1
|
Barreira LMF, Aurela M, Saarikoski S, Li D, Teinilä K, Virkkula A, Niemi JV, Manninen HE, Pirjola L, Petäjä T, Rönkkö T, Timonen H. Characterizing winter-time brown carbon: Insights into chemical and light-absorption properties in residential and traffic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177089. [PMID: 39477102 DOI: 10.1016/j.scitotenv.2024.177089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Brown carbon (BrC) is an organic aerosol (OA) component that possesses light-absorbing properties in the UV-Vis spectrum, impacting climate. However, the current understanding of climate repercussions stemming from BrC emissions remains insufficient due to a lack of comprehensive knowledge regarding its chemical makeup, light-absorption, and the role of atmospheric aging in shaping BrC properties. This study investigates BrC in PM1 (particulate matter <1μm) during winter in Helsinki, Finland, in a street canyon and a residential area with wood combustion. The aim was to ascertain BrC sources, chemical composition, and contribution to UV-Vis light absorption. The study utilized a seven-wavelength aethalometer (AE33) to measure black carbon (BC) and BrC light absorptions, and a soot particle aerosol mass spectrometer (SP-AMS) to determine OA composition. An OA source apportionment using positive matrix factorization followed by a multiple regression analysis between BrC absorption and each factor was performed to determine the mass absorption coefficients of BrC (MACBrC) and light absorption contributions of distinct sources across 370-660 nm wavelengths. The BrC UV-Vis absorption relative to the one of BC was higher at 370 nm, with a median contribution of 20.1 % in the residential area and 18.2 % at the traffic site. Residential BrC absorption showed sporadic peaks, while street canyon absorption was lower but consistent. MACBrC was higher for biomass burning organic aerosol but still significant for long-range transported (LRT) and traffic-related aerosols. Hydrocarbon-like organic aerosol exhibited higher MACBrC at 470 nm than at 370 nm. Combined with particulate mass concentrations, biomass burning and LRT contributed the most to light absorption. Uncertainties regarding MACBrC were evaluated. The chemical composition analysis revealed stronger correlations between BrC absorption and SP-AMS-measured ions, especially in residential areas and for polycyclic aromatic hydrocarbons and oxidized aromatics. The study emphasizes the importance of anthropogenic sources in BrC light absorption.
Collapse
Affiliation(s)
- Luis M F Barreira
- Atmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Minna Aurela
- Atmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Delun Li
- Atmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Kimmo Teinilä
- Atmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Aki Virkkula
- Atmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority, 00066 Helsinki, Finland
| | - H E Manninen
- Helsinki Region Environmental Services Authority, 00066 Helsinki, Finland
| | - Liisa Pirjola
- Department of Automotive and Mechanical Engineering, Metropolia University of Applied Sciences, 01600 Vantaa, Finland; Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, 33014 Tampere, Finland
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, Finland.
| |
Collapse
|
2
|
Kong Y, Zhi G, Jin W, Zhang Y, Shen Y, Li Z, Sun J, Ren Y. A review of quantification methods for light absorption enhancement of black carbon aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171539. [PMID: 38462012 DOI: 10.1016/j.scitotenv.2024.171539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Black carbon (BC) is a distinct type of carbonaceous aerosol that has a significant impact on the environment, human health, and climate. A non-BC material coating on BC can alter the mixing state of the BC particles, which considerably enhances the mass absorption efficiency of BC by directing more energy toward the BC cores (lensing effect). A lot of methods have been reported for quantifying the enhancement factor (Eabs), with diverse results. However, to the best of our knowledge, a comprehensive review specific to the quantification methods for Eabs has not been systematically performed, which is unfavorable for the evaluation of obtained results and subsequent radiative forcing. In this review, quantification methods are divided into two broad categories, direct and indirect, depending on whether experimental removal of the coating layer from an aged carbonaceous particle is required. The direct methods described include thermal peeling, solvent dissolution, and optical virtual exfoliation, while the indirect methods include intercept-linear regression fitting, minimum R squared, numerical simulation, and empirical value. We summarized the principles, procedures, virtues, and limitations of the major Eabs quantification methods and analyzed the current problems in the determination of Eabs. We pointed out what breakthroughs are needed to improve or innovate Eabs quantification methods, particularly regarding the need to avoid the influence of brown carbon, develop a broadband Eabs quantification scheme, quantify the Eabs values for the emissions of low-efficiency combustions, measure the Eabs of particles in a high-humidity environment, design a real-time monitor of Eabs by a proper combination of mature techniques, and make more use of artificial intelligence for better Eabs quantification. This review deepens the understanding of Eabs quantification methods and benefits the estimation of the contribution of BC to radiative forcing using climate models.
