1
|
Yang H, Chen L, Xiong R, Zeng Y, Jiang Y, Zhang J, Zhang B, Yang T. Experimental Warming Increased Cooked Rice Stickiness and Rice Thermal Stability in Three Major Chinese Rice Cropping Systems. Foods 2024; 13:1605. [PMID: 38890834 PMCID: PMC11171534 DOI: 10.3390/foods13111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Climate warming is a critical environmental issue affecting rice production. However, its effects on cooked rice texture and rice thermal properties remain unstudied in China. To address this gap, we conducted a two-year multi-site field warming experiment using free-air temperature increase facilities across three major Chinese rice cropping systems. Interestingly, warming had a minimal impact on the hardness of cooked rice, while it significantly increased stickiness by an average of 16.3% under warming conditions. Moreover, compared to control treatments, rice flour exhibited a significant increase in gelatinization enthalpy, onset, peak, and conclusion temperatures under warming conditions, with average increments of 8.7%, 1.00 °C, 1.05 °C, and 1.17 °C, respectively. In addition, warming significantly declined the amylose content, remarkedly elevated the protein content and relative crystallinity, and altered the weight distribution of the debranched starch. Correlation analysis revealed significant relationships between cooked rice stickiness, rice flour thermal properties, amylose content, protein content, and partial starch structures. Therefore, warming-induced alterations in rice composition and starch structure collectively enhanced cooked rice stickiness and rice thermal stability.
Collapse
Affiliation(s)
- Huifang Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The China Academy of Science, Beijing 100093, China
| | - Liming Chen
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, Jingdezhen 333400, China
| | - Ruoyu Xiong
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Taotao Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
2
|
Wei Q, Pan H, Yang Y, Tan S, Zheng L, Wang H, Zhang J, Zhang Z, Wei Y, Wang X, Ma X, Xiong S. Effects of elevated atmospheric [CO 2] on grain starch characteristics in different specialized wheat. FRONTIERS IN PLANT SCIENCE 2024; 14:1334053. [PMID: 38304450 PMCID: PMC10830628 DOI: 10.3389/fpls.2023.1334053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
The increasing atmospheric [CO2] poses great challenges to wheat production. Currently, the response of starch characteristics in different specialized wheat cultivars to elevated [CO2], as well as the underlying physiological and molecular mechanisms remains unclear. Therefore, an experiment was conducted with open-top chambers to study the effects of ambient [CO2] [a(CO2)] and elevated [CO2] [e(CO2)] on photosynthetic performance, yield and starch characteristics of bread wheat (Zhengmai 369, ZM369) and biscuit wheat (Yangmai 15, YM15) from 2020 to 2022. The results demonstrated a significant improvement in photosynthetic performance, yield, amylose and amylopectin content, volume ratio of large granules under e[CO2]. Moreover, e[CO2] upregulated the gene expression and enzyme activities of GBSS (Granule-bound starch synthase) and SSS (Soluble starch synthase), increased starch pasting viscosity, gelatinization enthalpy and crystallinity. Compared to YM15, ZM369 exhibited a higher upregulation of GBSSI, greater increase in amylose content and volume ratio of large granules, as well as higher gelatinization enthalpy and crystallinity. However, ZM369 showed a lower increase in amylopectin content and a lower upregulation of SSSI and SSSII. Correlation analysis revealed amylose and amylopectin content had a positive correlation with GBSS and SSS, respectively, a significant positively correlation among the amylose and amylopectin content, starch granule volume, and pasting properties. In conclusion, these changes may enhance the utilization value of biscuit wheat but exhibit an opposite effect on bread wheat. The results provide a basis for selecting suitable wheat cultivars and ensuring food security under future climate change conditions.
