1
|
Gao Z, Zhang Z, Li Q, Wu H, Wang M, Tian X, Wang A, Li J. Improving contaminant removal and inhibiting CH 4 and H 2S emissions from septic tanks: Nitrified human urine as a source of electron acceptor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175410. [PMID: 39127217 DOI: 10.1016/j.scitotenv.2024.175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Septic tanks are widely adopted in decentralized household wastewater treatment systems serving billions of people globally. Due to the lack of effective electron acceptors, insufficient nutrient removal and the emission of harmful gases, e. g. H2S, CH4, etc., are the common drawbacks. In the present work, we attempted to supplement nitrite into septic tanks as an electron acceptor, via nitrifying human urine source-separated from blackwater, to overcome these drawbacks. Partial or complete nitritation of source-separated urine was achieved in a sequencing batch reactor. The addition of nitrified urine into septic tanks improved organic and nitrogen removals in blackwater up to 90 % and 70 %, respectively. The emission of harmful gases from the septic tanks was stably diminished, with more than 75 % of CH4, CO2 and H2S reductions. Nitrite addition significantly reduced the abundance of hydrogenotrophic methanogens in septic tanks. Though the activity of sulfate-reducing bacteria recovered after the initial inhibition upon nitrite addition, the bio-generated H2S was retained in water since the increased wastewater pH after nitrite addition promoted the disassociation of H2S in aqueous solution.
Collapse
Affiliation(s)
- Zhenchao Gao
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Zhongguo Zhang
- School of Environment, Beijing Jiaotong University, Beijing 100044, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China.
| | - Qingyun Li
- China Academy of Space Technology, Beijing 100081, China
| | - Haoyuan Wu
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Mengyu Wang
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Xiujun Tian
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Aimin Wang
- School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
2
|
Ribarova I, Vasilaki V, Katsou E. Review of linear and circular approaches to on-site domestic wastewater treatment: Analysis of research achievements, trends and distance to target. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121951. [PMID: 39079496 DOI: 10.1016/j.jenvman.2024.121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
This comprehensive review critically assesses traditional and emerging technologies for domestic wastewater treatment and reuse, focusing on the transition from conventional centralised systems to innovative decentralised approaches. Through an extensive literature search on domestic wastewater systems serving a population equivalent of less than or equal to 10, the study juxtaposes linear and circular methods and highlights their impact on urban water management and the environment. The papers reviewed were classified into five categories: Environmental studies, economic studies, social studies, technological studies, and reviews and policy papers. The analysis was carried out separately for linear and circular approaches within each category. In addition, the maturity of the technology (lab/pilot or full-scale application) was taken into account in the analysis. The research landscape is shown to be evolving towards circular methods that promise sustainability through resource recovery, despite the dominance of linear perspectives. The lack of clear progress in decentralised technologies, the scarcity of circularity assessments and the challenges of urban integration are highlighted. Operational reliability, regulatory compliance and policy support are identified as key barriers to the adoption of decentralised systems. While conventional pollutants and their environmental impacts are well addressed for linear systems, the study of emerging pollutants is in its infancy. Conclusions on the impact of these hazardous pollutants are tentative and cautious. Social and economic studies are mainly based on virtual scenarios, which are useful research tools for achieving sustainability goals. The conceptual frameworks for assessing the social dimension need further refinement to be effective. The paper argues for a balanced integration of centralisation and decentralisation, proposing a dual strategy that emphasizes the development of interoperable technologies. It calls for further research, policy development and widespread implementation to promote decentralised solutions in urban water management and pave the way for sustainable urban ecosystems.
Collapse
Affiliation(s)
- Irina Ribarova
- University of Architecture, Civil Engineering and Geodezy, 1 Chr. Smirnensku Blvd., 1046, Sofia, Centre of Competence "Clean&Circle", Bulgaria.
| | - Vasileia Vasilaki
- Department of Civil and Environmental Engineering, Imperial College London, Skempton Building, South Kensington, London, SW7 2AZ, United Kingdom.