Collapse
Affiliation(s)
- Yao Kong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guorui Zhi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenjing Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuzhe Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yi Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhengying Li
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China
| | - Jianzhong Sun
- School of Physical Education, Chizhou University, Chizhou, Anhui 247000, China
| | - Yanjun Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Wu L, Shen Y, Che F, Zhang Y, Gao J, Wang C. Evaluating the performance and influencing factors of three portable black carbon monitors for field measurement. J Environ Sci (China) 2024; 139:320-333. [PMID: 38105058 DOI: 10.1016/j.jes.2023.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 12/19/2023]
Abstract
Black carbon (BC) is associated with adverse human health and climate change. Mapping BC spatial distribution imperatively requires low-cost and portable devices. Several portable BC monitors are commercially available, but their accuracy and reliability are not always satisfactory during continuous field observation. This study evaluated three models of portable black carbon monitors, C12, MA350 and DST, and investigates the factors that affect their performance. The monitors were tested in urban Beijing, where portable devices running for one month alongside a regular-size reference aethalometer AE33. The study considers several factors that could influence the monitors' performance, including ambient weather, aerosol composition, loading artifacts, and built-in algorithms. The results show that MA350 and DST present considerable discrepancies to the reference instrument, mainly occurring at lower concentrations (0-500 ng/m3) and higher concentrations (2500-8000 ng/m3), respectively. These discrepancies were likely caused by the anomalous noise of MA350 and the loading artifacts of DST. The study also suggests that the ambient environment has limited influence on the monitors' performance, but loading artifacts and accompanying compensation algorithms can result in unrealistic data. Based on the evaluation, the study suggests that C12 is the best choice for unsupervised field measurement, DST should be used in scenarios where frequent maintenance is available, and MA350 is suitable for research purposes with post-processing applicable. The study highlights the importance of assigning portable BC monitors to appropriate applications and the need for optimized real-time compensation algorithms.
Collapse
Affiliation(s)
- Liqing Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yicheng Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fei Che
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuzhe Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chong Wang
- Jinan Ecological Environmental Protection Grid-Based Supervision Center, Jinan 250013, China
| |
Collapse
|
4
|
Li Y, Lei L, Sun J, Gao Y, Wang P, Wang S, Zhang Z, Du A, Li Z, Wang Z, Kim JY, Kim H, Zhang H, Sun Y. Significant Reductions in Secondary Aerosols after the Three-Year Action Plan in Beijing Summer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15945-15955. [PMID: 37823561 DOI: 10.1021/acs.est.3c02417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Air quality in China has continuously improved during the Three-Year Action Plan (2018-2020); however, the changes in aerosol composition, properties, and sources in Beijing summer remain poorly understood. Here, we conducted real-time measurements of aerosol composition in five summers from 2018 to 2022 along with WRF-Community Multiscale Air Quality simulations to characterize the changes in aerosol chemistry and the roles of meteorology and emission reductions. Largely different from winter, secondary inorganic aerosol and photochemical-related secondary organic aerosol (SOA) showed significant decreases by 55-67% in summer, and the most decreases occurred in 2021. Comparatively, the decreases in the primary aerosol species and gaseous precursors were comparably small. While decreased atmospheric oxidation capacity as indicated by ozone changes played an important role in changing SOA composition, the large decrease in aerosol liquid water and small increase in particle acidity were critical for nitrate changes by decreasing gas-particle partitioning substantially (∼28%). Analysis of meteorological influences demonstrated clear and similar transitions in aerosol composition and formation mechanisms at a relative humidity of 50-60% in five summers. Model simulations revealed that emission controls played the decisive role in reducing sulfate, primary OA, and anthropogenic SOA during the Three-Year Action Plan, while meteorology affected more nitrate and biogenic SOA.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Lei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxing Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueqi Gao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Peng Wang