Collapse
Affiliation(s)
- Qiongru Wei
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Huqiang Pan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yuxiu Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shichao Tan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Liang Zheng
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Huali Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jie Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Guo K, Liang W, Wang S, Guo D, Liu F, Persson S, Herburger K, Petersen BL, Liu X, Blennow A, Zhong Y. Strategies for starch customization: Agricultural modification. Carbohydr Polym 2023; 321:121336. [PMID: 37739487 DOI: 10.1016/j.carbpol.2023.121336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Raw starch is commonly modified to enhance its functionality for industrial applications. There is increasing demand for 'green' modified starches from both end-consumers and producers. It is well known that environmental conditions are key factors that determine plant growth and yield. An increasing number of studies suggest growth conditions can expand affect starch structure and functionality. In this review, we summarized how water, heat, high nitrogen, salinity, shading, CO2 stress affect starch biosynthesis and physicochemical properties. We define these treatments as a fifth type of starch modification method - agricultural modification - in addition to chemical, physical, enzymatic and genetic methods. In general, water stress decreases peak viscosity and gelatinization enthalpy of starch, and high temperature stress increases starch gelatinization enthalpy and temperature. High nitrogen increases total starch content and regulates starch viscosity. Salinity stress mainly regulates starch and amylose content, both of which are genotype-dependent. Shading stress and CO2 stress can both increase starch granule size, but these have different effects on amylose content and amylopectin structure. Compared with other modification methods, agricultural modification has the advantage of operating at a large scale and a low cost and can help meet the ever-rising market of clean-label foods and ingredients.
Collapse
Affiliation(s)
- Ke Guo
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Wenxin Liang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety and School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Staffan Persson
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | | | - Bent L Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; Department of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Muhlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
4
|
Ge J, Chen X, Zhang X, Dai Q, Wei H. Comparisons of rice taste and starch physicochemical properties in superior and inferior grains of rice with different taste value. Food Res Int 2023; 169:112886. [PMID: 37254334 DOI: 10.1016/j.foodres.2023.112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
The difference in grain yield between superior grains (SG) on the upper part and inferior grains (IG) on the lower part of the same panicle was widely reported. To date, variations in rice taste quality between SG and IG and the related starch physicochemical properties remained poorly understood. Here, rice cultivars with different taste quality (NT, normal taste; GT, good taste) were grown to investigate the mechanism underlying taste difference between SG and IG and the correlation between cooked rice taste and starch properties. In this study, the taste value of GT rice was 32.2% higher than that of NT rice across the cultivars. The GT rice comprised a series of typical taste qualities of larger stickiness, smaller hardness, lower apparent amylose content (AAC), and lower protein content (PC). The taste quality differed among rice grains on the same panicle; SG achieved 21.9% and 17.0% higher taste value than IG in GT rice and NT rice, respectively. The higher taste value in SG was owing to the larger stickiness and lower PC. Meanwhile, SG of GT rice achieved the lowest PC (8.2%) and gluten content (5.6%), which might indicate a better health value. Additionally, larger and smoother granules, more fa (DP < 12), lower crystallinity, and larger 1045/1022 cm-1 ratios were found in SG starch compared to IG starch. These led to a weaker swelling power and lower gelatinization enthalpy in SG starch, while gelatinization temperature and retrogression enthalpy were the opposite. Moreover, SG starch exhibited higher storage modulus, loss modulus, slowly digestible starch contents, and resistant starch contents than IG. Our results revealed a great difference in taste quality between SG and IG in rice. The larger and smoother starch granules and shorter chain length could increase the ordered structure of starch, thus improving swelling power, gelatinization properties, and rheological characteristics and facilitating better taste quality of SG over IG. Besides, the lower PC (especially gluten content), higher slowly digestible starch, and higher resistant starch content indicated a more promising health value of SG in the food industry.
