1
|
Tian L, Zhao S, Zhong G, Li J, Hu J, Zhang G. Legacy and currently-used pesticides in sedimentary archives: Anthropogenic footprint in the pearl river estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179300. [PMID: 40209586 DOI: 10.1016/j.scitotenv.2025.179300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
Pesticides are fundamental to modern agriculture but pose significant environmental risks due to their persistence, bioaccumulation potential, and toxicity. This study systematically investigates the pollution characteristics and historical trends of 28 legacy organochlorine pesticides (OCPs) and 17 currently-used pesticides (CUPs) in a sediment core from the Pearl River Estuary (PRE), assessing their potential as Anthropocene markers. The concentrations of Σ28OCPs ranged from 0.788 to 9.12 ng/g, dominated by dichlorodiphenyltrichloroethanes (DDTs, 49 ± 21 %) and chlordane (9 ± 6 %), while the Σ17CUP concentrations were an order of magnitude higher, ranging from 4.85 to 98.4 ng/g, with pyrethroids contributing 50-99 %. This shift in pesticide composition reflects the historical transition from OCPs to CUPs in China's pesticide usage. Temporal trends (1919-2019) showed that the concentrations of DDTs, chlordane, pyrethroids, and dicofol closely mirrored their usage history in China, demonstrating that sediment cores effectively record pesticide application history. Redundancy analysis identified total organic carbon, temperature, and precipitation as key environmental factors influencing the concentrations of DDTs, chlordane, pyrethroids, and dicofol. Correlation analysis further demonstrated that the concentrations of DDTs and phenothrin were linked to population, GDP, and agricultural activities, whereas dicofol, parathion-methyl, and bromophos-ethyl were primarily driven by agricultural activities. Moreover, DDT exhibited temporally abrupt trends, broad geographic signals, and permanent environmental records, suggesting its potential as a robust Anthropocene marker. This study provides critical insights into pesticide pollution dynamics and highlights the value of legacy and emerging pollutants in tracking human impacts on Earth's environmental systems.
Collapse
Affiliation(s)
- Lele Tian
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Zhao
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
| | - Guangcai Zhong
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Jianfang Hu
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
2
|
Gardoki J, Cearreta A, Ortiz JE, López-Cilla I, Gómez-Arozamena J, Villasante-Marcos V, Bessa F, García-Artola A, Irabien MJ. Assessing the environmental impacts of engineering and agrochemical pollution in a historically-eutrophic estuary: The Mondego case (W Portugal). MARINE POLLUTION BULLETIN 2025; 214:117782. [PMID: 40054312 DOI: 10.1016/j.marpolbul.2025.117782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 04/02/2025]
Abstract
The Mondego Estuary (W Portugal) experienced a process of eutrophication in the late 20th century, making it one of the most impacted systems in southern Europe. To examine its recent environmental evolution, sedimentary records were analyzed from a multiproxy approach, involving biotic, sedimentological, geochemical, physical, and radionuclide data. Results evidenced the transformation of the estuary due to anthropogenic cumulative impacts. The closure of the upstream branch triggered rapid 'continentalization' in the southern arm, altering the hydrosedimentary regime and favoring eutrophication. However, the middle and lower sectors exhibited stronger marine influences. Foraminiferal biota responded effectively to management interventions to improve hydrodynamics, while showing no discernible ecotoxicological responses to agricultural discharges. Pesticide accumulations patterns are shaped by natural and anthropogenic factors, with strong agrochemical fingerprints in the upper and lower sectors. The topmost 20-cm layer of sediments contain high pesticide concentrations and microplastics, posing challenges for future management and pollutant mitigation.
