1
|
Yin M, Jiang H, Shi L, Zhang D, He Z, Luo Y, Pan B. Air-enclosed pores in graphene aerogel inhibit the adsorption of bisphenol A but accelerate the adsorption of naphthalene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:114989. [PMID: 37178614 DOI: 10.1016/j.ecoenv.2023.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Graphene hydrogel (GH) and aerogel (GA) have great application potential as highly effective adsorbents, but the accessibility of their adsorption sites have not yet been identified, restricting our understanding on the adsorption mechanisms and manufacturing. This study comparatively studied the adsorption characteristics of bisphenol A (BPA) and naphthalene (NAP) on GH and GA, focussing on the accessibility of the adsorption sites. The adsorption of BPA on GA was much lower but faster than that on GH. NAP adsorption on GA was very close to that on GH but faster than that on the latter. Considering that NAP is volatilisable, we speculate that some unwetted sites in the air-enclosed pores are available to it, but not to BPA. We applied ultrasonic and vacuum treatments to remove the air in GA pores, which was verified using a CO2 replacement experiment. BPA adsorption was greatly enhanced but slowed, while that of NAP was not enhanced. This phenomenon suggested that some inner pores became accessible in the aqueous phase after air removal from pores. The enhanced accessibility of air-enclosed pores was verified by the increased relaxation rate of surface-bounded water on GA, based on a 1H NMR relaxation analysis. This study highlights that the accessibility of adsorption site plays a crucial role for the adsorption properties of carbon-based aerogel. The volatile chemicals may be quickly adsorbed in the air-enclosed pores, which be useful for immobilizing volatile contaminants.
Collapse
Affiliation(s)
- Mengnan Yin
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276005, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Jiang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Shi
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276005, China
| | - Di Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276005, China.
| | - Zhaohui He
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yong Luo
- Yunnan Maochen Engineering Consulting Co. LTD, Kunming 650301, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Yu Y, Li B, Zhou C, Ma S, Dang Y, Zhu M, Xiang M, Sun B. Sorption in soils and bioaccumulation potential of 2,2'-DiBBPA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114969. [PMID: 37167736 DOI: 10.1016/j.ecoenv.2023.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
2,2'-Dibromobisphenol A (2,2'-DiBBPA) is frequently detected in the environment. However, the mobility of 2,2'-DiBBPA in the soil environment is poorly understood. The present study examined the effects of soil components such as the NaClO-resistant fraction, dithionite-citrate-bicarbonate -demineralized fraction, humin fraction, black carbon, DOC-removed fraction, exogenous dissolved organic carbon and heavy metal cations on the adsorption of 2,2'-DiBBPA on several types of agricultural soils. The adsorption isotherms on soils and soil components were well fitted to the linear isotherm equation. 2,2'-DiBBPA sorption onto soils was dominated by soil organic matter content (SOM) and affected by exogenous dissolved organic carbon. Linear regression relationships between adsorption capacity (Kd) and soil characteristics were evaluated to predict partitioning of 2,2'-DiBBPA. Black carbon played a predominant role in the adsorption of 2,2'-DiBBPA. Heavy metal ions significantly inhibited the adsorptive behavior of 2,2'-DiBBPA under alkaline conditions. Semiempirical linear relationships were observed between biota-sediment accumulation factors (1.18-2.47)/logarithm of bioconcentration factors (BCFs, 2.49-2.52) of 2,2'-DiBBPA in lugworms and Kd. These results allow for the prediction of the bioaccumulation of 2,2'-DiBBPA in other soils. Furthermore, values of log BCF > 1.0 indicate the preferential bioaccumulation of 2,2'-DiBBPA in biota. These data are of significance for understanding the migration of 2,2'-DiBBPA in agricultural soils and bioaccumulation in organisms.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| | - Beibei Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Chang Zhou
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Shexia Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Ming Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Bingbing Sun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|
3
|
Adsorption behavior of tannic acid on polyethylenimine-modified montmorillonite with different morphologies. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Liu C, Xu Q, Xu Y, Wang B, Long H, Fang S, Zhou D. Characterization of adsorption behaviors of U(VI) on bentonite colloids: batch experiments, kinetic evaluation and thermodynamic analysis. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|