both VMD and NF, but specifically promoted CaCO3 scaling in NF. Furthermore, the incipient scaling was intensified as silicate and organic matter coexisted. The scaling mechanism shifted from surface to bulk crystallization due to the membrane concentration in both VMD and NF. This work fills the research gaps on mixed scaling mechanisms in different membrane processes, which offers insights for scaling mitigation and thereby supports the application of ZLD.
Collapse
Affiliation(s)
- Libing Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium
| | - Qiyang Wu
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ningxin Duan
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zheng L, Zhong H, Wang Y, Duan N, Ulbricht M, Wu Q, Van der Bruggen B, Wei Y. Mixed scaling patterns and mechanisms of high-pressure nanofiltration in hypersaline wastewater desalination. WATER RESEARCH 2024; 250:121023. [PMID: 38113598 DOI: 10.1016/j.watres.2023.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Nanofiltration (NF) will play a crucial role in salt fractionation and recovery, but the complicated and severe mixed scaling is not yet fully understood. In this work, the mixed scaling patterns and mechanisms of high-pressure NF in zero-liquid discharge (ZLD) scenarios were investigated by disclosing the role of key foulants. The bulk crystallization of CaSO4 and Mg-Si complexes and the resultant pore blocking and cake formation under high pressure were the main scaling mechanisms in hypersaline desalination. The incipient scalants were Mg-Si hydrates, CaF2, CaCO3, and CaMg(CO3)2. Si deposited by adsorption and polymerization prior to and impeded Ca scaling when Mg was not added, thus pore blocking was the main mechanism. The amorphous Mg-Si hydrates contribute to dense cake formation under high hydraulic pressure and permeate drag force, causing rapid flux decline as Mg was added. Humic acid has a high affinity to Ca2+by complexation, which enhances incipient scaling by adsorption or lowers the energy barrier of nucleation but improves the interconnectivity of the foulants layer and inhibits bulk crystallization due to the chelation and directional adsorption. Bovine serum albumin promotes cake formation due to the low electrostatic repulsion and acts as a cement to particles by adsorption and bridging in bulk. This work fills the research gaps in mixed scaling of NF, which is believed to support the application of ZLD and shed light on scaling in hypersaline/ultra-hypersaline wastewater desalination applications.
Collapse
Affiliation(s)
- Libing Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanxiang Wang
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ningxin Duan
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | - Qiyang Wu
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Sun X, Duan L, Liu Z, Gao Q, Liu J, Zhang D. The mechanism of silica and transparent exopolymer particles (TEP) on reverse osmosis membranes fouling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119634. [PMID: 37995634 DOI: 10.1016/j.jenvman.2023.119634] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Dissolved silica and transparent exopolymer particles (TEP) are the primary foulants in reverse osmosis (RO) desalinated brackish water and wastewater. In this study, we investigated the fouling properties of varying silica concentrations with TEP on the membrane surface and discovered a synergistic fouling effect between the silanol group (Si-OH) and the TEP carboxyl group (-COOH). The membrane fouling experiments showed that silica fouling approached saturation at 6 mM, with little variation in membrane flux as the silica concentration increased. Furthermore, the -OH functional group of the monosilicate molecule can chemically react with the -COO- functional group on the membrane surface to create hydrogen bonds, allowing monosilicate deposition directly on the membrane. Silica-silica interactions reacted with aggregates at high silica concentrations and joined with TEP to create a more substantial, more complex cross-linked network, resulting in severe membrane fouling. At pH 9, silica fouling was most severe due to the dramatic increase in the solubility of monosilicic acid dissolution in solution and the decreased polymerization rate. This work reveals the essential process of membrane fouling induced by silica and TEP, significantly increasing knowledge on silica-TEP fouling.
Collapse
Affiliation(s)
- Xiaochen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Resources & Environment, Nanchang University, Nanchang, 330031, China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266000, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhenzhong Liu
- School of Resources & Environment, Nanchang University, Nanchang, 330031, China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266000, China.
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Jianing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao, 266000, China
| |
Collapse
|
5
|
Lu KG, Ma S, Hua D, Liu H, Li C, Song J, Huang H, Qin Y. Silica mitigated calcium mineral scaling in brackish water reverse osmosis. WATER RESEARCH 2023; 243:120428. [PMID: 37536247 DOI: 10.1016/j.watres.2023.120428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Although the autopsies of reverse osmosis (RO) membranes from full-scale, brackish water desalination plants identify the co-presence of silica and Ca-based minerals in scaling layers, minimal research exists on their formation process and mechanisms. Therefore, combined scaling by silica and either gypsum (non-alkaline) or amorphous calcium phosphate (ACP, alkaline) was investigated in this study for their distinctive impacts on membrane performance. The obtained results demonstrate that the coexistence of silica and Ca-based mineral salts in feedwaters significantly reduced water flux decline as compared to single type of Ca-based mineral salts. This antagonistic effect was primarily attributed to the silica-mediated alleviation of Ca-based mineral scaling. In the presence of silica, silica skins were immediately established around Ca-based mineral precipitates once they emerged. Sheathing by the siliceous skins hindered the aggregation and thus the morphological evolution of Ca-based mineral species. Unlike sulfate precipitates, ACP precipitates can induce the formation of dense and thick silica skins via an additional condensation reaction. Such a phenomenon rationalized the notion concerning a stronger mitigating effect of silica on ACP scaling than gypsum scaling. Meanwhile, coating by silica skins altered the surface chemistries of Ca-based mineral precipitates, which should be fully considered in regulating membrane surface properties for combined scaling control. Our findings advance the mechanistic understanding on combined mineral scaling of RO membranes, and may guide the appropriate design of membrane surface properties for scaling-resistant membrane tailored to brackish water desalination.