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Siyu Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhaolei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Aodong Du
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Young Kim
- Environment, Health, and Welfare Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hwajin Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea
| | - Hongliang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 200062, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Li F, Tang S, Lv J, He A, Wang Y, Liu S, Cao H, Zhao L, Wang Y, Jiang G. Molecular-Scale Investigation on the Formation of Brown Carbon Aerosol via Iron-Phenolic Compound Reactions in the Dark. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11173-11184. [PMID: 37462533 DOI: 10.1021/acs.est.3c04263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Brown carbon (BrC) is one of the most mysterious aerosol components responsible for global warming and air pollution. Iron (Fe)-induced catalytic oxidation of ubiquitous phenolic compounds has been considered as a potential pathway for BrC formation in the dark. However, the reaction mechanism and product composition are still poorly understood. Herein, 13 phenolic precursors were employed to react with Fe under environmentally relevant conditions. Using Fourier transform ion cyclotron resonance mass spectrometry, a total of 764 unique molecular formulas were identified, and over 85% of them can be found in atmospheric aerosols. In particular, products derived from precursors with catechol-, guaiacol-, and syringol-like-based structures can be distinguished by their optical and molecular characteristics, indicating the structure-dependent formation of BrC from phenolic precursors. Multiple pieces of evidence indicate that under acidic conditions, the contribution of either autoxidation or oxygen-induced free radical oxidation to BrC formation is extremely limited. Ligand-to-Fe charge transfer and subsequent phenoxy radical coupling reactions were the main mechanism for the formation of polymerization products with high molecular diversity, and the efficiency of BrC generation was linearly correlated with the ionization potential of phenolic precursors. The present study uncovered how chemically diverse BrC products were formed by the Fe-phenolic compound reactions at the molecular level and also provide a new paradigm for the study of the atmospheric aerosol formation mechanism.
Collapse
Affiliation(s)
- Feifei Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Tang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yarui Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Chen S, Wang Q, Zhang Y, Tian J, Wang J, Ho SSH, Li L, Ran W, Han Y, Pavese G, Cao J. Heterogeneous characteristics and absorption enhancement of refractory black carbon in an urban city of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162997. [PMID: 36966831 DOI: 10.1016/j.scitotenv.2023.162997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/18/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
In this study, field measurement was conducted using an integrated online monitoring system to characterize heterogeneous properties and light absorption of refractory black carbon (rBC). rBC particles are mainly from the incomplete combustion of carbonaceous fuels. With the data collected from a single particle soot photometer, thickly coated (BCkc) and thinly coated (BCnc) particles are characterized with their lag times. With different responses to the precipitation, a dramatical decline of 83 % in the number concentration of BCkc is shown after rainfall, while that of BCnc decreases by 39 %. There is a contrast in core size distribution that BCkc is always with larger particle sizes but has smaller core mass median diameters (MMD) than BCnc. The mean rBC-containing particle mass absorption cross-section (MAC) is 6.70 ± 1.52 m2 g-1, while the corresponding rBC core is 4.90 ± 1.02 m2 g-1. Interestingly, there are wide variations in the core MAC values which range by 57 % from 3.79 to 5.95 m2 g-1, which are also closely related to those of the whole rBC-containing particles with a Pearson correlation of 0.58 (p < 0.01). Errors would be made if we eliminate the discrepancies and set the core MAC as a constant when calculating absorption enhancement (Eabs). In this study, the mean Eabs is 1.37 ± 0.11 while the source apportionment shows that there are five contributors of Eabs including secondary aging (37 %), coal combustion (26 %), fugitive dust (15 %), biomass burning (13 %) and traffic-related emissions (9 %). Secondary aging is found to be the highest contributor due to the liquid phase reactions in formations of secondary inorganic aerosol. Our study characterizes property diversities and provides insights into the sources impacting the light absorption of rBC and will be helpful for controlling it in the future.
Collapse
Affiliation(s)
- Shuoyuan Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiyuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, Xi'an 710061, China.
