1
|
Microbial degradation of quinoline by immobilized bacillus subtilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2
|
Konnova S, Fakhrullin R, Akhatova F, Lama N, Lvov Y, Cavallaro G, Lazzara G, Fakhrullin R. Magnetic coiffure: Engineering of human hair surfaces with polyelectrolyte-stabilised magnetite nanoparticles. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
3
|
Zhou J, Wang Y, Huang G, Zhang C, Ai Y, Li W, Li X, Zhang P, Zhang J, Huang Y, Zhou S, Zheng J. Variation of microbial activities and communities in petroleum-contaminated soils induced by the addition of organic materials and bacterivorous nematodes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113559. [PMID: 35483151 DOI: 10.1016/j.ecoenv.2022.113559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Bacterivorous nematodes are abundant in petroleum-contaminated soils. However, the ecological functions of bacterivorous nematodes and their impacts together with the addition of organic materials on the activity and diversity of microorganisms in petroleum-contaminated soils remain unknown. To assess such effects, six treatments were established in this study, including uncontaminated nematodes-free soil (Control), petroleum-contaminated soil (PC), petroleum-contaminated soil + 5 nematodes per gram dry soil (PCN), and petroleum-contaminated soil + 5 nematodes per gram dry soil + 1% wheat straw (PCNW), or + 1% rapeseed cake (PCNR), or + 1% biochar (PCNB). Results showed that the enzyme activities in the six treatments generally increased firstly and then decreased during the incubation period. Compared with Control, the invertase activity in PCNW, PCNR, and PCNB increased by 80.6%, 313.5%, and 12.4%, respectively, whereas the urease activity in PC, PCN, PCNW, PCNR, and PCNW increased by 1.2%, 25.5%, 124.3%, 105.3%, and 25.5%, respectively. Petroleum pollution, inoculation of bacterivorous nematodes, and the addition of organic materials all significantly boosted the concentrations of phospholipid fatty acids (PLFAs) of soil bacteria, actinobacteria, and total microorganisms, and increased the concentrations of both G+ and G- bacteria PLFAs and the ratio of G-/G+. The concentration of fungi PLFAs and the ratio of fungi to bacteria were significantly higher in PCNW and PCNR than those in other treatments. Overall, adding bacterivorous nematodes and organic materials to the petroleum-contaminated soil significantly improved soil microbial activity and community structure, suggesting that bacterivorous nematodes could be used for the bioremediation in petroleum contaminated soils.
Collapse
Affiliation(s)
- Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Guomin Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Chenyang Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yanmei Ai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wei Li
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Pingjiu Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jie Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yongjie Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shoubiao Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
4
|
Microbial Community Composition and Activity in Saline Soils of Coastal Agro-Ecosystems. Microorganisms 2022; 10:microorganisms10040835. [PMID: 35456884 PMCID: PMC9027772 DOI: 10.3390/microorganisms10040835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
Soil salinity is a serious problem for agriculture in coastal regions. Nevertheless, the effects of soil salinity on microbial community composition and their metabolic activities are far from clear. To improve such understanding, we studied microbial diversity, community composition, and potential metabolic activity of agricultural soils covering non–, mild–, and severe–salinity. The results showed that salinity had no significant effect on bacterial richness; however, it was the major driver of a shift in bacterial community composition and it significantly reduced microbial activity. Abundant and diverse of microbial communities were detected in the severe–salinity soils with an enriched population of salt–tolerant species. Co–occurrence network analysis revealed stronger dependencies between species associated with severe salinity soils. Results of microcalorimetric technology indicated that, after glucose amendment, there was no significant difference in microbial potential activity among soils with the three salinity levels. Although the salt prolonged the lag time of microbial communities, the activated microorganisms had a higher growth rate. In conclusion, salinity shapes soil microbial community composition and reduces microbial activity. An addition of labile organic amendments can greatly alleviate salt restrictions on microbial activity, which provides new insight for enhancing microbial ecological functions in salt–affected soils.
Collapse
|
5
|
Jiang Y, Zhang F, Xu S, Yang P, Wang X, Zhang X, Hong Q, Qiu J, Chu C, He J. Biodegradation of Quinoline by a Newly Isolated Salt-Tolerating Bacterium Rhodococcus gordoniae Strain JH145. Microorganisms 2022; 10:797. [PMID: 35456847 PMCID: PMC9029321 DOI: 10.3390/microorganisms10040797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Quinoline is a typical nitrogen-heterocyclic compound with high toxicity and carcinogenicity which exists ubiquitously in industrial wastewater. In this study, a new quinoline-degrading bacterial strain Rhodococcus sp. JH145 was isolated from oil-contaminated soil. Strain JH145 could grow with quinoline as the sole carbon source. The optimum growth temperature, pH, and salt concentration were 30 °C, 8.0, and 1%, respectively. 100 mg/L quinoline could be completely removed within 28 h. Particularly, strain JH145 showed excellent quinoline biodegradation ability under a high-salt concentration of 7.5%. Two different quinoline degradation pathways, a typical 8-hydroxycoumarin pathway, and a unique anthranilate pathway were proposed based on the intermediates identified by liquid chromatography-time of flight mass spectrometry. Our present results provided new candidates for industrial application in quinoline-contaminated wastewater treatment even under high-salt conditions.