Collapse
Affiliation(s)
- Kai-Ge Lu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory for Water and Sediment Science, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Shuanglong Ma
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Chang Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Jia Song
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiou Huang
- Key Laboratory for Water and Sediment Science, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China; Department of Environmental Health and Engineering, The John Hopkins University, 615 North Wolfe Street, MD 21205, USA.
| | - Yuchen Qin
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
6
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Zheng L, Li C, Zhang C, Kang S, Gao R, Wang J, Wei Y. Mixed scaling deconstruction in vacuum membrane distillation for desulfurization wastewater treatment by a cascade strategy. WATER RESEARCH 2023; 238:120032. [PMID: 37146399 DOI: 10.1016/j.watres.2023.120032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Mineral scaling is one key obstacle to membrane distillation in hypersaline wastewater desalination, but the scaling or fouling mechanism is poorly understood. Addressing this challenge required revealing the foulants layer formation process. In this work, the scaling process was deconstructed with a cascade strategy by stepwise changing the composition of the synthetic desulfurization wastewater. The flux decline curves presented a 3-stage mode in vacuum membrane distillation (VMD). Heterogeneous nucleation of CaMg(CO3)2, CaF2, and CaCO3 was the main incipient scaling mechanism. Mg-Si complex was the leading foulant in 2nd-stage, during which the scaling mechanism shifted from surface to bulk crystallization. The flux decreased sharply for the formation of a thick and compacted scaling layer by the bricklaying of CaSO4 and Mg-Si-BSA complexes in the 3rd-stage. Bulk crystallization was identified as the key scaling mechanism in VMD for the high salinity and concentration multiple. The organic matter had an anti-scaling effect by changing the bulk crystallization. Humic acids (HA) and colloidal silica also contributed to incipient scaling for the high affinity to membrane, bovine serum albumin (BSA) acting as the cement of Mg-Si complexes. Mg altered the Si scaling from polymerization to Mg-Si complex formation, which significantly influence the mixed scaling mechanism. This work deconstructed the mixed scaling process and illuminated the role of main foulants, filling in the knowledge gap on the mixed scaling mechanism in VMD for hypersaline wastewater treatment and recovery.
Collapse
Affiliation(s)
- Libing Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II and Center for Water and Environmental Research (ZWU), Universität Duisburg-Essen, Essen 45117, Germany; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chenlu Li
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chun Zhang
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sai Kang
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Gao
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Zhu X, Tian T, Li D, Hei S, Chen L, Song G, Lin W, Huang X. Interface interaction between silica and organic macromolecule conditioned forward osmosis membranes: Insights into quantitative thermodynamics and dynamics. WATER RESEARCH 2023; 232:119721. [PMID: 36780747 DOI: 10.1016/j.watres.2023.119721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Silica scaling is a rising concern in forward osmosis membrane-based water treatment process. The coexistence of ubiquitous organic macromolecules causes complex silica scaling. The silica scaling mechanism on the surface of the organic conditioned membrane remains unclear. An integrated multi scale thermodynamic and dynamic approach was used in this study to provide in-depth insights into the binding effect at the interface between the silica and the organic conditioned membrane at the molecular level. Sodium alginate (SA) was used as the model polysaccharide, bovine serum albumin (BSA) and lysozyme (LYZ) were chosen as two oppositely charged proteins. The results show that the silica scaling degree of different organic conditioned membranes follows the order LYZ > BSA > SA. The binding strength between silica and organic macromolecules and the membrane surface charge are the major factors governing the degree of silica scaling. Quartz crystal microbalance with dissipation (QCM-D), isothermal titration calorimetry (ITC), and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model analyses were conducted to quantify the binding capacity of silica to the organic conditioned membrane. The LYZ conditioned membrane exhibits the highest affinity for silica adsorption, and electrostatic interaction was the main molecular interaction force. This study provides fresh insights into how silica and an organic conditioned membrane interact and induce silica scaling, providing new information on potential mechanisms and control strategies to prevent membrane scaling.