| | - Yong Zhang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Tian
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Jin Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, NV 89512, United States
| | - Li Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weikang Ran
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, Xi'an 710061, China
| | - Yongming Han
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, Xi'an 710061, China
| | - Giulia Pavese
- Institute of Methodologies for Environmental Analysis (IMAA), Italian National Research Council (CNR), Tito Scalo, PZ 85050, Italy
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
7
|
Xia C, Sun J, Hu X, Shen X, Zhang Y, Zhang S, Wang J, Liu Q, Lu J, Liu S, Zhang X. Effects of hygroscopicity on aerosol optical properties and direct radiative forcing in Beijing: Based on two-year observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159233. [PMID: 36208762 DOI: 10.1016/j.scitotenv.2022.159233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The influence of relative humidity on aerosol properties and the direct radiative forcing of PM10 and PM1 were investigated in Beijing from January 2018 to December 2019. The annual mean scattering hygroscopic growth factor at RH = 80 % [f(80 %)] of PM10 and PM1 were 1.60 ± 0.24 and 1.58 ± 0.22, respectively. The variation of aerosol hygroscopic growth factors of PM10 and PM1 aerosols was similar, which is mainly due to the fact that aerosol scattering in Beijing is dominated by fine particles. The seasonal mean f(80 %) of PM10 from spring to winter were 1.66 ± 0.23, 1.71 ± 0.25, 1.51 ± 0.20, 1.49 ± 0.16, respectively, which were higher in spring and summer, and lower in autumn and winter. The diurnal variation of f(80 %) was relatively higher from 12:00 to 18:00, which could be related to the formation of secondary aerosols by photochemical reactions. f(80 %) shows a strong positive relationship with both the scattering Angström exponent (SAE) and the single scattering albedo (ω0) under dry conditions; therefore, the scattering hygroscopic growth factor could be estimated using these two parameters. The upscatter fraction (β) and single scattering albedo, which are the key aerosol optical properties for the calculation of direct radiative forcing, are also RH-dependent. As RH increases, the upscatter fraction (backscatter fraction) decreases and ω0 increases. The aerosol radiative forcing at RH 80 % was 1.48 times as that in the dry state. The sensitivity experiment showed that the variation in the scattering coefficient with relative humidity had the greatest influence on radiation forcing, followed by β and ω0. The seasonal variation of ΔF(80 %)/ΔF(dry) coincides with that of the aerosol hygroscopic growth factor. Our study suggests that understanding the influence of relative humidity on aerosol properties and direct radiative forcing is important for accurately estimating the radiative forcing of aerosols.
Collapse
Affiliation(s)
- Can Xia
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Junying Sun
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Xinyao Hu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojing Shen
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yangmei Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Sinan Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jialing Wang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Quan Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jiayuan Lu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Shuo Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Liu X, Zhu R, Jin B, Zu L, Wang Y, Wei Y, Zhang R. Emission characteristics and light absorption apportionment of carbonaceous aerosols: A tunnel test conducted in an urban with fully enclosed use of E10 petrol. ENVIRONMENTAL RESEARCH 2023; 216:114701. [PMID: 36332670 DOI: 10.1016/j.envres.2022.114701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
To reduce the heavy dependence on petroleum, bioethanol has been increasingly employed as an alternative and sustainable transportation fuel. However, the characteristics of black carbon (BC) emissions from E10 petrol vehicles (i.e., ethanol-gasoline containing 10% ethanol) are still unclear, especially under real driving conditions. Here, a tunnel test was conducted during a cold winter. This tunnel was characterized by heavy traffic comprising more than 98% E10-fueled gasoline vehicles (GVs). Real-time BC concentrations, traffic parameters and meteorological conditions were recorded during the sampling campaign. The average BC concentration inside the tunnel (10.94 ± 5.02 μg m-3) was almost twice the background concentration. Based on aethalometer AE33 in situ measurements and the minimum R-squared (MRS) method, real-time aerosol light absorption was apportioned. The light absorption proportions of BC, primary brown carbon (BrC1) and secondary brown carbon (BrC2) were 79.86%, 2.78% and 17.36%, respectively, at 370 nm. The BC emission factor (EFBC) of the E10-fueled vehicles was 1.09 ± 0.49 mg km-1·veh-1 and 15.24 ± 6.85 mg·(kg fuel)-1, lower than those of traditional gasoline fueled vehicles in previous studies. This study can support the compilation of vehicular BC emission inventories, provide recommendations for biofuel policies and contribute to comprehensively understanding the climatic impact of E10 petrol.