Collapse
Affiliation(s)
- Yinhu Jiang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Fuyin Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Siqiong Xu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Pan Yang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466000, China;
| | - Xiao Wang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Xuan Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Cuiwei Chu
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466000, China;
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| |
Collapse
|
6
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Aranaz P. Pediococcus acidilactici CECT9879 (pA1c) Counteracts the Effect of a High-Glucose Exposure in C. elegans by Affecting the Insulin Signaling Pathway (IIS). Int J Mol Sci 2022; 23:ijms23052689. [PMID: 35269839 PMCID: PMC8910957 DOI: 10.3390/ijms23052689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The increasing prevalence of metabolic syndrome-related diseases, including type-2 diabetes and obesity, makes it urgent to develop new alternative therapies, such as probiotics. In this study, we have used Caenorhabditis elegans under a high-glucose condition as a model to examine the potential probiotic activities of Pediococcusacidilactici CECT9879 (pA1c). The supplementation with pA1c reduced C. elegans fat accumulation in a nematode growth medium (NGM) and in a high-glucose (10 mM) NGM medium. Moreover, treatment with pA1c counteracted the effect of the high glucose by reducing reactive oxygen species by 20%, retarding the aging process and extending the nematode median survival (>2 days in comparison with untreated control worms). Gene expression analyses demonstrated that the probiotic metabolic syndrome-alleviating activities were mediated by modulation of the insulin/IGF-1 signaling pathway (IIS) through the reversion of the glucose-nuclear-localization of daf-16 and the overexpression of ins-6 and daf-16 mediators, increased expression of fatty acid (FA) peroxisomal β-oxidation genes, and downregulation of FA biosynthesis key genes. Taken together, our data suggest that pA1c could be considered a potential probiotic strain for the prevention of the metabolic syndrome-related disturbances and highlight the use of C. elegans as an appropriate in vivo model for the study of the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain; (D.Y.-D.); (J.A.); (M.O.)
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - Fermín I. Milagro
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948-425600 (ext. 806553)
| | - Josune Ayo
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain; (D.Y.-D.); (J.A.); (M.O.)
| | - María Oneca
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, 31191 Esquíroz, Spain; (D.Y.-D.); (J.A.); (M.O.)
| | - Paula Aranaz
- Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
7
|
Zhou J, Xu X, Huang G, Li W, Wei Q, Zheng J, Han F. Oil degradation and variation of microbial communities in contaminated soils induced by different bacterivorous nematodes species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113079. [PMID: 34915222 DOI: 10.1016/j.ecoenv.2021.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Oil pollution poses a great threat to environments and makes the remediation of oil-contaminated soils an urgent task. Microorganisms are the main biological factor for oil removal in the environment but microbial remediation is greatly affected by environmental factors. For our research, we inoculated three species of bacterivorous nematodes into oil-contaminated soil to explore how bacterivorous nematodes affect soil microbial activities and community structure in contaminated soil, as well as how efficiently different nematodes remove oil pollution from the soil. Six treatments were set in this experiment: sterilized oil-contaminated soil (SOC); nematode-free soil (S); oil-contaminated soil (OC); oil-contaminated soil + Caenorhabditis elegans (OCN1); oil-contaminated soil + Cephalobus persegnis (OCN2); oil-contaminated soil + Rhabditis marina (OCN3) for a 168-day incubation experiment. After the experiment was done, the oil contents in SOC, OC, OCN1, OCN2, and OCN3 were reduced by 6.5%, 32.3%, 38.2%, 42.8%, and 40.2%, respectively, compared with the beginning of the experiment. The amount of phospholipid fatty acids (PLFAs) of Gram-negative bacteria in OC, OCN1, OCN2, and OCN3 was increased by 50.9%, 43.4%, 37.7%, and 47.9%, respectively, compared with that of S. During the 168-day incubation period, the maximum growth of the number of nematodes in OCN1, OCN2, and OCN3 compared with the initial number of the nematodes were 2.25-, 1.52-, and 1.65-fold, respectively. The amount of oil residue in the contaminated soil negatively correlated with the populations of nematodes, total microorganisms, Gram-negative bacteria, actinomycetes, and eukaryotes. Thus, oil pollution increased the number of Gram-negative bacteria, decreased the ratio of Gram-positive bacteria/Gram-negative bacteria and Fungi/Bacteria significantly, and altered the community structure of soil microorganisms. Each species of bacterivorous nematodes has got its unique effect on the microbial activity and community structure in oil contaminated soils, but those tested can promote oil degradation and thus improve the environment of oil contaminated soils.
Collapse
Affiliation(s)
- Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China; Nanchang Institute of Technology, Nanchang 330099, China.
| | - Xiaoyang Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Guomin Huang
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Wei Li
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Qian Wei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|