Collapse
Affiliation(s)
- Xianzheng Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tuo Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangqing Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Wang P, Cheng W, Zhang X, Liu Q, Li J, Ma J, Zhang T. Membrane Scaling and Wetting in Membrane Distillation: Mitigation Roles Played by Humic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3258-3266. [PMID: 35148061 DOI: 10.1021/acs.est.1c07294] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane scaling and wetting severely hinder practical applications of membrane distillation (MD) for hypersaline water/wastewater treatment. In this regard, the effects of feedwater constituents are still not well understood. Herein, we investigated how humic acid (HA) influenced gypsum-induced membrane scaling and wetting during MD desalination. At low concentrations (5-20 mg L-1), HA notably mitigated membrane scaling and wetting. The morphological characterization of scaled membranes revealed that the antiwetting behavior could be ascribed to the formation of a compact and protective gypsum/HA scale layer, which blocked the flow channel of scaling ions and suppressed the intrusion of scale particles into membrane pores. Based on the comprehensive analysis of the scaling process, the formation of the scale layer was related to the heterogeneous crystallization of gypsum on the membrane surface. Moreover, deprotonated HA interfered with the heterogeneous crystallization process by inhibiting the formation of gypsum nuclei and altering the orientation of crystal growth, thus delaying membrane scaling and altering the morphology of the scale layer. Thermodynamic and kinetic analyses further demonstrated the mitigation mechanism of HA. Furthermore, improved fouling reversibility and antiwetting ability in synthetic seawater treatment endowed by HA were observed. This study provides new insight into the roles played by the organic constituents of water/wastewater during membrane desalination, providing a valuable reference for developing novel strategies to improve the performance of MD.
Collapse
Affiliation(s)
- Peizhi Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qianliang Liu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Li D, Lin W, Shao R, Shen YX, Zhu X, Huang X. Interaction between humic acid and silica in reverse osmosis membrane fouling process: A spectroscopic and molecular dynamics insight. WATER RESEARCH 2021; 206:117773. [PMID: 34695668 DOI: 10.1016/j.watres.2021.117773] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Combined organic and inorganic fouling is a primary barrier constraining the performance of reverse osmosis (RO) membrane. In this work, we conducted a systematic study focusing on the synergetic fouling effects of silica and humic acid (HA) in RO process, and found the critical silica concentration where the fouling pattern changed qualitatively. When the silica concentration was lower than 6 mM at a typical HA concentration of 50 mg·L-1, no severe fouling was observed, while silica reaching this critical point could cause severe synergetic fouling with HA. Concentrated silica above the critical point acted as the prior foulant with marginal fouling effect caused by HA. A variety of solutions and surface-based characterizations were performed to elucidate the synergistic fouling responsibility for silica and HA. Our study suggests that the carboxylic groups from HA formed hydrogen bonds with silica hydrate, inducing silica adsorption onto HA aggregates at low silica particle concentrations. The HA network was bridged together to form large foulants due to the silica-silica interaction above the silica critical concentration. These mechanisms were further confirmed by molecular dynamics simulations. This study provides an in-depth insight into the combined organic-inorganic fouling and can serve as a guideline to optimize feed conditions in order to mitigate fouling of RO in wastewater reusing industry.
Collapse
Affiliation(s)
- Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruipeng Shao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue-Xiao Shen
- Department of Construction, Civil and Environmental Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Xianzheng Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Czuba K, Bastrzyk A, Rogowska A, Janiak K, Pacyna K, Kossińska N, Kita M, Chrobot P, Podstawczyk D. Towards the circular economy - A pilot-scale membrane technology for the recovery of water and nutrients from secondary effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148266. [PMID: 34119800 DOI: 10.1016/j.scitotenv.2021.148266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The concept of water reuse was proposed more than two decades ago in regions that suffered from water scarcity or relied on unpredictable water supplies. Since then, climate change, a rapidly growing global urban population, and environmental pollution have impacted sustainable water resources, driving a rise in demand for efficient wastewater reclamation technologies. According to the new Circular Economy Action Plan established by the EU, most activities that are undertaken as part of the wastewater treatment process should primarily concern the search for new technologies that use wastewater as a source of water and nutrients. This article proposes a new approach of secondary effluent (SE) management to recover the valuable components of wastewater for a variety of purposes, beginning with the water itself and followed by nutrients. With this objective in mind, we reclaimed SE in an integrated 3-stage pilot-scale membrane process (micro/ultrafiltration, nanofiltration and reverse osmosis). The effect of the process inlet pressure and flow configuration (cross-flow and dead-end filtration), as well as the type of membrane, on the efficiency of the process and water composition was investigated. In this study, microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) are not only pre-treatment processes reverse osmosis (RO) but also produce water for various purposes. This technology allowed the production of water for several types of applications. These uses include (a) industrial processes as a cooling medium, (b) urban non-potable applications (e.g., irrigation with reclaimed water and microelements), (c) potable water supplies, and (d) groundwater remediation. The classification of proper use was made based on standards, regulations, and the available literature. The conducted research demonstrated the versatility of the proposed technology with regard to water reclamation for various non-exclusive applications. Additionally, the cost-effectiveness of the implementation of the presented 3-stage-membrane technology was calculated.
Collapse
Affiliation(s)
- Krystian Czuba
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Anna Bastrzyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Aleksandra Rogowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland; Department of Water and Wastewater Treatment Technology, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Kamil Janiak
- Department of Water and Wastewater Treatment Technology, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland; Center of New Technologies, Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland
| | - Kornelia Pacyna
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Nina Kossińska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Michał Kita
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Przemysław Chrobot
- Center of New Technologies, Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland.
| |
Collapse
|