Collapse
Affiliation(s)
- Jon Gardoki
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Alejandro Cearreta
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - José Eugenio Ortiz
- Biomolecular Stratigraphy Laboratory, E.T.S.I. Minas y Energía, Universidad Politécnica de Madrid, C/Ríos Rosas 21, Madrid 28003, Spain.
| | - Ignacio López-Cilla
- Biomolecular Stratigraphy Laboratory, E.T.S.I. Minas y Energía, Universidad Politécnica de Madrid, C/Ríos Rosas 21, Madrid 28003, Spain.
| | - José Gómez-Arozamena
- Departamento de Ciencias Médicas y Quirúrgicas, Facultad de Medicina, Universidad de Cantabria, Avenida Herrera Oria s/n, 39011 Santander, Spain.
| | - Víctor Villasante-Marcos
- Laboratorio de Magnetismo de Materiales y Magnetismo Ambiental, Instituto Geográfico Nacional, Real Observatorio de Madrid, C/Alfonso XII 3, 28014 Madrid, Spain.
| | - Filipa Bessa
- Centre for Functional Ecology - Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Ane García-Artola
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - María Jesús Irabien
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
3
|
Park J, Brown C, Hess C, Armstrong M, Rocke DM, Galvez F, Whitehead A. Multiple Stressors in the Anthropocene: Urban Evolutionary History Modifies Sensitivity to the Toxic Effects of Crude Oil Exposure in Killifish. Evol Appl 2025; 18:e70112. [PMID: 40385352 PMCID: PMC12081835 DOI: 10.1111/eva.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Persistence of wild species in human-altered environments is difficult, in part because challenges to fitness are complex when multiple environmental changes occur simultaneously, which is common in the Anthropocene. This complexity is difficult to conceptualize because the nature of environmental change is often highly context specific. A mechanism-guided approach may help to shape intuition and predictions about complexity; fitness challenges posed by co-occurring stressors with similar mechanisms of action may be less severe than for those with different mechanisms of action. We approach these considerations within the context of ecotoxicology because this field is built upon a rich mechanistic foundation. We hypothesized that evolved resistance to one class of common toxicants would afford resilience to the fitness impacts of another class of common toxicants that shares mechanisms of toxicity. Fundulus killifish populations in urban estuaries have repeatedly evolved resistance to persistent organic pollutants including PCBs. Since PCBs and some of the toxicants that constitute crude oil (e.g., high molecular weight PAHs) exert toxicity through perturbation of AHR signaling, we predicted that PCB-resistant populations would also be resilient to crude oil toxicity. Common garden comparative oil exposure experiments, including killifish populations with different exposure histories, showed that most killifish populations were sensitive to fitness impacts (reproduction and development) caused by oil exposure, but that fish from the PCB-resistant population were insensitive. Population differences in toxic outcomes were not compatible with random-neutral expectations. Transcriptomics revealed that the molecular mechanisms that contributed to population variation in PAH resilience were shared with those that contribute to evolved variation in PCB resilience. We conclude that the fitness challenge posed by environmental pollutants is effectively reduced when those chemicals share mechanisms that affect fitness. Mechanistic considerations may help to scale predictions regarding the fitness challenges posed by stressors that may co-occur in human-altered environments.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| | - Charles Brown
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Chelsea Hess
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Madison Armstrong
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| | - David M. Rocke
- Department of Biomedical EngineeringUniversity of California DavisDavisCaliforniaUSA
| | - Fernando Galvez
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisianaUSA
| | - Andrew Whitehead
- Department of Environmental ToxicologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
4
|
Park J, Brown C, Hess C, Armstrong M, Galvez F, Whitehead A. Multiple stressors in the Anthropocene: Urban evolutionary history modifies sensitivity to the toxic effects of crude oil exposure in killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640141. [PMID: 40060406 PMCID: PMC11888386 DOI: 10.1101/2025.02.25.640141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Persistence of wild species in human-altered environments is difficult, in part because challenges to fitness are complex when multiple environmental changes occur simultaneously, which is common in the Anthropocene. This complexity is difficult to conceptualize because the nature of environmental change is often highly context specific. A mechanism-guided approach may help to shape intuition and predictions about complexity; fitness challenges posed by co-occurring stressors with similar mechanisms of action may be less severe than for those with different mechanisms of action. We approach these considerations within the context