1
|
Prado T, Degrave WMS, Duarte GF. Lichens and Health-Trends and Perspectives for the Study of Biodiversity in the Antarctic Ecosystem. J Fungi (Basel) 2025; 11:198. [PMID: 40137236 PMCID: PMC11942898 DOI: 10.3390/jof11030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 03/27/2025] Open
Abstract
Lichens are an important vegetative component of the Antarctic terrestrial ecosystem and present a wide diversity. Recent advances in omics technologies have allowed for the identification of lichen microbiomes and the complex symbiotic relationships that contribute to their survival mechanisms under extreme conditions. The preservation of biodiversity and genetic resources is fundamental for the balance of ecosystems and for human and animal health. In order to assess the current knowledge on Antarctic lichens, we carried out a systematic review of the international applied research published between January 2019 and February 2024, using the PRISMA model (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Articles that included the descriptors "lichen" and "Antarctic" were gathered from the web, and a total of 110 and 614 publications were retrieved from PubMed and ScienceDirect, respectively. From those, 109 publications were selected and grouped according to their main research characteristics, namely, (i) biodiversity, ecology and conservation; (ii) biomonitoring and environmental health; (iii) biotechnology and metabolism; (iv) climate change; (v) evolution and taxonomy; (vi) reviews; and (vii) symbiosis. Several topics were related to the discovery of secondary metabolites with potential for treating neurodegenerative, cancer and metabolic diseases, besides compounds with antimicrobial activity. Survival mechanisms under extreme environmental conditions were also addressed in many studies, as well as research that explored the lichen-associated microbiome, its biodiversity, and its use in biomonitoring and climate change, and reviews. The main findings of these studies are discussed, as well as common themes and perspectives.
Collapse
Affiliation(s)
- Tatiana Prado
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Wim Maurits Sylvain Degrave
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
| | - Gabriela Frois Duarte
- Laboratory of Applied Genomics and Bioinnovation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (W.M.S.D.); (G.F.D.)
- Federal University of Rio de Janeiro (UFRJ), Av. Pedro Calmon, 550, Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
2
|
Ortiz-Rivero J, Garrido-Benavent I, Heiðmarsson S, de los Ríos A. Moss and Liverwort Covers Structure Soil Bacterial and Fungal Communities Differently in the Icelandic Highlands. MICROBIAL ECOLOGY 2023; 86:1893-1908. [PMID: 36802019 PMCID: PMC10497656 DOI: 10.1007/s00248-023-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Cryptogamic covers extend over vast polar tundra regions and their main components, e.g., bryophytes and lichens, are frequently the first visible colonizers of deglaciated areas. To understand their role in polar soil development, we analyzed how cryptogamic covers dominated by different bryophyte lineages (mosses and liverworts) influence the diversity and composition of edaphic bacterial and fungal communities as well as the abiotic attributes of underlying soils in the southern part of the Highlands of Iceland. For comparison, the same traits were examined in soils devoid of bryophyte covers. We measured an increase in soil C, N, and organic matter contents coupled with a lower pH in association with bryophyte cover establishment. However, liverwort covers showed noticeably higher C and N contents than moss covers. Significant changes in diversity and composition of bacterial and fungal communities were revealed between (a) bare and bryophyte-covered soils, (b) bryophyte covers and the underlying soils, and (c) moss and liverworts covers. These differences were more obvious for fungi than bacteria, and involved different lineages of saprotrophic and symbiotic fungi, which suggests a certain specificity of microbial taxa to particular bryophyte groups. In addition, differences observed in the spatial structure of the two bryophyte covers may be also responsible for the detected differences in microbial community diversity and composition. Altogether, our findings indicate that soil microbial communities and abiotic attributes are ultimately affected by the composition of the most conspicuous elements of cryptogamic covers in polar regions, which is of great value to predict the biotic responses of these ecosystems to future climate change.