Collapse
Affiliation(s)
- Jialin Ge
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xu Chen
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China
| | - Xubin Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China
| | - Qigen Dai
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development/Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Huanhe Wei
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Yashini M, Khushbu S, Madhurima N, Sunil CK, Mahendran R, Venkatachalapathy N. Thermal properties of different types of starch: A review. Crit Rev Food Sci Nutr 2022; 64:4373-4396. [PMID: 36322685 DOI: 10.1080/10408398.2022.2141680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Starch is present in high amount in various cereals, fruits and roots & tubers which finds major application in industry. Commercially, starch is rarely consumed or processed in its native form, thus modification of starch is widely used method for increasing its application and process stability. Due to the high demand for starch in industrial applications, researchers were driven to hunt for new sources of starch, including modification of starch through green processing. Thermal properties are significant reference parameters for evaluating the quality of starch when it comes to cooking and processing. Modification of starches affects the thermal properties, which are widely studied using Differential scanning calorimeter or Thermogravimetric analysis. It could lead to a better understanding of starch's thermal properties including factors influencing and expand its commercial applications as a thickener, extender, fat replacer, etc. in more depth. Therefore, the review presents the classification of starches, factors influencing the thermal properties, measurement methods and thermal properties of starch in its native and modified form. Further, this review concludes that extensive research on the thermal properties of new sources of starch, as well as modified starch, is required to boost thermal stability and extend industrial applications.
Collapse
Affiliation(s)
- M Yashini
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - S Khushbu
- University of Hohenheim, Stuttgart, Germany
| | - N Madhurima
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - C K Sunil
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - R Mahendran
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| | - N Venkatachalapathy
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management-Thanjavur, Thanjavur, India
| |
Collapse
|
6
|
Zhang Z, Hu Y, Yu S, Zhao X, Dai G, Deng G, Bao J. Effects of drought stress and elevated CO2 on starch fine structures and functional properties in indica rice. Carbohydr Polym 2022; 297:120044. [DOI: 10.1016/j.carbpol.2022.120044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
|
7
|
Circular Economy: A Comprehensive Review of Eco-Friendly Wollastonite Applications. SUSTAINABILITY 2022. [DOI: 10.3390/su14053070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growing increase in greenhouse gases, especially carbon dioxide (CO2), by anthropogenic activities can be linked to extreme climate events, such as intensive droughts, floods, or hurricanes, and has led to several studies focused on reducing the concentration of this greenhouse gas in the atmosphere. Some technologies, such as carbon capture and storage (CCS), can potentially sequester billions of tons of CO2 per year. One of the promising methods is the use of carbon mineralization as a CCS methodology. For this approach, some minerals can be investigated, such as wollastonite, which can be obtained from agricultural waste recovery. One topic of interest in these studies is agriculture, demonstrating that it can play an important role in climate change mitigation. This work presents a critical review of the studies of rice waste use for potential synthesizing wollastonite as a path for CO2 storage, promoting the circular economy. Several works were analyzed and presented, addressing eco-friendly wollastonite use, such as in the cement industry, and they can contribute to a lower global warming potential. There is a promising way to explore, once there are few studies in the literature about CO2 capture and storage of wollastonite by carbon mineralization.
Collapse
|
8
|
Yang T, Yang H, Zhang B, Wu L, Huang Q, Zou J, Jiang Y, Zhang N. Effects of warming on starch structure, rice flour pasting property, and cooked rice texture in a double rice cropping system. Cereal Chem 2022. [DOI: 10.1002/cche.10529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taotao Yang
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology Institute of Botany The China Academy of Science Beijing 100093 China
| | - Bin Zhang
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Longmei Wu
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Qing Huang
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Jixiang Zou
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University Nanjing 210095 China
| | - Nan Zhang
- Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University Nanjing 210095 China
| |
Collapse
|
9
|
Gao B, Hu S, Jing L, Wang Y, Zhu J, Wang K, Li H, Sun X, Wang Y, Yang L. Impact of Elevated CO 2 and Reducing the Source-Sink Ratio by Partial Defoliation on Rice Grain Quality - A 3-Year Free-Air CO 2 Enrichment Study. FRONTIERS IN PLANT SCIENCE 2021; 12:788104. [PMID: 35003176 PMCID: PMC8733338 DOI: 10.3389/fpls.2021.788104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 05/26/2023]