of ecotoxicology because this field is built upon a rich mechanistic foundation. We hypothesized that evolved resistance to one class of common toxicants would afford resilience to the fitness impacts of another class of common toxicants that shares mechanisms of toxicity. Fundulus killifish populations in urban estuaries have repeatedly evolved resistance to persistent organic pollutants including PCBs. Since PCBs and some of the toxicants that constitute crude oil (e.g., high molecular weight PAHs) exert toxicity through perturbation of AHR signaling, we predicted that PCB resistant populations would also be resilient to crude oil toxicity. Common garden comparative oil exposure experiments, including killifish populations with different exposure histories, showed that most killifish populations were sensitive to fitness impacts (reproduction and development) caused by oil exposure, but that fish from the PCB-resistant population were insensitive. Population differences in toxic outcomes were not compatible with random-neutral expectations. Transcriptomics revealed that the molecular mechanisms that contributed to population variation in PAH resilience were shared with those that contribute to evolved variation in PCB resilience. We conclude that the fitness challenge posed by environmental pollutants is effectively reduced when those chemicals share mechanisms that affect fitness. Mechanistic considerations may help to scale predictions regarding the fitness challenges posed by stressors that may co-occur in human-altered environments.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Charles Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chelsea Hess
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Madison Armstrong
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Abdelhady AA, Xiao J, Fan J, Zhang S, Khalil MM, Ahmed MS, Abdel-Raheem KHM, Hussain AM. Historical record of heavy metals in the mollusk shells of the Nile Delta. MARINE POLLUTION BULLETIN 2024; 209:117184. [PMID: 39486206 DOI: 10.1016/j.marpolbul.2024.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/03/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Identifying the baseline status and the timing of ecosystem disturbances are essential for restoration programs. The historical bioaccumulation of heavy metals was assessed from an 80-cm-long core from the Manzala Lagoon (Nile Delta). The heavy metal concentrations increased slightly upward and peaked around 1964, after the completion of Aswan High Dam. The metal concentrations of shells are 2-3 times less than those of bulk sediment. The topmost sediments are enriched in Cd, Cu, and Pb above USEPA. Sediment type and sediment grain size have a minor effect on the heavy metal concentration in mollusk shells, suggesting a priority over bulk sediments. Although correlated, the shells of the grazer gastropod Melanoides tuberculata have the highest concentration of all metals relative to the suspension-feeder bivalves Cerastoderma glaucum and Saccostrea cuculata. This was attributed to the influences of the eco-physiological traits, which exert a similar influence on the bioaccumulation process of all metals.
Collapse
Affiliation(s)
- Ahmed A Abdelhady
- Geology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Jule Xiao
- CAS Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Fan
- State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China; Xinjiang Pamir Intracontinental Subduction National Observation and Research Station, Beijing 100029, China; Urumqi Institute of Central Asia Earthquake, China Earthquake Administration, Urumqi 830011, China
| | - Shengrui Zhang
- College of Geographical Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Mahmoud M Khalil
- Geology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mohamed S Ahmed
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalaf H M Abdel-Raheem
- Geology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali M Hussain
- Geology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
6
|
Gorini F, Tonacci A. Metal Toxicity and Dementia Including Frontotemporal Dementia: Current State of Knowledge. Antioxidants (Basel) 2024; 13:938. [PMID: 39199184 PMCID: PMC11351151 DOI: 10.3390/antiox13080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Frontotemporal dementia (FTD) includes a number of neurodegenerative diseases, often with early onset (before 65 years old), characterized by progressive, irreversible deficits in behavioral, linguistic, and executive functions, which are often difficult to diagnose due to their similar phenotypic characteristics to other dementias and psychiatric disorders. The genetic contribution is of utmost importance, although environmental risk factors also play a role in its pathophysiology. In fact, some metals are known to produce free radicals, which, accumulating in the brain over time, can induce oxidative stress, inflammation, and protein misfolding, all of these being key features of FTD and similar conditions. Therefore, the present review aims to summarize the current evidence about the environmental contribution to FTD-mainly dealing with toxic metal exposure-since the identification of such potential environmental risk factors can lead to its early diagnosis and the promotion of policies and interventions. This would allow us, by reducing exposure to these pollutants, to potentially affect society at large in a positive manner, decreasing the burden of FTD and similar conditions on affected individuals and society overall. Future perspectives, including the application of Artificial Intelligence principles to the field, with related evidence found so far, are also introduced.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