Collapse
Affiliation(s)
- Xinhui Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Rencheng Zhu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou University, Zhengzhou, 450001, China.
| | - Boqiang Jin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lei Zu
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yunjing Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yangbing Wei
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ruiqin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Ivančič M, Gregorič A, Lavrič G, Alföldy B, Ježek I, Hasheminassab S, Pakbin P, Ahangar F, Sowlat M, Boddeker S, Rigler M. Two-year-long high-time-resolution apportionment of primary and secondary carbonaceous aerosols in the Los Angeles Basin using an advanced total carbon-black carbon (TC-BC(λ)) method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157606. [PMID: 35896132 DOI: 10.1016/j.scitotenv.2022.157606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In recent years, carbonaceous aerosols (CA) have been recognized as a significant contributor to the concentration of particles smaller than 2.5 μm (i.e., PM2.5), with a negative impact on public health and Earth's radiative balance. In this study, we present a method for CA apportionment based on high-time-resolution measurements of total carbon (TC), black carbon (BC), and spectral dependence of absorption coefficient using a recently developed Carbonaceous Aerosol Speciation System (CASS). Two-year-long CA measurements at two different locations within California's Los Angeles Basin are presented. CA was apportioned based on its optical absorption properties, organic or elemental carbon composition, and primary or secondary origin. We found that the secondary organic aerosols (SOA), on average, represent >50 % of CA in the study area, presumably resulting from the oxidation of anthropogenic and biogenic volatile organic components. Remarkable peaks of SOA in summer afternoons were observed, with a fractional contribution of up to 90 %. On the other hand, the peak of primary emitted CA, consisting of BC and primary organic aerosol (POA), contributed >80 % to the CA during morning rush hours on winter working days. The light absorption of BC dominated over the brown carbon (BrC), which contributed to 20 % and 10 % of optical absorption at the lower wavelength of 370 nm during winter nights and summer afternoons, respectively. The highest contribution of BrC, up to 50 %, was observed during the wildfire periods. Although the uncertainty levels can be high for some CA components (such as split between primary emitted and secondary formed BrC during winter nights), further research focused on the optical properties of CA at different locations may help to better constrain the parameters used in CA apportionment studies. We believe that the CASS system combined with the apportionment method presented in this study can offer simplified and cost-effective insights into the composition of carbonaceous aerosols.
Collapse
Affiliation(s)
- Matic Ivančič
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia.
| | - Asta Gregorič
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia; Centre for Atmospheric Research, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Gašper Lavrič
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia
| | - Bálint Alföldy
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia
| | - Irena Ježek
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia
| | - Sina Hasheminassab
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Payam Pakbin
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Faraz Ahangar
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Mohammad Sowlat
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Steven Boddeker
- South Coast Air Quality Management District, 21865 Copley Dr, Diamond Bar, CA 91765, USA
| | - Martin Rigler
- Aerosol d.o.o., Research & Development Department, Kamniška 39a, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Chen C, Zhang Z, Wei L, Qiu Y, Xu W, Song S, Sun J, Li Z, Chen Y, Ma N, Xu W, Pan X, Fu P, Sun Y. The importance of hydroxymethanesulfonate (HMS) in winter haze episodes in North China Plain. ENVIRONMENTAL RESEARCH 2022; 211:113093. [PMID: 35292245 DOI: 10.1016/j.envres.2022.113093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Hydroxymethanesulfonate (HMS), a key marker species of aqueous-phase processing, plays a significant role in sulfur budget in atmosphere. Here we have a comprehensive characterization of HMS at urban and rural sites in North China Plain (NCP) by using the real-time measurements from a high-resolution aerosol mass spectrometer (AMS) and a single-particle AMS together with offline filter analysis. Our results showed much higher winter concentration of HMS at the rural site (average±1σ: 2.58 ± 2.56 μg m-3) than that (1.70 ± 2.68 μg m-3) in Beijing due to the more frequent fog events, low particle acidity and high concentration of precursors. The HMS on average contributed 6.3% and 5.2% to organic aerosol (OA), and 16% and 12% to the total particulate sulfur, at the rural and urban sites, respectively. HMS was highly correlated with aqueous-phase secondary OA and sulfate, and its contribution to the total particulate sulfur increased significantly as a function of relative humidity demonstrating the effective HMS production from aqueous-phase processing. Single-particle analysis showed that HMS-containing particles were mainly mixed with amine-related compounds. In addition, we found that organosulfur compounds (OS) estimated from sulfur-containing fragments of AMS correlated well with HMS at both urban and rural sites. While OS at the rural site was dominated by HMS, other types of OS were also important in urban area. The high HMS also affected the estimation of particle acidity using the AMS measured and predicted ammonium, particularly during severe haze episodes. Overall, our results demonstrated the importance of HMS in winter in NCP, and it could be more important in total particulate sulfur budget as the continuous decrease in sulfate in the future.
