1
|
de Paiva FFG, Dos Santos LF, Tamashiro JR, Silva LHP, Teixeira SR, Galvín AP, López-Uceda A, Skowera K, Kinoshita A. Environmental assessment and durability performance of cement mortar incorporating sugarcane vinasse in replacement of water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17690-17705. [PMID: 37338684 DOI: 10.1007/s11356-023-28073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Sugarcane vinasse wastewater (SVW) is one of the most voluminous waste generated in the ethanol industry and usually applied in fertigation. It is characterized by presenting high COD and BOD; thus, continued disposal of vinasse results in negative environmental impacts. In this paper, we investigated the potential of SVW in replacement of water in mortar, rethinking about reuse of effluent, reduction of pollutants in the environment, and water consumption in civil construction. Mortar composites with 0, 20, 40, 60, 80, and 100% of water replaced by SVW were studied in order to determine the optimum content. Mortars with 60 to 100% of SVW result in improved workability and reduction in water demand. The mortars with 20, 40, and 60% SVW resulted in satisfactory mechanical properties, i.e., similar to the control mortar. However, XRD analysis of cement pastes showed that the SVW causes a delay in CH formation, reaching mechanical strength after 28 days. Durability tests results showed that SVW contributes to the mortar becoming more impermeable; therefore, less susceptible to weathering. This study provides an important evaluation of the potential of SVW for application in civil construction, indicating relevant results for replacement of water by liquid wastes in cementitious composites and reduction the use of natural resources.
Collapse
Affiliation(s)
- Fabio Friol Guedes de Paiva
- University of Western São Paulo-UNOESTE, PGMADRE, Rodovia Raposo Tavares km 572, Presidente Prudente, SP, 19067-175, Brazil
| | - Luis Fernando Dos Santos
- Solid Waste Characterization and Management Laboratory-SWCML, São Paulo State University-UNESP, Presidente Prudente, SP, 19060-900, Brazil
| | - Jacqueline Roberta Tamashiro
- University of Western São Paulo-UNOESTE, PGMADRE, Rodovia Raposo Tavares km 572, Presidente Prudente, SP, 19067-175, Brazil
| | - Lucas Henrique Pereira Silva
- University of Western São Paulo-UNOESTE, PGMADRE, Rodovia Raposo Tavares km 572, Presidente Prudente, SP, 19067-175, Brazil
| | - Silvio Rainho Teixeira
- Solid Waste Characterization and Management Laboratory-SWCML, São Paulo State University-UNESP, Presidente Prudente, SP, 19060-900, Brazil
| | - Adela P Galvín
- Area of Construction Engineering, Universidad de Córdoba, UCO-Ed, Leonardo da Vinci - Campus of Rabanales, 14071, Córdoba, Spain.
| | - Antonio López-Uceda
- Department of Mechanics, Universidad de Córdoba UCO-Ed, Leonardo da Vinci - Campus of Rabanales, 14071, Córdoba, Spain
| | - Karol Skowera
- Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
| | - Angela Kinoshita
- University of Western São Paulo-UNOESTE, PGMADRE, Rodovia Raposo Tavares km 572, Presidente Prudente, SP, 19067-175, Brazil
| |
Collapse
|
2
|
de Carvalho JC, de Souza Vandenberghe LP, Sydney EB, Karp SG, Magalhães AI, Martinez-Burgos WJ, Medeiros ABP, Thomaz-Soccol V, Vieira S, Letti LAJ, Rodrigues C, Woiciechowski AL, Soccol CR. Biomethane Production from Sugarcane Vinasse in a Circular Economy: Developments and Innovations. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Sugarcane ethanol production generates about 360 billion liters of vinasse, a liquid effluent with an average chemical oxygen demand of 46,000 mg/L. Vinasse still contains about 11% of the original energy from sugarcane juice, but this chemical energy is diluted. This residue, usually discarded or applied in fertigation, is a suitable substrate for anaerobic digestion (AD). Although the technology is not yet widespread—only 3% of bioethanol plants used it in Brazil in the past, most discontinuing the process—the research continues. With a biomethane potential ranging from 215 to 324 L of methane produced by kilogram of organic matter in vinasse, AD could improve the energy output of sugarcane biorefineries. At the same time, the residual digestate could still be used as an agricultural amendment or for microalgal production for further stream valorization. This review presents the current technology for ethanol production from sugarcane and describes the state of the art in vinasse AD, including technological trends, through a recent patent evaluation. It also appraises the integration of vinasse AD in an ideal sugarcane biorefinery approach. It finally discusses bottlenecks and presents possible directions for technology development and widespread adoption of this simple yet powerful approach for bioresource recovery.
Collapse
Affiliation(s)
- Júlio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | | | - Eduardo Bittencourt Sydney
- Department of Bioprocess Engineering and Biotechnology, Federal University of Technology—Paraná, Ponta Grossa 84016-210, PR, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Antonio Irineudo Magalhães
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Walter José Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Adriane Bianchi Pedroni Medeiros
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Vanete Thomaz-Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Sabrina Vieira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Technology—Paraná, Ponta Grossa 84016-210, PR, Brazil
| | - Luiz Alberto Junior Letti
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Cristine Rodrigues
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, Federal University of Paraná, Curitiba 81531-990, PR, Brazil
| |
Collapse
|
3
|
Microbial Behavior and Influencing Factors in the Anaerobic Digestion of Distiller: A Comprehensive Review. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Anaerobic digestion technology is regarded as the most ideal technology for the treatment of a distiller in terms of environmental protection, resource utilization, and cost. However, there are some limitations to this process, the most prominent of which is microbial activity. The purpose of this paper is to provide a critical review of the microorganisms involved in the anaerobic digestion process of a distiller, with emphasis on the archaea community. The effects of operating parameters on microbial activity and process, such as pH, temperature, TAN, etc., are discussed. By understanding the activity of microorganisms, the anaerobic treatment technology of a distiller can be more mature. Aiming at the problem that anaerobic treatment of a distiller alone is not effective, the synergistic effect of different substrates is briefly discussed. In addition, the recent literature on the use of microorganisms to purify a distiller was collected in order to better purify the distiller and reduce harm. In the future, more studies are needed to elucidate the interactions between microorganisms and establish the mechanisms of microbial interactions in different environments.
Collapse
|