7
|
Migaszewski ZM, Gałuszka A, Migaszewski A. Legacy of anthropogenic activity recorded in sediments by microtechnofossils and chemical markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172800. [PMID: 38679086 DOI: 10.1016/j.scitotenv.2024.172800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
This overview presents comparison of common microtechnofossils with other geochemical markers that may have the great potential to be the anthropogenic signatures for recent and future sediment strata. The novel man-made products encompass spherical and spheroidal fly-ash particulates, microplastics, synthetic crystals, and more recently examined glass microspheres. Due to their low specific gravity and small size varying from a tiny fraction of millimeter to approximately 5 mm, microtechnofossils may be transported over a long distance from their primary or secondary sources by water and wind. Of these technogenic materials, among the most resistant to physical and chemical degradation are glass microbeads, and additionally synthetic crystals and some types of fly-ash particulates derived mostly from coal/oil combustion, metal ore smelting operations and cement/lime manufacturing. Nonetheless, synthetic glass microspheres have found exponentially growing applications as reflective ingredients in traffic-related paints and building facades, as well as in a variety of applications mostly as low-density fillers of many materials. In contrast to anthropogenic fly-ash and microplastic particles, glass microspheres resemble in many respects common detrital quartz grains. Moreover, like quartz, they are resistant to depositional and diagenetic processes, which is a prerequisite for future geologic archives preserving anthropogenic signals. These and other characteristics make glass microspheres a more widely used product in various fields thus assigning them to a new emerging and globally spreading chronostratigraphic marker of human-impacted sediments.
Collapse
Affiliation(s)
- Zdzisław M Migaszewski
- Institute of Chemistry, Jan Kochanowski University in Kielce, 7 Uniwersytecka St., 25-406 Kielce, Poland.
| | - Agnieszka Gałuszka
- Institute of Chemistry, Jan Kochanowski University in Kielce, 7 Uniwersytecka St., 25-406 Kielce, Poland
| | - Andrzej Migaszewski
- Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, 7 Domaszowska St., 25-314 Kielce, Poland
| |
Collapse
|
8
|
Fu H, Li M, Bao K, Zhang Y, Ouyang T. Environment change recorded by lake sediment magnetism in the Songnen Plain, northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170938. [PMID: 38354795 DOI: 10.1016/j.scitotenv.2024.170938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Stratigraphic determination of the Anthropocene, the "Great Acceleration", requires more key globally synchronous stratigraphic markers which reflect the significant human impacts on Earth. Lacustrine sediment magnetic characteristics are of considerable importance in Anthropocene studies because they respond sensitively to environmental changes. There are many shallow lakes in the Songnen Plain (SNP) in northeast China, which are conducive to obtaining Anthropocene sedimentary records. This study explored magnetic materials in lacustrine sediment responses to environmental evolution impact by human activities on the SNP by measuring magnetic parameters in dated sediment cores from 5 shallow lakes in the SNP, northeast China. The results revealed that detrital magnetite and hematite dominated the magnetic minerals in lake sediments. The persistently low value of magnetic susceptibility might be caused by the low content of natural ferrimagnetic minerals in Quaternary fluvial deposits and humus-rich black soil in the catchment, and the loss of magnetic materials during the transport process. In Lake Longjiangpao (LJP), the magnetic concentrations significantly responded to regional precipitation, whereas in the other 4 lakes in the center of the plain, the parameters tended to reflect complex human activities. However, the isothermal remanent magnetization ratio (S-300), which is indicative of the ratio of hematite to magnetite, exhibited relatively consistent variations in the 5 studied lakes. After 1950, the "Great Acceleration", the increase of S-300 indicated a relative proportion of magnetite in sediments, and was positively correlated with the growth of human-activity proxies (Gross Domestic Product (GDP) and population). Thus, this proxy can be regarded as a useful indicator of the beginning of the Anthropocene in the studied region. This study provides new insights into the estimation of local human activities in history and possible evidence for the global definition of the Anthropocene.
