1
|
Mu G, Yang Y, Chang Z, Yuan H, Huang Y, Batool I, Liu X, Ni C. Degradation of trichloroacetic acid by Fe/Ni bimetallic reactive PMS with hierarchical layered structure. ENVIRONMENTAL RESEARCH 2024; 248:118312. [PMID: 38295971 DOI: 10.1016/j.envres.2024.118312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Overuse of chlorinated disinfectants leads to a significant accumulation of disinfection by-products. Trichloroacetic acid (TCA) is a typical carcinogenic disinfection by-product. The efficacy of the conventional degradation process is reduced by the complex nature of its structure, causing a yearly increase in its prevalence within the ecological environment and consequent infliction of significant harm. In this paper, TCA was chosen as the research subject, Fe/Ni bimetallic nanoparticles were employed as the reducing catalyst, ZIF-8@HMON as the catalytic carrier combined with Fe/Ni nanoparticles, and peroxymonosulfate (PMS) was introduced to construct the reducing-advanced oxidation synergistic system and investigated the effect of this system on the degradation performance and degradation pathway of TCA. Various characterization techniques, including TEM, SEM, XRD, FT-IR, XPS, BET, were employed to investigate the morphology, element composition and structure of composite materials analysis. Moreover, the conditions for TCA degradation can be optimized by changing the experimental environment. The results showed that 25 mg of composite catalyst (mole ratio Fe: Ni = 1:1) and 10 mg of PMS effectively degraded TCA within 20-80 mg/L range at pH = 3 and 55 °C, achieving maximum degradation within 20 min. Finally, the potential pathways of TCA degradation were analyzed using EPR and LC-MS, and the corresponding reaction mechanisms were proposed.
Collapse
Affiliation(s)
- Guangda Mu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Ziling Chang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Irum Batool
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou, 225009, China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, DE, 19716, USA.
| |
Collapse
|
2
|
Li S, Yan J, Zhang Y, Qin Y, Zhang Y, Du S. Comparative investigation of carbon nanotubes dispersion using surfactants: A molecular dynamics simulation and experimental study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
Shi M, Xue S, Xu J, Chen S, Zou J, Gao Y, Liu S, Duan X, Lu L. Amplified electrochemical determination of niclosamide in food based on carbon nanohorn@MWCNT composite. Anal Bioanal Chem 2022; 414:4119-4127. [PMID: 35449471 DOI: 10.1007/s00216-022-04060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
In this work, carbon nanohorn (CNH)-decorated multi-walled carbon nanotube (MWCNT) (CNH@MWCNT) composite was prepared and used to modify glass carbon electrode (GCE) as sensitive electrochemical sensor for niclosamide (NA) determination. Herein, the decoration of CNHs induces higher dispersibility for MWCNTs, and endows the composite with better conductivity, larger surface area, and higher catalytic activity, which leads to significantly enhanced electrochemical behavior toward NA oxidation. The parameters such as mass ratios of CNHs and MWCHTs, the amount of composite materials, the accumulation time, and the solution pH are systematically optimized. Under optimized conditions, the developed electrochemical sensor exhibits a low detection limit of 2.0 nM with a wide linear range of 7.0 nM-10.0 µM and high anti-interference ability. In addition, the sensor displays good stability, repeatability, and reproducibility. The feasibility of the assay was verified by testing NA in brown rice and rice field water samples.
Collapse
Affiliation(s)
- Min Shi
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Shuya Xue
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Shuxian Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Jin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yansha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Shuwu Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|