Abstract
Evaluating the impact of increasing CO2 on rice quality is becoming a global concern. However, whether adjusting the source-sink ratio will affect the response of rice grain quality to elevated CO2 concentrations remains unknown. In 2016-2018, we conducted a free-air CO2 enrichment experiment using a popular japonica cultivar grown at ambient and elevated CO2 levels (eCO2, increased by 200 ppm), reducing the source-sink ratio via cutting leaves (LC) at the heading stage, to investigate the effects of eCO2 and LC and their interactions on rice processing, appearance, nutrition, and eating quality. Averaged across 3 years, eCO2 significantly decreased brown rice percentage (-0.5%), milled rice percentage (-2.1%), and head rice percentage (-4.2%) but increased chalky grain percentage (+ 22.3%) and chalkiness degree (+ 26.3%). Markedly, eCO2 increased peak viscosity (+ 2.9%) and minimum viscosity (+ 3.8%) but decreased setback (-96.1%) of powder rice and increased the appearance (+ 4.5%), stickiness (+ 3.5%) and balance degree (+ 4.8%) of cooked rice, while decreasing the hardness (-6.7%), resulting in better palatability (+ 4.0%). Further, eCO2 significantly decreased the concentrations of protein, Ca, S, and Cu by 5.3, 4.7, 2.2, and 9.6%, respectively, but increased K concentration by 3.9%. Responses of nutritional quality in different grain positions (brown and milled rice) to eCO2 showed the same trend. Compared with control treatment, LC significantly increased chalky grain percentage, chalkiness degree, protein concentration, mineral element levels (except for B and Mn), and phytic acid concentration. Our results indicate that eCO2 reduced rice processing suitability, appearance, and nutritional quality but improved the eating quality. Rice quality varied significantly among years; however, few CO2 by year, CO2 by LC, or CO2 by grain position interactions were detected, indicating that the effects of eCO2 on rice quality varied little with the growing seasons, the decrease in the source-sink ratios or the different grain positions.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Shaowu Hu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Liquan Jing
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Yunxia Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Kai Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Hongyang Li
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Xingxing Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Yulong Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Lianxin Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Gao B, Hu S, Jing L, Niu X, Wang Y, Zhu J, Wang Y, Yang L. Alterations in Source-Sink Relations Affect Rice Yield Response to Elevated CO 2: A Free-Air CO 2 Enrichment Study. FRONTIERS IN PLANT SCIENCE 2021; 12:700159. [PMID: 34276751 PMCID: PMC8283783 DOI: 10.3389/fpls.2021.700159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 05/29/2023]
Abstract
To understand the effects of source-sink relationships on rice yield response to elevated CO2 levels (eCO2), we conducted a field study using a popular japonica cultivar grown in a free-air CO2 enrichment environment in 2017-2018. The source-sink ratio of rice was set artificially via source-sink treatments (SSTs) at the heading stage. Five SSTs were performed in 2017 (EXP1): cutting off the flag leaf (LC1) and the top three functional leaves (LC3), removing one branch in every three branches of a panicle (SR1/3) and one branch in every two branches of a panicle (SR1/2), and the control (CK) without any leaf cutting or spikelet removal. The eCO2 significantly increased grain yield by 15.7% on average over all treatments; it significantly increased grain yield of CK, LC1, LC3, SR1/3, and SR1/2 crops by 13.9, 18.1, 25.3, 12.0, and 10.9%, respectively. The yield response to eCO2 was associated with a significant increase of panicle number and fully-filled grain percentage (FGP), and the response of crops under different SSTs was significantly positively correlated with FGP and the average grain weight of the seeds. Two SSTs (CK and LC3) were performed in 2018 (EXP2), which confirmed that the yield response of LC3 crops (25.1%) to eCO2 was significantly higher than that of CK (15.9%). Among the different grain positions, yield response to eCO2 of grains attached to the lower secondary rachis was greater than that of grains attached to the upper primary rachis. Reducing the source-sink ratio via leaf-cutting enhanced the net photosynthetic rate response of the remaining leaves to eCO2 and increased the grain filling ability. Conversely, spikelet removal increased the non-structural carbohydrate (NSC) content of the stem, causing feedback inhibition and photosynthetic down-regulation. This study suggests that reducing the source-sink ratio by adopting appropriate management measures can increase the response of rice to eCO2.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Shaowu Hu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Liquan Jing
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xichao Niu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yunxia Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yulong Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Lianxin Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, China
| |
Collapse
|