Collapse
Affiliation(s)
- Huan Fu
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Mingkun Li
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Kunshan Bao
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Yongdong Zhang
- School of Geography, South China Normal University, Guangzhou 510631, China.
| | - Tingping Ouyang
- School of Geography, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
9
|
Yan J, Guo X, He M, Niu Z, Xu M, Peng B, Yang Y, Jin Z. Metals and microorganisms in a Maar lake sediment core indicating the anthropogenic impact over last 800 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168392. [PMID: 37956839 DOI: 10.1016/j.scitotenv.2023.168392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
A closed Maar lake, receiving mostly atmospheric deposition, offers a unique setting for investigating the impact of human activities on the environment. In this study, we aimed to investigate the historical record of metals in core sediments of Maar Lake in Huguangyan (HGY), Southeast China, and elucidate the possible microbial responses to anthropogenic metal stress. Five stages were divided according to the historical record of metals and corresponding distribution of microbial community, among which Pb and Sn showed a peak value around 1760 CE, indicating the ancient mining and smelting activities. Since the 1980s, a substantial enrichment of metals such as Zn, As, Mo, Cd, Sn, Sb, and Pb was observed, due to the rapid industrial growth in China. In terms of microorganisms, Chloroflexi phylum, particularly dominated by Anaerolineales, showed significant correlations with Pb and Sn, and could potentially serve as indicator species for mining and smelting-related contamination. Desulfarculales and Desulfobacterales were found to be more prevalent in recent period and exhibited positive correlations with anthropogenic metals. Moreover, according to the multivariate regression modeling and variance decomposition analysis, Pb and Sn could regulate Anaerolineales and further pose impact on the carbon cycle; while sulfate-reducing bacteria (SRB) could response to anthropogenic metals and influence sulfur cycle. These findings provide new insights into the interaction between metals and microbial communities over human history.
Collapse
Affiliation(s)
- Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingpan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Maoyong He
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Zuoshun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bo Peng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Zhangdong Jin
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
10
|
Aboal JR, Pacín C, García-Seoane R, Varela Z, González AG, Fernández JA. Global decrease in heavy metal concentrations in brown algae in the last 90 years. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130511. [PMID: 36463737 DOI: 10.1016/j.jhazmat.2022.130511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
In the current scenario of global change, heavy metal pollution is of major concern because of its associated toxic effects and the persistence of these pollutants in the environment. This study is the first to evaluate the changes in heavy metal concentrations worldwide in brown algae over the last 90 years (>15,700 data across the globe reported from 1933 to 2020). The study findings revealed significant decreases in the concentrations of Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb and Zn of around 60-84% (ca. 2% annual) in brown algae tissues. The decreases were consistent across the different families considered (Dictyotaceae, Fucaceae, Laminariaceae, Sargassaceae and Others), and began between 1970 and 1990. In addition, strong relationships between these trends and pH, SST and heat content were detected. Although the observed metal declines could be partially explained by these strong correlations, or by adaptions in the algae, other evidences suggest an actual reduction in metal concentrations in oceans because of the implementation of environmental policies. In any case, this study shows a reduction in metal concentrations in brown algae over the last 50 years, which is important in itself, as brown algae form the basis of many marine food webs and are therefore potential distributors of pollutants.
Collapse
Affiliation(s)
- J R Aboal
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - C Pacín
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - R García-Seoane
- Instituto Español de Oceanografía, IEO-CSIC, Centro Oceanográfico de A Coruña, 15001 A Coruña, Spain.