| | - Evina Katsou
- Department of Civil and Environmental Engineering, Imperial College London, Skempton Building, South Kensington, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
3
|
Zhang J, Jiang Y, Zhang H, Feng D, Bu H, Li L, Lu S. A critical review of characteristics of domestic wastewater and key treatment techniques in Chinese villages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172155. [PMID: 38575028 DOI: 10.1016/j.scitotenv.2024.172155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
As of 2022, China's rural sewage treatment rate is only approximately 31 %. Rapid rural development has led to higher demand. However, China's rural areas are complex and face many problems, such as uneven economic development, population distribution, and water availability. Long-lasting and low-cost wastewater treatment measures are needed for application in rural areas. The quantity and quality of rural domestic wastewater in China were characterized first. Next, the hot topic of domestic wastewater in Chinese villages was confirmed via bibliometric analysis using CiteSpace, and the treatment technologies for rural domestic wastewater were compared. Specifically, the technical status and challenges of the most common technology in rural domestic wastewater treatment, constructed wetlands, were summarized.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yungeng Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Heyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Dan Feng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Hongling Bu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Linlin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
4
|
Saeed T, Al-Muyeed A, Zaman T, Hasan M, Ahmed T. Bioenergy-producing two-stage septic tank and floating wetland for onsite wastewater treatment: Circuit connection and external aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121011. [PMID: 38678907 PMCID: PMC11129191 DOI: 10.1016/j.jenvman.2024.121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
This study designed a two-stage, electrode-integrated septic tank-floating wetland system and assessed their pollutant removal performances under variable operational conditions. The two-stage system achieved mean organic, nitrogen, phosphorus, and coliform removal percentages of 99, 78, 99, and 97%, respectively, throughout the experimental run. The mean metals (chromium, cadmium, nickel, copper, zinc, lead, iron, and manganese) removal percentages ranged between 81 and 98%. Accumulated sludge, filler media, and the hanging root mass contributed to pollutant removals by supporting physicochemical and biological pathways. The mean effluent organic concentration and coliform number across the two-stage system were 20 mg/L and 1682 CFU/100 mL, respectively, during the closed-circuit protocol, which was beneath the open-circuit-based performance profiles, i.e., 32 mg/L and 2860 CFU/100 mL, respectively. Effluent organic, nitrogen, phosphorus, metals, and coliform number ranges across the two-stage system were 9-17 mg/L, 13-24 mg/L, 1-1.5 mg/L, 0.001-0.2 mg/L, and 1410-2270 CFU/100 mL, respectively during intermittent and continuous aeration periods. The air supply rate differences influenced pollutant removal depending on the associated removal mechanisms. The non-aeration phase produced higher effluent pollutant concentrations than the aeration periods-based profiles. The overall mean power density production of the septic tank ranged between 107 and 596 mW/m3; 110 and 355 mW/m3 with the floating wetland. The bioenergy production capacity of the septic tank was positively correlated to external air supply rates. This study demonstrates the potential application of the novel bioenergy-producing septic tank-floating wetland system for wastewater treatment in decentralized areas.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh; Institute of Energy, Environment, Research and Development (IEERD), University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Abdullah Al-Muyeed
- CWIS-FSM Support Cell, Department of Public Health Engineering, Government of the People's Republic of Bangladesh, Dhaka, 1000, Bangladesh.
| | - Takrim Zaman
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Mehedi Hasan
- ITN-BUET Centre for Water Supply and Waste Management, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Tanvir Ahmed
- ITN-BUET Centre for Water Supply and Waste Management, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh; Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| |
Collapse
|
5
|
Zhou L, Zhao B, Lin Y, Shao Z, Zeng R, Shen Y, Zhang W, Jian Y, Zhuang WQ. Identification of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification in the dynamic cake layer of a full-scale anoixc dynamic membrane bioreactor for treating hotel laundry wastewater. CHEMOSPHERE 2022; 307:136078. [PMID: 35985382 DOI: 10.1016/j.chemosphere.2022.136078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Identification of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification in the dynamic cake layer of a full-scale anoixc dynamic membrane bioreactor (AnDMBR) for treating hotel laundry wastewater was studied. A series of experiments were conducted to understand the contributions of DNRA and canonical denitrification activities in the dynamic cake layer of the AnDMBR. The dynamic cake layer developed included two phases - a steady transmembrane pressure (TMP) increase at 0.24 kPa/day followed by a sharp TMP jump at 1.26 kPa/day four to five days after the AnDMBR start-up. The nitrogen mass balance results showed that canonical denitrification