Collapse
Affiliation(s)
- Chun Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yanmei Qiu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Shaojie Song
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jiaxing Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Nan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Pingqing Fu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
11
|
Du A, Li Y, Sun J, Zhang Z, You B, Li Z, Chen C, Li J, Qiu Y, Liu X, Ji D, Zhang W, Xu W, Fu P, Sun Y. Rapid transition of aerosol optical properties and water-soluble organic aerosols in cold season in Fenwei Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154661. [PMID: 35314216 DOI: 10.1016/j.scitotenv.2022.154661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The Fenwei Plain (FWP) continues to be one of the most polluted regions in China despite the improvement of air quality in recent years. However, our understanding of aerosol optical properties (AOP) and its relationship with aerosol composition particularly in cold season is far from complete. Here we conducted three-month measurements of AOP from November 2020 to January 2021 in the FWP along with fine particle composition and water-soluble organic aerosol (WSOA) measurements. Our results showed rapid transitions in AOP from November to January due to the enhanced primary emissions and the decreased aqueous-phase processing. The single scattering albedo (SSA) decreased from 0.85 to 0.78, while the absorption Ångstrӧm exponent (AAE) increased from 1.41 to 1.60, demonstrating the increasing role of absorbing aerosol and brown carbon in cold season. Further analysis showed that SSA increased significantly with the fraction of secondary inorganic aerosol, while AAE was highly correlated with the fraction of primary OA (POA), highlighting the different impacts of primary and secondary aerosol on AOP. Chemical apportionment showed the dominant contributions of ammonium nitrate (29%) and ammonium sulfate (27%) to particle extinction before heating season, while that of POA increased to 27% during heating season. Although the pollution level showed a clear increase during the heating season, the changes in visibility were small due to the decreased mass extinction efficiency from 3.48 to 2.91 m2 g-1. Positive matrix factorization illustrated a clear transition in WSOA composition from the dominance of secondary OA (SOA) in November to POA in heating season. Compared with the large decrease in water-soluble aqueous-phase SOA, the consistently high concentration of photochemical-related SOA elucidated the presence of strong photochemical processing in cold season. Overall, our results demonstrate the significant transition in primary emissions and secondary formation in cold season, and such changes have affected AOP substantially.
Collapse
Affiliation(s)
- Aodong Du
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxing Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yanmei Qiu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingang Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
12
|
Feng Z, Zheng F, Liu Y, Fan X, Yan C, Zhang Y, Daellenbach KR, Bianchi F, Petäjä T, Kulmala M, Bao X. Evolution of organic carbon during COVID-19 lockdown period: Possible contribution of nocturnal chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152191. [PMID: 34875334 PMCID: PMC8651497 DOI: 10.1016/j.scitotenv.2021.152191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 05/03/2023]
Abstract
Carbonaceous aerosol is one of the main components of atmospheric particulate matter, which is of great significance due to its role in climate change, earth's radiation balance, visibility, and human health. In this work, carbonaceous aerosols were measured in Shijiazhuang and Beijing using the OC/EC analyzer from December 1, 2019 to March 15, 2020, which covered the Coronavirus Disease 2019 (COVID-19) pandemic. The observed results show that the gas-phase pollutants, such as NO, NO2, and aerosol-phase pollutants (Primary Organic Compounds, POC) from anthropogenic emissions, were significantly reduced during the lockdown period due to limited human activities in North China Plain (NCP). However, the atmospheric oxidation capacity (Ox/CO) shows a significantly increase during the lockdown period. Meanwhile, additional sources of nighttime Secondary Organic Carbon (SOC), Secondary Organic Aerosol (SOA), and babs, BrC(370 nm) are observed and ascribed to the nocturnal chemistry related to NO3 radical. The Potential Source Contribution Function (PSCF) analysis indicates that the southeast areas of the NCP region contributed more to the SOC during the lockdown period than the normal period. Our results highlight the importance of regional nocturnal chemistry in SOA formation.
Collapse
Affiliation(s)
- Zemin Feng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Xiaolong Fan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaspar R Daellenbach
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Xiaolei Bao
- Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China; Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China.
| |
Collapse
|