| | - Z Varela
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - A G González
- Instituto de Oceanografía y Cambio Global, IOCAG. Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | - J A Fernández
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| |
Collapse
|
11
|
Li X, Xu Q, Cheng Y, Chen C, Shen C, Zhang C, Zheng D, Zhang D. Effect of microplastics on microbial dechlorination of a polychlorinated biphenyl mixture (Aroclor 1260). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154904. [PMID: 35364163 DOI: 10.1016/j.scitotenv.2022.154904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) generally coexist in the environment, posing risks to public health and the environment. This study investigated the effect of different MPs on the microbial anaerobic reductive dechlorination of Aroclor 1260, a commercial PCB mixture. MP exposure inhibited microbial reductive dechlorination of PCBs, with inhibition rates of 39.43%, 23.97%, and 17.53% by polyethylene (PE), polypropylene (PP), and polystyrene (PS), respectively. The dechlorination rate decreased from 1.63 μM Cl- d-1 to 0.99-1.34 μM Cl- d-1 after MP amendment. Chlorine removal in the meta-position of PCBs was primarily inhibited by MPs, with no changes in the final PCB dechlorination metabolites. The microbial community compositions in MP biofilms were not significantly different (P > 0.05) from those in suspension culture, although possessing greater Dehalococcoides abundance (0.52-0.81% in MP biofilms; 0.03-0.12% in suspension culture). The co-occurrence network analysis revealed that the presence of MPs attenuated microbial synergistic interactions in the dechlorinating culture systems, which may contribute to the inhibitory effect on microbial PCB dechlorination. These findings are important for comprehensively understanding microbial dechlorination behavior and the environmental fate of PCBs in environments with co-existing PCBs and MPs and for guiding the application of in situ PCB bioremediation.
Collapse
Affiliation(s)
- Xinkai Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Qiang Xu
- Ocean Academy, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Youjun Cheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Chunlei Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Daoqiong Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
12
|
Logemann A, Reininghaus M, Schmidt M, Ebeling A, Zimmermann T, Wolschke H, Friedrich J, Brockmeyer B, Pröfrock D, Witt G. Assessing the chemical anthropocene - Development of the legacy pollution fingerprint in the North Sea during the last century. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119040. [PMID: 35202763 DOI: 10.1016/j.envpol.2022.119040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The North Sea and its coastal zones are heavily impacted by anthropogenic activities, which has resulted in significant chemical pollution ever since the beginning of the industrialization in Europe during the 19th century. In order to assess the chemical Anthropocene, natural archives, such as sediment cores, can serve as a valuable data source to reconstruct historical emission trends and to verify the effectiveness of changing environmental legislation. In this study, we investigated 90 contaminants covering inorganic and organic pollutant groups analyzed in a set of sediment cores taken in the North Seas' main sedimentation area (Skagerrak). We thereby develop a chemical pollution fingerprint that records the constant input of pollutants over time and illustrates their continued great relevance for the present. Additionally, samples were radiometrically dated and PAH and PCB levels in porewater were determined using equilibrium passive sampling. Furthermore, we elucidated the origin of lead (Pb) contamination utilizing non-traditional stable isotopic analysis. Our results reveal three main findings: 1. for all organic contaminant groups covered (PAHs, OCPs, PCBs, PBDEs and PFASs) as well as the elements lead (Pb) and titanium (Ti), determined concentrations decreased towards more recent deposited sediment. These decreasing trends could be linked to the time of introductions of restrictions and bans and therefor our results confirm, amongst possible other factors, the effectiveness of environmental legislation by revealing a successive change in contamination levels over the decades. 2. concentration trends for ΣPAH and ΣPCB measured in porewater correspond well with the ones found in sediment which suggests that this method can be a useful expansion to traditional bulk sediment analysis to determine the biologically available pollutant fraction. 3. Arsenic (As) concentrations were higher in younger sediment layers, potentially caused by emissions of corroded warfare material disposed in the study area after WW II.
Collapse
Affiliation(s)
- A Logemann
- Federal Maritime and Hydrographic Agency (BSH), Bernhard-Nocht-Str. 78, 20359, Hamburg, Germany; Universität Hamburg, Department of Earth Sciences, Bundesstraße 55, 20146, Hamburg, Germany
| | - M Reininghaus
- Hamburg University of Applied Sciences, Department of Engineering, Ulmenliet 20, 21033, Hamburg, Germany; RWTH University Aachen, Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074, Aachen, Germany
| | - M Schmidt
- Universität Hamburg, Department of Earth Sciences, Bundesstraße 55, 20146, Hamburg, Germany; Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany
| | - A Ebeling
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany; Universität Hamburg, Department of Chemistry, Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - T Zimmermann
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany
| | - H Wolschke
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany
| | - J Friedrich
- Helmholtz-Zentrum Hereon, Institute of Carbon Cycles, Max-Planck Str. 1, 21502, Geesthacht, Germany
| | - B Brockmeyer
- Federal Maritime and Hydrographic Agency (BSH), Bernhard-Nocht-Str. 78, 20359, Hamburg, Germany
| | - D Pröfrock
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Max-Planck Str. 1, 21502, Geesthacht, Germany.