was predominant during the development of the dynamic cake layer. However, DNRA activity and accumulation of bacteria equipped with a complete DNRA pathway showed a positive correlation to the development of the dynamic cake layer. Our metagenomic analysis identified an approximately 18% of the dynamic cake layer bacterial community has a complete DNRA pathway. Pannonibacter (1%), Thauera (0.8%) and Pseudomonas (3%) contained all genes encoding for funcional enzymes of both DNRA (nitrate reductase and DNRA nitrite reductase) and denitrification (nitrate reductase, nitrous oxide reductase and nitric oxide reductase). No other metagenome-assembled genomes (MAGs) possessed a complete cononical denitrification pathway, indicating food-chain-like interactions of denitrifiers in the dynamic cake layer. We found that COD loading rate could be used to control DNRA and canonical denitrification activities during the dynamic cake layer formation.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanzhong Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiyuan Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rongjie Zeng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yichang Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yixin Jian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
6
|
Dubois V, Falipou E, Boutin C. Quantification and qualification of the urban domestic pollution discharged per household and per resident. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1484-1499. [PMID: 35290227 DOI: 10.2166/wst.2022.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The research study aims to analyze the discharges of solely domestic wastewater from 15 single-family dwellings. This sizable dataset, containing over 300 unique and insightful data points, makes it possible to accurately qualify the raw wastewater in terms of concentrations, volumes and pollutant loads. Findings quantify the extremely wide data variability. As such, for single-family households of fewer than six residents, it is suggested not to use the standard P.E. pollution value as the design load, but rather a load range defined by the interval [10th percentile, 90th percentile] of the data distribution, i.e. [123; 568 L·d- 1] and [30; 281 g BOD5·d-1], respectively, for the daily hydraulic and organic loads. Also, an analysis of the hydraulic peak factor would tend to lobby in favor of a collective sewer solution. For subdivisions and residential zones with little economic activity and similar French lifestyle, the daily domestic pollution per resident is now determined with the values: 40 g suspended solids, 94 g carbon oxygen demand, 40 g five-day biochemical oxygen demand, 6.7 g NH4+-N, 10.4 g Kjeldhal nitrogen, and 1.2 g total phosphorus for a volume of 83 L. Those data could be used to optimize design and operation of decentralized or small-scale wastewater treatment plant.
Collapse
Affiliation(s)
- Vivien Dubois
- INRAE REVERSAAL, 5 rue de la Doua - CS 20244-69625, Villeurbanne Cedex, France E-mail:
| | - Eva Falipou
- INRAE REVERSAAL, 5 rue de la Doua - CS 20244-69625, Villeurbanne Cedex, France E-mail:
| | - Catherine Boutin
- INRAE REVERSAAL, 5 rue de la Doua - CS 20244-69625, Villeurbanne Cedex, France E-mail:
| |
Collapse
|
7
|
Kumar M, Sharma A, Tabhani N, Otaki Y. Indoor water end-use pattern and its prospective determinants in the twin cities of Gujarat, India: Enabling targeted urban water management strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112403. [PMID: 33823433 DOI: 10.1016/j.jenvman.2021.112403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Water end-use studies disaggregate the quantity and frequency of water uses for various household purposes. Water end-use studies are available but none for India, which is gradually approaching a water-scarce condition from being a water-stressed country at present. This implies a need for incorporating water end-use understanding for augmenting urban recycling plans and strategies. To identify socio-demographic determinants of water end-use consumption for use in targeted urban water management, we focused on the indoor micro-components of bathing, dish-washing, laundering, and cleaning at households across the twin cities of Gujarat, a water-scarce province of India. A mixed-method approach was used for data collection in which questionnaire surveys (estimated or indirect measurements) were coupled with water meters (direct measurements) at households. The twin cities of Gujrat represent a spatial variation in greywater production at homes even at a distance of 30-40 km. Direct measurement showed less total average water consumption in Ahmedabad (83 L/HH/d) than Gandhinagar (105 L/HH/d), while indirect measurement showed indoor average consumption of 427 and 497 L/HH/d in the respective cities. Statistical significance of income, family size, and education was noticed on the water consumption pattern of a household. Besides, the study provides the attitude and practice of users towards water conservation behavior. We present new insights and recommendations for future urban water sustainability that are specific to India and applicable to several south-Asian countries.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, 382355, Gujarat, India.
| | - Ayushi Sharma
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, 382355, Gujarat, India
| | - Nareshkumar Tabhani
- Gujarat Pollition Control Board, Paryavaran Bhavan, Gandhinagar, 382010, Gujarat, India
| | - Yurina Otaki
- Graduate School of Social Science, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo, 186-8601, Japan
| |
Collapse
|