Collapse
Affiliation(s)
- Javier Ortiz-Rivero
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), C/ Serrano 115 dpdo, E-28045 Madrid, Spain
| | - Isaac Garrido-Benavent
- Departament de Botànica i Geologia, Fac. CC. Biològiques, Universitat de València, C/ Doctor Moliner 50, E-46100 Burjassot, Valencia Spain
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Akureyri Division, Borgir Nordurslod, 600 Akureyri, Iceland
- Present address: Northwest Iceland Nature Research Centre, Aðalgötu 2, 550 Sauðárkrókur, Iceland
| | - Asunción de los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), C/ Serrano 115 dpdo, E-28045 Madrid, Spain
| |
Collapse
|
3
|
Richardson AD, Kong GV, Taylor KM, Le Moine JM, Bowker MA, Barber JJ, Basler D, Carbone MS, Hayer M, Koch GW, Salvatore MR, Sonnemaker AW, Trilling DE. Soil-atmosphere fluxes of CO2, CH4, and N2O across an experimentally-grown, successional gradient of biocrust community types. Front Microbiol 2022; 13:979825. [PMID: 36225383 PMCID: PMC9549369 DOI: 10.3389/fmicb.2022.979825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Biological soil crusts (biocrusts) are critical components of dryland and other ecosystems worldwide, and are increasingly recognized as novel model ecosystems from which more general principles of ecology can be elucidated. Biocrusts are often diverse communities, comprised of both eukaryotic and prokaryotic organisms with a range of metabolic lifestyles that enable the fixation of atmospheric carbon and nitrogen. However, how the function of these biocrust communities varies with succession is incompletely characterized, especially in comparison to more familiar terrestrial ecosystem types such as forests. We conducted a greenhouse experiment to investigate how community composition and soil-atmosphere trace gas fluxes of CO2, CH4, and N2O varied from early-successional light cyanobacterial biocrusts to mid-successional dark cyanobacteria biocrusts and late-successional moss-lichen biocrusts and as biocrusts of each successional stage matured. Cover type richness increased as biocrusts developed, and richness was generally highest in the late-successional moss-lichen biocrusts. Microbial community composition varied in relation to successional stage, but microbial diversity did not differ significantly among stages. Net photosynthetic uptake of CO2 by each biocrust type also increased as biocrusts developed but tended to be moderately greater (by up to ≈25%) for the mid-successional dark cyanobacteria biocrusts than the light cyanobacterial biocrusts or the moss-lichen biocrusts. Rates of soil C accumulation were highest for the dark cyanobacteria biocrusts and light cyanobacteria biocrusts, and lowest for the moss-lichen biocrusts and bare soil controls. Biocrust CH4 and N2O fluxes were not consistently distinguishable from the same fluxes measured from bare soil controls; the measured rates were also substantially lower than have been reported in previous biocrust studies. Our experiment, which uniquely used greenhouse-grown biocrusts to manipulate community composition and accelerate biocrust development, shows how biocrust function varies along a dynamic gradient of biocrust successional stages.
Collapse
Affiliation(s)
- Andrew D. Richardson
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States
- *Correspondence: Andrew D. Richardson,
| | - Gary V. Kong
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, United States
- University of California, Santa Barbara, CA, United States
| | - Katrina M. Taylor
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, United States
- Department of Astronomy and Astrophysics, The Pennsylvania State University, State College, PA, United States
| | - James M. Le Moine
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States
| | - Matthew A. Bowker
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
- School of Forestry, Northern Arizona University, Flagstaff, AZ, United States
| | - Jarrett J. Barber
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States
| | - David Basler
- Department of Environmental Sciences–Botany, University of Basel, Basel, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Mariah S. Carbone
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - George W. Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Mark R. Salvatore
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, United States
| | - A. Wesley Sonnemaker
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, United States
- Lowell Observatory, Flagstaff, AZ, United States
| | - David E. Trilling
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|