| | - G Witt
- Hamburg University of Applied Sciences, Department of Engineering, Ulmenliet 20, 21033, Hamburg, Germany
| |
Collapse
|
13
|
Yang Z, Zhang Y, Xie Z, Wang J, Li Z, Li Y, Du J, Sun L. Potential influence of rapid climate change on elemental geochemistry distributions in lacustrine sediments-A case study at a high Arctic site in Ny-Ålesund, Svalbard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149784. [PMID: 34428654 DOI: 10.1016/j.scitotenv.2021.149784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Metal contamination has become an increasingly severe environmental issue due to intense anthropogenic activities in recent decades. Many studies have reported a rapidly increasing trend of heavy metal contents in sedimentary records. In this study, two lacustrine sediment cores (LDL and YL) far away from scientific research stations were collected in Ny-Ålesund and analyzed for the vertical distributions of 17 elemental concentrations (Cu, Zn, Pb, Co, Ni, Cr, Sr, Ba, Mn, P, Ti, K2O, Na2O, CaO, MgO, Fe2O3, Al2O3), CIA and TOC contents. The results indicated that only the proxies Pb, P, CaO, TOC, and CIA showed an increasing trend in the upper 7 cm section of the sediment cores, while most of the elements' concentrations decreased towards the surface. The rapid increase of TOC contents is likely related to the climate warming over the past 200 years, which promotes the prosperity of vegetation and thus leads to more input of organic matter into the lakes. Moreover, a large number of seabirds live around the sampling position and the seabird guano contains high concentrations of P, which could be regarded as an important nutrient source for vegetation. Additionally, the rapid climate warming could accelerate the chemical weathering rates, and thus lead to increased CaO contents in the sediment profiles according to its geological background. Therefore, the concentrations of other elements are very likely diluted by the high contents of organic matter and CaO in the upper part of the sediment cores. It is noteworthy that the rapidly increasing trend of Pb contents are related to the gas-oil powered generators in Ny-Ålesund and long-range atmospheric transport from Europe. This study highlighted the nonnegligible influence of climate warming on the inorganic elemental geochemistry distributions in remote lakes.
Collapse
Affiliation(s)
- Zhongkang Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China; Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Youai Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Zhouqing Xie
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China.
| | - Zhaolei Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Yanqiang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jinlong Du
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Liguang Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
14
|
Castro S, Luiz-Silva W, Machado W, Valezio E. Mangrove sediments as long-term mercury sinks: Evidence from millennial to decadal time scales. MARINE POLLUTION BULLETIN 2021; 173:113031. [PMID: 34656863 DOI: 10.1016/j.marpolbul.2021.113031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
The mercury (Hg) cycle in estuaries has been globally discussed, although Holocene deposition in mangrove sediments remains unknown. Herein, a sediment core from a mangrove system in southeastern Brazil was 14C-dated to evaluate millennial Hg deposition. The highest Hg concentrations (1010-2540 ng g-1) in surface sediments were explained by emissions from a chlor-alkali industry (1964 CE). However, Hg levels were also high in pre-industrial periods, associated to fine grain-size and algal organic deposition. Less anomalous Hg concentrations in bottom sediments indicate Holocene ages (~1940-3324 cal yr BP), potentially associated to Serra do Mar mountains weathering. This study reveals the capacity of mangrove to retain Hg over millennial time scales, acting as significant and long-term Hg sinks. Therefore, the use of Hg as an Anthropocene marker must be considered cautiously in coastal systems that act as Hg sinks in times when environmental changes were not caused by human activities.
Collapse
Affiliation(s)
- Sanny Castro
- Institute of Geosciences, University of Campinas, Campinas, Brazil.
| | | | - Wilson Machado
- Geochemistry Department, Fluminense Federal University, Niterói, Brazil
| | - Everton Valezio
- Institute of Geosciences, University of Campinas, Campinas, Brazil
| |
Collapse
|