1
|
Lorente B, Cabral C, Frias J, Faria J, Toubarro D. Draft genome sequence of Agarivorans aestuarii strain ZMCS4, a putative CAZyme-producing bacteria isolated from the marine brown algae Cladostephus spongiosus. Microbiol Resour Announc 2024; 13:e0117823. [PMID: 38534151 PMCID: PMC11080527 DOI: 10.1128/mra.01178-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
We report the draft genome sequence of Agarivorans aestuarii strain ZMCS4, isolated from Cladostephus spongiosus. The assembled genome consists of 4.5 Mbp, comprising 25 contigs and 4,128 coding sequences. This genome will provide insights into further studies on relevant CAZymes involved in the hydrolysis of algal cell walls.
Collapse
Affiliation(s)
- Beatriz Lorente
- />CIBIO – Research Centre in Biodiversity and Genetic Resources, InBio Associate Laboratory, University of the Azores, Ponta Delgada, Portugal
| | - Carla Cabral
- Biotechnology Centre of Azores (CBA), University of the Azores, Ponta Delgada, Portugal
| | - Jorge Frias
- Biotechnology Centre of Azores (CBA), University of the Azores, Ponta Delgada, Portugal
| | - João Faria
- />CIBIO – Research Centre in Biodiversity and Genetic Resources, InBio Associate Laboratory, University of the Azores, Ponta Delgada, Portugal
| | - Duarte Toubarro
- Biotechnology Centre of Azores (CBA), University of the Azores, Ponta Delgada, Portugal
| |
Collapse
|
2
|
Zhao L, Harvey BP, Higuchi T, Agostini S, Tanaka K, Murakami-Sugihara N, Morgan H, Baker P, Hall-Spencer JM, Shirai K. Ocean acidification stunts molluscan growth at CO 2 seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162293. [PMID: 36813205 DOI: 10.1016/j.scitotenv.2023.162293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification can severely affect bivalve molluscs, especially their shell calcification. Assessing the fate of this vulnerable group in a rapidly acidifying ocean is therefore a pressing challenge. Volcanic CO2 seeps are natural analogues of future ocean conditions that offer unique insights into the scope of marine bivalves to cope with acidification. Here, we used a 2-month reciprocal transplantation of the coastal mussel Septifer bilocularis collected from reference and elevated pCO2 habitats to explore how they calcify and grow at CO2 seeps on the Pacific coast of Japan. We found significant decreases in condition index (an indication of tissue energy reserves) and shell growth of mussels living under elevated pCO2 conditions. These negative responses in their physiological performance under acidified conditions were closely associated with changes in their food sources (shown by changes to the soft tissue δ13C and δ15N ratios) and changes in their calcifying fluid carbonate chemistry (based on shell carbonate isotopic and elemental signatures). The reduced shell growth rate during the transplantation experiment was further supported by shell δ13C records along their incremental growth layers, as well as their smaller shell size despite being of comparable ontogenetic ages (5-7 years old, based on shell δ18O records). Taken together, these findings demonstrate how ocean acidification at CO2 seeps affects mussel growth and reveal that lowered shell growth helps them survive stressful conditions.
Collapse
Affiliation(s)
- Liqiang Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan.
| | - Tomihiko Higuchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Kentaro Tanaka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | | | - Holly Morgan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Phoebe Baker
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Kotaro Shirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
3
|
Qu Y, Zhang T, Zhang R, Wang X, Zhang Q, Wang Q, Dong Z, Zhao J. Integrative assessment of biomarker responses in Mytilus galloprovincialis exposed to seawater acidification and copper ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158146. [PMID: 35987231 DOI: 10.1016/j.scitotenv.2022.158146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The interactive effects of ocean acidification (OA) and copper (Cu) ions on the mussel Mytilus galloprovincialis are not well understood. The underlying mechanisms also remain obscure. In this study, individuals of M. galloprovincialis were exposed for 28 days to 25 μg/L and 50 μg/L Cu ions at two pH levels (ambient level - pH 8.1; acidified level - pH 7.6). The mussels were then monitored for 56 days to determine their recovery ability. Physiological parameters (clearance rate and respiration rate), oxidative stress and neurotoxicity biomarkers (activities of superoxide dismutase, lipid peroxidation, catalase, and acetylcholinesterase), as well as the recovery ability of these parameters, were investigated in two typical tissues (i.e., gills and digestive glands). Results showed that (1) OA affected the bioconcentration of Cu in the gills and digestive glands of the mussels; (2) both OA and Cu can lead to physiological disturbance, oxidative stress, cellular damage, energy metabolism disturbance, and neurotoxicity on M. galloprovincialis; (3) gill is more sensitive to OA and Cu than digestive gland; (4) Most of the biochemical and physiological alternations caused by Cu and OA exposures in M. galloprovincialis can be repaired by the recovery experiments; (5) integrated biomarker response (IBR) analysis demonstrated that both OA and Cu ions exposure caused survival stresses to the mussels, with the highest effect shown in the co-exposure treatment. This study highlights the necessity to include OA along with pollutants in future studies to better elucidate the risks of ecological perturbations. The work also sheds light on the recovery of marine animals after short-term environmental stresses when the natural environment has recovered.
Collapse
Affiliation(s)
- Yi Qu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rongliang Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China.
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Researchs, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China.
| |
Collapse
|